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Repetition 1

Lexicographical Order
a1a2 . . . an <lex b1b2 . . .bm iff either the first string is a
proper prefix of the second or there is a k with
k ≤ n ∧ k ≤ m ∧ ak < bk ∧ ah = bh for all h with 1 ≤ h < k.

NUH <lex NUHS <lex NUS <lex SOC.

Algorithm
Processing inputs x,y symbol by symbol.
1. If x is exhausted and y not, then x <lex y, Halt.
2. If y is exhausted and x not, then y <lex x, Halt.
3. If x and y are exhausted, then x = y, Halt.
4. Read symbol a from x and b from y.
5. If a = b then go to 1.
6. If a < b then x <lex y else y <lex x. Halt.
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Repetition 2

Relations are sets of tuples of strings; they can be
translated into sets of strings using convolution.

Convolution has combined characters of matching positions
in the words with # used for exhausted words (# is not in
the alphabet).
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Now one can formalise automaticity of a relation using a
convolution.

For example, a ternary relation R of words over Σ is
automatic iff the set {conv(x,y, z) : (x,y, z) ∈ R} is regular.
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Repetition 3

For binary alphabet {0,1}, the following automaton
recognises lexicographic ordering.

x = ystart
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on an arrow means that the automaton always

goes this way.
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Repetition 4

Theorem
If a relation or function is first-order definable from
automatic parameters then it is automatic.

Example
Length-lexicographic ordering:

x <ll y ⇔ |x| < |y| ∨ (|x| = |y| ∧ x <lex y).

Length-lexicographic successor:

y = Succ(x) ⇔ x <ll y ∧ ∀z [z <ll x ∨ z = x ∨ z = y ∨ y <ll z].

Range R of a function f with domain D:

y ∈ R ⇔ ∃x [x ∈ D ∧ y = f(x)].
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Repetition 5

The derivation relation ⇒ in a grammar is an automatic
relation.

One can also characterise the context-sensitive languages
using automatic relations.

This characterisation is used to show that the complement
of a context-sensitive language is again context-sensitive.
This result is due to Neil Immerman and Róbert
Szelepcsényi.
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Groups, Monoids and Semigroups

Groups, monoids and semigroups are mathematical objects
related to automata theory in two ways:

• The derivatives of a regular language can be made into
a monoid;

• Many groups, monoids and semigroups can be
represented by automata in various ways.

There are prominent examples of groups: the integers
(Z,+,0) and the rationals (Q,+,0); furthermore,
permutation groups or the group of all possible
move-sequences on Rubik’s cube (modulo equivalence).
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Definition of Groups

Let G be a set and ◦ be an operation mapping G×G to G.
(a) The structure (G, ◦) is called a semigroup iff ◦ is
associative, that is, iff x ◦ (y ◦ z) = (x ◦ y) ◦ z for all
x,y, z ∈ G.
(b) The structure (G, ◦, e) is called a monoid iff (G, ◦) is a
semigroup and e ∈ G and e satisfies x ◦ e = e ◦ x = x for all
x ∈ G.
(c) The structure (G, ◦, e) is called a group iff (G, ◦, e) is a
monoid and for each x ∈ G there is an y ∈ G with x ◦ y = e.
(d) A semigroup (G, ◦) is called finitely generated iff there is
a finite subset F ⊆ G such that for each x ∈ G there are n

and y1,y2, . . . ,yn ∈ F with x = y1 ◦ y2 ◦ . . . ◦ yn.
(e) A semigroup (G, ◦) is finite iff G is finite as a set.
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Examples 8.2 – 8.4

8.2 Prominent Sets
({1,2,3, . . .},+) is semigroup but not monoid.
(N,+,0) is a moniod.
(Z,+,0) is a finitely generated group.
(Q,+,0) is a group but not finitely generated.
(Q− {0}, ∗,1) is a group.

8.3 Semigroup
Let G have at least two elements and x ◦ y = x for all
x,y ∈ G. This is a semigroup and every element is neutral
from one side but not from the other.

