
Advanced Automata Theory 9
Automatic Structures in General

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Advanced Automata Theory 9 Automatic Structures in General – p. 1



Repetition: Automatic Functions

Convolution
The convolution of two strings is formed by making pairs of
characters in matching positions; the shorter string is
padded with a special character, if needed.

conv(001,110011) =
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More precisely, the convolution of a k-tuples (x1,x2, . . . ,xk)

consists of characters in the alphabet (Σ ∪ {#})k and has
length max{|x1|, |x2|, . . . , |xk|} where the m-th symbol
(a1, a2, . . . , ak) contains as ai the m-th symbol of xi if that
exists and # if m > |xi|.

A relation R ⊆ (Σ∗)k is automatic iff
{conv(x1,x2, . . . ,xk) : (x1,x2, . . . ,xk) ∈ R} is regular as a
set of strings.

A function is automatic iff the relation
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Groups, Monoids and Semigroups

Groups, monoids and semigroups are mathematical objects
related to automata theory in two ways:

• The derivations of a regular language can be made into
a monoid, leading to the definition of a syntactic monoid
and characterisation of regular languages by
congruence relations;

• Many groups, monoids and semigroups can be
represented by automata in various ways.

There are prominent examples of groups: the integers
(Z,+,0) and the rationals (Q,+,0); furthermore,
permutation groups or the group of all possible
move-sequences on Rubik’s cube (modulo equivalence).
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Definition of Groups

Let G be a set and ◦ be an operation mapping G×G to G.
(a) The structure (G, ◦) is called a semigroup iff ◦ is
associative, that is, iff x ◦ (y ◦ z) = (x ◦ y) ◦ z for all
x,y, z ∈ G.
(b) The structure (G, ◦, e) is called a monoid iff (G, ◦) is a
semigroup and e ∈ G and e satisfies x ◦ e = e ◦ x = x for all
x ∈ G.
(c) The structure (G, ◦, e) is called a group iff (G, ◦, e) is a
monoid and for each x ∈ G there is an y ∈ G with x ◦ y = e.
(d) A semigroup (G, ◦) is called finitely generated iff there is
a finite subset F ⊆ G such that for each x ∈ G there are n

and y1,y2, . . . ,yn ∈ F with x = y1 ◦ y2 ◦ . . . ◦ yn.
(e) A semigroup (G, ◦) is finite iff G is finite as a set.
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Automaticity of Groups & Semigroups

Let (G, ◦) be a semigroup.

Model of Epstein, Cannon, Holt, Levy, Paterson and
Thurston

• G is chosen as regular set of words over finite set F of
generators;

• Mapping x 7→ x ◦ y is automatic for fixed y (where x ◦ y
stands for the unique element in G representing this
value).

Model of Hodgson, Khousssainov and Nerode (fully
automatic)

• Representatives G are given as arbitrary regular set;

• Mapping x,y 7→ x ◦ y is automatic as function of two
inputs.
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Automatic Structures

A structure (A,R1, . . . ,Rm, f1, . . . , fn, c1, . . . , ch) is automatic
iff A is a regular set and each relation Rk is an automatic

relation with domain Aℓk and each function fk is an

automatic function mapping Aℓ′k to A; the constants
c1, . . . , ch are specific members of A.

Examples of automatic structures
(N,+, <,0,1) is a monoid with order.
(Z,+,0,POT) is a group with powers of 2.
Indeed, every fully automatic group is by definition an
automatic structure.
(Q,+,0) is not an automatic structure.
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Automatic Monoids and Structures

The monoid ({0,1}∗, ◦, ε) with ◦ being the concatenation is
automatic and has no representation as an automatic
structure.

However, if one just uses instead of ◦ the mappings x 7→ x0

and x 7→ x1 then one gets a structure which is automatic.

The structure ({0,1}∗,x 7→ x0,x 7→ x1, ε) is automatic.

There is a finitely generated group (G, ◦) with generators
a,b and the rule aab = ba which is not automatic though
the there is an automatic structure representing

(G,x 7→ x ◦ a,x 7→ x ◦ a,x 7→ x ◦ b,x 7→ x ◦ b, ε).

In this structure, G is not represented as a set of words
over generators but as the convolution of a dyadic rationals

i and 2j representing aibj, where a1/2
n

stands for b
n
abn.
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Definability and Automaticity

Khoussainov and Nerode showed that whenever in an
automatic structure a relation or function is first-order
definable from other automatic relations or functions then it
is automatic.

(0∗,Succ) with Succ(w) = w0 is isomorphic to the structure
(N,x 7→ x+ 1). The addition is not automatic in this
structure, hence addition cannot be first-order defined from
the successor-relation.

If (A,+,0) is isomorphic to (N,+,0) then one can define the
order < by x < y ⇔ x 6= y ∧ ∃z [x+ z = y].
Also the subsets of even and odd numbers are definable:
x is even iff ∃y [x = y + y]; x is odd iff ∀y [x 6= y + y].

In (Z,+), the order is not first-order definable and also not
the set N; it is an open problem whether for all fully
automatic models of (Z,+), N is a regular subset.
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Example 9.2, Definability

Consider the structure ({0,1}∗, {0}∗, <sh, <ll) where the
relation <sh says x <sh y ⇔ |x| < |y|.

One can define <sh in ({0,1}∗, {0}∗, <ll) as follows:

|x| <sh |y| ⇔ ∃z ∈ {0}∗ [x <ll z ∧ (z = y ∨ z <ll y)].

One can define {0}∗ in ({0,1}∗, <sh, <ll):

x ∈ {0}∗ ⇔ ∀y <ll x [y <sh x].

Quiz
How can one define {1}∗ in ({0,1}∗, <sh, <ll)?
Are {0}∗ and {1}∗ definable in ({0,1}∗, <ll)?
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Rings and Semirings

A structure (A,⊕,⊗,0,1) is called a semiring with 1 iff it
satisfies the following conditions:

1. (A,⊕,0) is a commutative monoid;

2. (A,⊗,1) is a monoid;

3. ∀x,y, z ∈ A [x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)] and
∀x,y, z ∈ A [(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z)];

4. ∀x ∈ A [x⊗ 0 = 0 and 0⊗ x = 0].

If, furthermore, (A,⊕,0) is a group then (A,⊕,⊗,0,1) is
called a ring with 1. Note that the first three properties plus
invertability of ⊕ imply the fourth that everything times 0 is
0.

A semiring / ring is called commutative iff
∀x,y [x⊗ y = y ⊗ x].
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Examples

(Z,+, ∗,0,1) is the ring of integers.
Every field like (Q,+, ∗,0,1) is a ring.

If (A,⊕A,⊗A,0A,1A) and (B,⊕B,⊗B,0B,1B) are rings
then one can also define a ring
(A×B,⊕,⊗, (0A,0B), (1A,1B)) with the componentwise
operations (x,y)⊕ (x′,y′) = (x⊕A x′,y ⊕B y′) and
(x,y)⊗ (x′,y′) = (x⊗A x′,y ⊗B y′).

There is a finite ring F of operations modulo a number
r ∈ {2,3, . . .}, here for r = 4:

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

∗ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1
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Infinite Automatic Ring

Assume that (F,+, ∗,0,1) is a finite ring. Let G contain
those elements x1x2 . . .xn in F∗ which either satisfy n = 1

or n > 1 ∧ xn−1 6= xn. Intuitively, 02112 stands for
021122222 . . . where the last symbol repeats forever.

Now let x1x2 . . .xn + y1y2 . . .ym = z1z2 . . . zh if for all k > 0,
xmin{n,k} + ymin{m,k} = zmin{h,k}. Similarly for multiplication.

Now the member 0 of F is also the additive neutral element
in G and 1 is also the multiplicative neutral element in G.

The so generated (G,+, ∗,0,1) is an example of an infinite
automatic ring and represents the ring of the eventually
constant functions f : N → F with pointwise operations.
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Example

For F = {0,1}, the ring G can also be viewed as the set of
all finite and cofinite subsets of N; the intersection ∩ is the
ring multiplication and the symmetric difference ⊕ is the
addition. Note that when using ∪ in place of ⊕, the resulting
structure is only a semiring and not a ring, as the union
does not have for any nonempty set an inverse.

Coding. One identifies a subset A ⊆ N with
f : N → {0,1}, f(n) = A(n) and then uses the definitions
from the last slide. So 0110110 stands for {1,2,4,5}.

Quiz. Now match the following strings representing finite or
cofininte sets in G to the subsets of N listed below:

01, 0110, 101010, 011101, 1, 0, 01010.

N, N− {0}, N− {0,4}, {0,2,4}, {1,2}, {1,3}, ∅.
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Partial and Linear Orders

An ordering ⊏ on a set A is a relation satisfying the
following two axioms:

1. ∀x,y, z ∈ A [x ⊏ y ∧ y ⊏ z ⇒ x ⊏ z];

2. ∀x [x 6⊏ x].