8.4 Functions on Set
Let Q be a finite set and G = {f : Q → Q} and ◦ be the
concatenation of functions, id the identity. (G, ◦, id) is a
finite monoid. Let G′ = {f ∈ G : f is one-one}; the
submonoid (G′, ◦, id) is a group.
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8.5 Syntactic Monoid

Let (Q,Σ, δ, s,F) be a complete dfa, G = {f : Q → Q} and
id the identity function. Then

G′ = {f ∈ G : ∃w ∈ Σ∗ ∀q ∈ Q [δ(q,w) = f(q)]}

defines the syntactic monoid (G′, ◦, id) with ◦ being function
concatenation. Let fw be the function generated by w.

The relation ∼ on Σ∗ with v ∼ w iff fv = fw is called a
congruence: It is an equivalence relation which respects
the concatenation; that is, if v ∼ w and x ∼ y then vx ∼ wy.

Theorem
A language L is regular iff it is the union of equivalence
classes of a congruence with finitely many equivalence
classes.
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Example 8.7

Let a dfa have the alphabet Σ = {0,1} and states
Q = {s, s′,q,q′,q′′} and the following state transition table:

state s s′ q q′ q′′

successor at 0 s′ s q q′ q′′

successor at 1 q′ q′ q′ q′′ q

Now the syntactic monoid contains the transition functions
fε (the identity), f0, f1, f11 and f111. The functions f0 and f1
are as in the state transition diagramme and f11 and f111
are given by the following table.

state s s′ q q′ q′′

f11 q′′ q′′ q′′ q q′

f111 q q q q′ q′′

Other functions are equal to these, for example f110 = f11
and f0000 = fε. Advanced Automata Theory 8 Groups, Monoids and Automata Theory – p. 11



Word Problem of Semigroups

Let (G, ◦) be a semigroup and F ⊆ G. Let w ∈ F∗ be a
string over G, say w = a1a2 . . . an. Then elG(w) is the group
element a1 ◦ a2 ◦ . . . ◦ an.

Generators
F is called a set of generators of G iff for every v ∈ G exists
w ∈ F∗ with v = elG(w).

Definition 8.8: Word Problem
The word problem of a semigroup G over a set F of
generators asks for an algorithm which checks for two
v,w ∈ F∗ whether elG(v) = elG(w).
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Application

Definition 8.9. A language L defines the congruence
{(v,w) : Lv = Lw} and furthermore L also defines the
syntactic monoid (GL, ◦) of its minimal deterministic finite
automaton.

Theorem 8.10. Every finite group (G, ◦) is the syntactic
monoid of a language L.

Proof. Let L = {v ∈ G∗ : elG(v) = ε} be the set of words
which are equal to the neutral element.

The corresponding dfa is (G,G, δ, ε, {ε}) with δ(a,b) = a ◦ b
for all a,b ∈ G. For each a ∈ G, the inverse b of a satisfies
that b is the only one-letter word in G∗ such that Lab = Lε

and therefore, for all a ∈ G, the languages La are different.
Thus the dfa is a minimal dfa and has a congruence ∼
satisfying v ∼ w iff elG(v) = elG(w) iff Lv = Lw.
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When (G, ◦) differs from all (GL, ◦)

Let ({ε,0,1,2}, ◦) be the semigroup with a ◦ ε = ε ◦ a = a

and a ◦ b = b for all a,b ∈ {0,1,2}.

The set {0,1,2} generates the given monoid. Consider all
words over {0,1,2}∗. Two such words v,w define the same
member of the semigroup iff either both v,w are empty or
both v,w end with the same digit a ∈ {0,1,2}.

The monoid is the syntactic monoid of the dfa which has
alphabet {0,1,2}, states {s,0,1,2}, start state s and
transition function δ(q, a) = a for all symbols a and states q.

However there is no language L with the syntactic monoid
being equal to (GL, ◦). The reason is that for two different
digits a,b, the corresponding states with the same name
are either both accepting or both rejecting and thus the
minimal automaton of the dfa belonging to this monoid
unifies these two states into one.
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Exercises of Syntactic Monoids

Determine the syntactic monoids (GLk
, ◦) for the following

languages Lk.