Well-known automatic orderings are <lex, <ll, <sh and ≺.

An ordering is called linear iff

3. ∀x,y ∈ A [x ⊏ y ∨ x = y ∨ y ⊏ x].

The orderings <lex and <ll are linear, the orderings <sh and
≺ are not linear.

Quiz
Let ⊏ be the componentwise comparison given by
(x,y) ⊏ (x′,y′) ⇔ x < x′ ∧ y < y′ on N×N. Is ⊏ a linear
ordering?
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Exercise 9.6

Consider ({0} · {0,1}∗ ∪ {1},maxlex,minlex,0,1). Show that
this structure is an automatic semiring and verify the
corresponding properties as well as the automaticity.

Does this work for the minimum and maximum of any
automatic linear ordering ⊏ when the least element 0 and
greatest element 1 exist?

Given the commutative automatic semiring (R,+, ∗,0,1),
consider the extension on R×R×R with the
componentwise operation + and the new multiplication ⊙
given by (x,y, z)⊙ (x′,y′, z′) = (x ∗ x′,y ∗ y′,x ∗ z′ + z ∗ y′)?
Is this a semiring? Is ⊙ commutative? What are the neutral
elements for + and ⊙ in this ring? Prove your answer.
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Automatic Fields

Let (A,+, ∗,0,1) be a ring with 1. (A,+, ∗,0,1) is called a
field iff ∗ can be inverted on every nonzero element:
∀x ∈ A ∃y [x = 0 ∨ x ∗ y = 1].

Examples of fields: (Q,+, ∗,0,1), (R,+, ∗,0,1).

The ring ({0,1, . . . , r− 1},+, ∗,0,1) with operations modulo
r is a field iff r is a prime number.

Theorem
There is no infinite automatic field.

Advanced Automata Theory 9 Automatic Structures in General – p. 16



No Infinite Automatic Field

Assume that (A,+, ∗,0,1) is an automatic field and <ll is
the length-lexicographic order on A.

Let f(x) = minll{y ∈ A : ∀a, a′,b,b′ ∈ A with
a, a′,b,b′ ≤ll x [a 6= a′ ⇒ (a− a′) ∗ y 6= b− b′]}.

Let g(x) = maxll{a ∗ f(x) + b : a,b ∈ A ∧ a,b ≤ll x}.

There is a constant k such that A has at least two elements
shorter than k and |g(x)| ≤ |x|+ k for all x ∈ A.

If A has m elements of length up to r · k then A has m2

elements of length up to (r+ 1) · k.

This constradicts the fact that the number of words up to
length r · k grows only exponentially in r and not
doubleexponentially.
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Ordinals

A linearly ordered set (A, <) is called an ordinal iff every
nonempty subset B of A has a least element b.

Two ordinals (A, <) and (B, <′) are considered to be the
same iff there is an orderpreserving bijective mapping f

from A to B.

The ordinal represented by (N, <) is called ω.

One can add ordinals: Given (A, <) and (B, <), one
considers the set C = {(0, a) : a ∈ A} ∪ {(1,b) : b ∈ B} with
(x,y) < (x′,y′) iff x < x′ or x = x′ ∧ y < y′.

The ordinal ω + 1 is obtained by putting one element behind
all natural numbers, ω + 1 6= ω.

The sets ({0,1,2, . . .}, <), ({−1,0,1,2, . . .}, <) are
isomorphic, so 1+ ω = ω.
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Cantor Normal Form

Cantor designed a way to represent small ordinals as sums

of descending chains of ω-powers: ω4 + ω2 + ω2 + ω. Here

ωk+1 is the first ordinal which cannot be written as a finite
sum of ordinals up to ωk; ω is the first ordinal which cannot
be written as 1+ 1+ . . .+ 1.

Write ω3 · 2+ ω · 3+ 4 instead of
ω3 + ω3 + ω + ω + ω + 1+ 1+ 1+ 1.

When adding ordinals, determine the highest power ωk in

the second term and add the coefficients of ωk and take the
higher powers from the first term and the lower powers from
the second term.