Exercise 8.12: Do this for L1 and L2:

1. L1 = {0n1m : n+m ≤ 3};

2. L2 = {w : w has an even number of 0 and an odd
number of 1}.

Exercise 8.13: Do this for L3 and L4:

1. L3 = {00}∗ · {11}∗;

2. L4 = {0,1}∗ · {00,11}.

Quiz 8.14
Do the same for L5 = {0}∗ · {1}∗.
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Automatic Semigroups

An automatic semigroup (as introduced by Epstein,
Cannon, Holt, Levy, Paterson and Thurston in 1992) is a
finitely generated semigroup which is represented by a
G ⊆ F∗ such that the following conditions hold:

• G is a regular subset of F∗;

• Each element of the semigroup has exactly one
representative in G;

• For each y ∈ G the mapping x 7→ elG(xy) is automatic.

Similarly for automatic monoids and groups.
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Example 8.16

F = {a, a} and G = a∗ ∪ a∗. Then (G, ◦, ε) is an automatic
group with

an ◦ am = an+m;

an ◦ am = an+m;

an ◦ am =

{

an−m if n > m;
ε if n = m;
am−n if n < m;

an ◦ am =

{

an−m if n > m;
ε if n = m;
am−n if n < m.

This group represents (Z,+) with generator a for +1 and a

for −1.
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Example 8.17

Semigroups can be described by rules. For example, let
F = {a, a,b, c} and consider G = (a∗ ∪ a∗) · {b, c}∗ with rules
baa = ab, c = ba, aa = ε and aa = ε.

Note that words like aaabaaa can be brought into the
normal form in G by applying the rules: ca = baa = ab and
ba = c and aaabaaa = aaaaba = aaaac.
This permits to eliminate a after b and c.
Similarly with a: ba = aaba = abaaa = aba = ac and
ca = baa = b.

This semigroup is automatic.
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Exercise 8.18

Let G = a∗b∗ define a monoid with generators a,b, neutral

element ε and ◦ be defined by aibj ◦ ai
′

bj′ = aibj+j′ for j > 0

and ai ◦ ai
′

bj′ = ai+i′bj′.

Show that the monoid in this representation is automatic but
not biautomatic.

Does the monoid have a biautomatic representation?

Use adequate pumping lemmas to prove the result.
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Automatic Semigroups by Hodgson

Hodgson and independently Khoussainov and Nerode
formalised fully automatic semigroups as follows (they used
the term “automatic semigroup” and “fully” is added here to
indicate that the full group operation is automatic).

• The domain G is regular and represents each
semigroup element exactly once;

• The function x,y 7→ x ◦ y is automatic.

Some automatic semigroups can also be made fully auto-
matic; the representation has, however, to be adjusted.

(N,+,0) is a fully automatic monoid in a suitable
representation;
(Q,+,0) is not a fully automatic group;
If (F,+,0) is a finite group then the set G = {f : N → F, f is
eventually constant} has a fully automatic representation.
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Quiz 8.20

Represent (Z,+,0) using alphabet Σ = {0,1,+,−} with 0

representing 0 and a0a1 . . . an+ with an = 1 and
a0, a1, . . . , an−1 ∈ {0,1} representing
a0 + 2a1 + 4a2 + . . .+ 2nan. Accordingly a0a1 . . . an− with
an = 1 and a0, a1, . . . , an−1 ∈ {0,1} represents
−(a0 + 2a1 + 4a2 + . . .+ 2nan).

Why is the addition fully automatic?

Why is the order of the binary digits inverted?
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Automaton

Verification of a+ b = c with a,b, c ≥ 0. For ease of
notation, identify # and 0 and omit +. Three states: n, c, e
for no carry (accepting, start), carry (rejecting) and error
(rejecting).

Assume that input is (ak,bk, ck) in k-th step.
From n, if ak + bk = ck then go to n;
if ak + bk = 2+ ck then go to c; otherwise go to e.
From c, if ak + bk + 1 = ck then go to n;
if ak + bk + 1 = 2+ ck then go to c; otherwise go to e.
From e one can only go to e.

a | 1 1 1 0 | 1 0 1 1 0

b | 1 1 0 0 | 0 1 0 1 0

c | 0 1 0 0 | 1 1 1 0 1

st | n c c c e | n n n n c n

7 + 3 = 2? 13 + 10 = 23?
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Theorem 8.22

Theorem. There is a monoid which is automatic but not fully
automatic.