Example:

(ω8 ·5+ω7 ·2+ω4)+(ω7+ω6+ω+1) = ω8 ·5+ω7 ·3+ω6+ω+1.
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Quiz

Form the following sums:

(ω5 + ω3) + (ω4 + ω2)

(ω18 · 18+ ω5 · 5) + (ω5 · 5+ ω4 · 4)

(ω22 + ω11 + ω2) + (ω11 + ω8 + ω2 + ω + 8)

(ωω+3 + ωω + ω33) + (ωω + ω22)

(ω2222 · 1234) + (ωω + ω132 · 22)

Which is the largest of the following ordinals?

1. ω5 + ω2 + ω · 12345678+ 23456789,
2. ω4 · 444+ ω3 · 33+ ω2 · 88+ ω · 12+ 6,
3. ωω+3 · 22+ ω11 · 111+ ω8 · 88+ ω · 8,
4. ωω·2+12 · 25+ ω222 · 22+ ω2,
5. ωω·2+12 · 25+ ω222 · 22+ 25,
6. ω257 · 5+ ω256 · 28+ ω255 · 555.

Advanced Automata Theory 9 Automatic Structures in General – p. 20



Example 9.9

The ordinals below ω3 are automatic. One uses that
(N,+,0) is automatic and represents ordinals by tuples of
natural numbers.

Represent ω2 · a2 + ω · a1 + a0 by conv(a0, a1, a2).

conv(a0, a1, a2) + conv(b0,b1,b2) is
conv(a0 + b0, a1, a2) if b1 = 0,b2 = 0;
conv(b0, a1 + b1, a2) if b1 > 0,b2 = 0;
conv(b0,b1, a2 + b2) if b2 > 0.

conv(a0, a1, a2) < conv(b0,b1,b2) iff
a2 < b2∨ (a1 < b1∧a2 = b2)∨ (a0 < b0∧a1 = b1∧a2 = b2).

More general: The ordered monoid (A,+, <,0) of the

ordinals below ωk with k ∈ N can be represented by an
automatic structure.
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Theorem of Delhommé

The Ordinals below ωω (as a well-ordered set) do not have
an automatic presentation.

Assume that (A, <) is a linearly ordered set such that its
“bottom part” are the ordinals below ωω.

Let uk represent ωk in the set A.

For each v ∈ Σ|uk|, let Vv,k be all w � v with w < uk.

One can ignore the fixed prefix v of these sets and show
that the set {w̃ : v · w̃ ∈ W} and the ordering on it are
recognised by finite automata with c states for some
constant c.

Hence there are only finitely many sets Vv,k; however each

ordinal ωk is order-isomorphic to such a set, a contradiction.
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Exercise 9.11

Prove this statement
If {β : β < ωn} is the union of finitely many sets
A1,A2, . . . ,Am then there is k ∈ {1,2, . . . ,m} with (Ak, <)
being order-isomorphic to the ordinals below ωn.

For n = 1: This follows from the fact that every infinite
subset A ⊆ N with ordering < is orderisomorphic to ω.

For n = 2: Let

Ãk = {i : ∃∞j [ω · i+ j ∈ Ak]}

and then each i is in some Ãk and one Ãk is infinite. For
this k, show that (Ak, <) is isomorphic to ω2.

Generalise this to larger n.
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Further Non-Automatic Structures

The following algebraic structures do not have any
automatic presentation.

• ({1,2,3, . . .}, ∗,1);

• ({q ∈ Q : q > 0}, ∗,1) and ({q ∈ Q : q 6= 0}, ∗,1);

• (Q,+,0);

• if (F,+, ∗,0,1) is a finite ring with 1 then the polynomial
ring (F[x],+, ∗,0,1) over F in one variable x does not
have an automatic presentation.
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Graphs

An undirected graph (V,E) is a set of vertices and edges
between the vertices where (x,y) ∈ E iff (y,x) ∈ E for all
x,y ∈ V.

A graph is automatic iff V is regular and E is an automatic
relation on V. Two graphs (V,E) and (V′,E′) are
isomorphic iff there is a bijection f : V → V′ such that for all
x,y ∈ V: (x,y) ∈ E ⇔ (f(x), f(y)) ∈ E′.

An undirected graph is called “a random graph” iff V is
countable and infinite and for every two finite disjoint sets
A,B there is a node x such that (x,y) ∈ E for all y ∈ A and
(x,y) /∈ E for all y ∈ B. All random graphs are isomorphic.

Theorem [Delhommé]. No random graph is automatic.
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Proof of Delhommé’s Theorem

Assume that (V,E) would be an automatic copy of the
random graph. Furthermore, let <ll be the automatic
length-lexicographic order on V.