Monoid. ({0,1}∗, ◦, ε) with ◦ being concatenation of strings.
This monoid is automatic.

Assume that there is a fully automatic presentation (G, ◦) of
this monoid. Let F0 be the representatives of {0,1} in G

and Fn+1 = {v ◦w : v,w ∈ Fn}.

There is a constant c ≥ max{|x| : x ∈ F0} such that, for all
x,y ∈ G, |x ◦ y| ≤ max{|x|, |y|}+ c. By induction, the
members of Fn have as members of G at most length
c · (n+ 1); but they represent binary strings of length 2n.

There are at most |Σ|1+c·(n+1) members of G of length up to

c · (n+ 1), where G uses alphabet Σ. There are 22
n

elements in Fn. A contradiction.
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Exercise 8.23

Free Group over two generators.

Let Σ = {a, a,b,b}. The free group with two generators can

be representated with G = {w ∈ Σ∗ : aa, aa,bb,bb are not
substrings of w}. The group operation x ◦ y with x,y ∈ G

takes as value the z obtained by removing from the

concatenation xy all occurrences of aa, aa,bb,bb until
none of them are left. ε is the neutral element.

This group is automatic in this representation.

Show that this group is not fully automatic.
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Example 8.24

Let a,b, c be generators of the monoid satisfying c ◦ b = c

and b ◦ a = a and a ◦ c = c ◦ a which gives the equation

aibjck ◦ ai
′

bj′ck
′

=















aibj+j′ck
′

if k = 0 ∧ i′ = 0;

ai+i′bj
′

ck
′

if k = 0 ∧ i′ > 0;

aibjck+k′

if k > 0 ∧ i′ = 0;

ai+i′ck+k′

if k > 0 ∧ i′ > 0;

where i, j,k, i′, j′,k′ ∈ N. This monoid is fully automatic: One
can represent the group as a convolution of three copies of
(N,+) and use above formula for ◦.

However, the monoid is not automatic. Intuitively, the
reason is that when multiplying with c from the front or with
a from the back, the corresponding deletions of the entries
for b cannot be done.
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Exercise 8.25

Let a,b be generators of a group satisfying

ahbk ◦ aibj =

{

ah+ibk+j if k is even;

ah−ibk+j if k is odd;

where h,k, i, j ∈ Z. Show that this group is biautomatic as
well as fully automatic; find for both results representations.

For full automaticity, one can use (as parameter) a
representation of (Z,+,0).
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Additonal Exercises

8.26: Assume that (G, ◦) is an infinite automatic semigroup.
Show that it cannot be that ◦ is, in the given automatic
representation, a fully automatic semigroup operation.

8.27: Construct an automatic representation of the group H

of all rationals (positive or negative) with multiplication
which have only one-digit prime factors – so they are of the

form 2h · 3i · 5j · 7k or −2h · 3i · 5j · 7k with h, i, j,k ∈ Z.

8.28: Construct a fully automatic representation for the
group H from Exercise 8.27. Note that one cannot use the
same representation by Exercise 8.26.

8.29: Let a representation (G, ◦) of a group be given and let
f map each x ∈ G to its inverse. Are the following true:
(a) If (G, ◦) is automatic then f is automatic;
(b) If (G, ◦) is fully automatic then f is automatic?
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Group Size

Let (G, ◦) be an automatic group. Furthermore, let fG(n) be
the number of elements which have representatives in G of
length shorter than n. Construct automatic groups for the
following f .

8.30: Prove that every automatic representation of (Z,+)
satisfies that the function fG is bounded by the expression
cn for some constant c.

8.31: Provide an example of an automatic group with
quadratic function fG.

8.32: Determine the function fG of the semigroup from
Example 8.17.

8.33: For fully automatic semigroups, the above questions
would be quite easy by showing the following fact: For
every nonempty regular set G there is an Abelian
semigroup operation ◦ such that (G, ◦) is fully automatic.
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