Now define a relation R(x,y) as there is no z <ll y with
∀u ≤ll x [(u, z) ∈ E ⇔ (u,y) ∈ E]. As R is first-order defined
with automatic parameters, R is automatic. Furthermore,
fR(x) = maxll{y : R(x,y)} is an automatic function; thus
there is constant c with |fR(x)| ≤ |x|+ c for all x and
c ≥ |minll(V)|.

Let g(n) be the number of element of V up to length c · n.

Now g(1) ≥ 1 and g(n+ 1) ≥ 2g(n), as for each splitting
(A,B) of the elements of V up to length c · n there is an y

connecting to those in A and not to those in B. On one
hand g(n) grows superexponentially and on the other hand
there are only exponentially many elements up to length
c · n. Thus (V,E) cannot be automatic.
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Exercise 9.13

Let (G, ◦) be a fully automatic group and F be a regular
subset of G. Is the graph (G,E) with
E = {(x,y) : ∃z ∈ F [x ◦ z = y]} automatic?

To which extent can the result be transferred to automatic
groups? Consider the special cases for F being finite and F

being infinite. In which cases are there automatic groups
(G, ◦) in the sense of Epstein, Cannon, Holt, Levy, Paterson
and Thurston such that for given F the graph (G,E) is
automatic?
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Exercise 9.14

Consider the following structure: For

a = (a0, a1, . . . , an) ∈ Nn+1, let

fa(x) =

n
∑

m=0

am ·

(

x

m

)

and let F be the set of all so defined fa (where n is not
fixed). For which of the following orderings <k is (F, <k) an
automatic partially ordered set?

(1) a <1 b ⇔ fa 6= fb and fa(x) < fb(x) for the first x where
they differ;

(2) a <2 b ⇔ ∃∞x [fa(x) < fb(x)];

(3) a <3 b ⇔ ∀∞x [fa(x) < fb(x)].
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Explicit Automatic Relations

For the following exercises, let the binary string
val(a0a1 . . . an) denote

∑

m 2m · am where am ∈ {0,1} and

allow leading zeroes. For convolutions, there is in this
specific case no need to distinguish # and 0.

Exercise 9.15 Construct a two-state dfa which checks
whether val(x) ≤ val(y) for binary strings x,y.

Exercise 9.16 Construct a dfa which checks whether
val(x) < val(y) + val(z) for binary strings x,y, z.

Exercise 9.17 Construct a dfa which checks whether
max{val(x),val(y)} ≤ val(z) + val(z) for binary strings
x,y, z.

Exercise 9.18 Construct a dfa which checks whether
max{val(x),val(y)} ≤ min{val(y),val(z)} for binary strings
x,y, z.

Advanced Automata Theory 9 Automatic Structures in General – p. 29



Automaticity and Non-Automaticity

Exercise 9.19: The structure ({0,1}∗,Pal,u 7→ u0,u 7→ u1)
is not automatic in the current representations, as the set
Pal of all palindromes is not regular. Is there any other
automatic presentation of this structure? Prove the answer.

Yuri Matiyasevich showed that there is a polynomial
p(x,y1, . . . ,y9) with integer coefficients such that one
cannot decide whether for given x ∈ N one can find
y1, . . . ,y9 ∈ N with p(x,y1, . . . ,y9) = 0.

Exercise 9.20: Show that the ring (Z,+, ·, <,0,1) is not
automatic.

Exercise 9.21: Show that the structure (Z,+,S, <,0,1) is
not automatic, where S is the set of square numbers.
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Additional Exercises

Exercise 9.22: Call a subset A ⊆ N eventually k-periodic, iff
there are i, j with 1 ≤ j ≤ k such that, for all x ≥ i,
A(x) = A(x+ j). Prove that for each k ∈ N with k > 0 there
is an automatic representation of all eventually k-periodic
sets such that union, intersection and symmetric difference
are fully automatic.

Exercise 9.23: Call a function f : Z → Z to be a k-step
function iff there are at most k vaues x with f(x) 6= f(x+ 1).
Construct an automatic structure of all k-step functions
which has a two-place automatic function Fk : e,x → fe(x)
mapping x ∈ Z to the value fe(x) for the e-th k-step function.

Exercise 9.24: Prove that one can define Fk, F2k from
Exercise 9.23 such that there is an automatic function gk
mapping each two indices i, j of k-step functions to an index
gk(i, j) of a 2k-step function with ∀x [fgk(i,j)(x) = fi(x) + fj(x)].
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