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Repetition: Automatic Structures

A structure (A,R1, . . . ,Rm, f1, . . . , fn, c1, . . . , ch) is automatic
iff A is a regular set and each relation Rk is an automatic

relation with domain Aℓk and each function fk is an

automatic function mapping Aℓ′k to A; the constants
c1, . . . , ch are specific members of A.

Examples
(Z,+,0) is a group with an automatic representation.
Indeed, every fully automatic semigroup is by definition an
automatic structure; automatic semigroups in sense of
Epstein and coauthors are automatic structures of the form
(A, f1, . . . , fn, ε) where A is the set of representatives
(“normal forms”) of the semigroup and f1, . . . , fn are
functions computing the semigroup multiplication with the
fixed elements of a given finite set of generators of the
semigroup.
(Q,+,0) has no automatic representation.
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Repetition: Definability & Automaticity

Khoussainov and Nerode showed that whenever in an
automatic structure a relation or function is first-order
definable from other automatic relations or functions then it
is automatic.

(0∗,Succ) with Succ(w) = w0 is isomorphic to the structure
(N,x 7→ x+ 1). The addition is not automatic in this
structure, hence addition cannot be first-order defined from
the successor-relation.

If (A,+,0) is isomorphic to (N,+,0) then 1 is uniquely
determined in A by the axioms 1 6= 0 and
∀x,y [x+ y = 1 ⇒ x = 0 ∨ y = 0]. Hence one can define the
ordering by x < y ⇔ ∃z [x+ z+ 1 = y].

Advanced Automata Theory 10 Transducers and Rational Relations – p. 3



Repetition: Rings and Semirings

A structure (A,⊕,⊗,0,1) is called a semiring with 1 iff it
satisfies the following conditions:

1. (A,⊕,0) is a commutative monoid;

2. (A,⊗,1) is a monoid;

3. ∀x,y, z ∈ A [x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)] and
∀x,y, z ∈ A [(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z)].

If, furthermore, (A,⊕,0) is a group then (A,⊕,⊗,0,1) is
called a ring with 1.

A semiring / ring is called commutative iff
∀x,y [x⊗ y = y ⊗ x].
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Repetition: Infinite Automatic Ring

Assume that (F,+, ∗,0,1) is a finite ring. Let G contain
those elements x1x2 . . .xn in F∗ which either satisfy n = 1

or n > 1 ∧ xn−1 6= xn. Intuitively, 02112 stands for
021122222 . . . where the last symbol repeats forever.

Now let x1x2 . . .xn + y1y2 . . .ym = z1z2 . . . zh if for all k > 0,
xmin{n,k} + ymin{m,k} = zmin{h,k}. Similarly for multiplication.

Now the member 0 of F is also the additive neutral element
in G and 1 is also the multiplicative neutral element in G.

The so generated (G,+, ∗,0,1) is an example of an infinite
automatic ring and represents the ring of the eventually
constant functions f : N → F with pointwise operations.
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Repetition: Partial and Linear Orders

An ordering ⊏ on a set A is a relation satisfying the
following two axioms:

1. ∀x,y, z ∈ A [x ⊏ y ∧ y ⊏ z ⇒ x ⊏ z];

2. ∀x [x 6⊏ x].

Well-known automatic orderings are <lex, <ll, <sh and ≺.

An ordering is called linear iff

3. ∀x,y ∈ A [x ⊏ y ∨ x = y ∨ y ⊏ x].

The orderings <lex and <ll are linear, the orderings <sh and
≺ are not linear.
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Repetition: Ordinals

Cantor designed a way to represent small ordinals as sums

of descending chains of ω-powers: ω4 + ω2 + ω2 + ω. Here

ωk+1 is the first ordinal which cannot be written as a finite
sum of ordinals up to ωk; ω is the first ordinal which cannot
be written as 1+ 1+ . . .+ 1.

Write ω3 · 2+ ω · 3+ 4 instead of
ω3 + ω3 + ω + ω + ω + 1+ 1+ 1+ 1.

Example to add ordinals:

(ω8 ·5+ω7 ·2+ω4)+(ω7+ω6+ω+1) = ω8 ·5+ω7 ·3+ω6+ω+1.

Theorem of Delhomme: The ordinals below ωk with k ∈ N

have an automatic representation plus addition and
comparison algorithm. This is impossible for larger sets of
ordinals.
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Rational Relations

Automatic Relation: Finite automaton reads all inputs
involved at the same speed with # supplied for exhausted
inputs.

Rational Relation: Nondeterministic finite automaton reads
all inputs individually and can read them at different speed.

The first type of automata is called synchronous, the
second type is called asynchronous.

There are many relations which are rational but not
automatic.
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Formal definition

A rational relation R ⊆ (Σ∗)n is given by an
non-deterministic finite state machine which can process n

inputs in parallel and does not need to read them in the
same speed. Transitions from one state p to a state q are
labelled with an n-tuple (w1,w2, . . . ,wn) of words
w1,w2, . . . ,wn ∈ Σ∗ and the automaton can go along this
transition iff for each input k the next |wk| symbols in the
input are exactly those in the string wk (this condition is void
if wk = ε) and in the case that the automaton goes on this
transition, |wk| symbols are read from the k-th input word.

A tuple (x1,x2, . . . ,xn) is in R iff there is a run of the
machine with transitions labelled by (w1,1,w1,2, . . . ,w1,n),
(w2,1,w2,2, . . . ,w2,n), . . ., (wm,1,wm,2, . . . ,wm,n) ending up
in an accepting state such that x1 = w1,1w2,1 . . .wm,1,
x2 = w2,1w2,2 . . .wm,2, . . ., xn = w1,nw2,n . . .wm,n.
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Example 10.2: String Concatenation

Concatenation: 0100 · 1122 = 01001122; 01 · 210 = 01210;
not an automatic relation.

The following automaton witnesses that it is a rational
relation over alphabet Σ = {0,1,2}.

sstart

q

(0, ε, 0), (1, ε, 1), (2, ε, 2)

(ε, 0, 0), (ε, 1, 1), (ε, 2, 2)

(ε, 0, 0), (ε, 1, 1), (ε, 2, 2)

Sample Run: (s01, s210, s01210) ⇒ (0s1, s210,0s1210) ⇒
(01s, s210,01s210) ⇒ (01q,2q10,012q10) ⇒
(01q,21q0,0121q0) ⇒ (01q,210q,01210q).
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Example 10.3: Subsequence

A string x is a subsequence of y iff it can be obtained by
from y by deleting symbols at some positions. For example
12112 is a subsequence of 010200100102 and of 1211212
but not of 321123.

The following one-state automaton recognises this relation
for the binary alphabet {0,1}.

sstart (0, 0), (1, 1), (ε, 0), (ε, 1)

In general, there are one initial accepting state s with
self-loops from s to s labelled with (ε, a) and (a, a) for all
a ∈ Σ.

If x = 0101 and y = 00110011 then the automaton can
accept this subsequence relation (x,y) using transitions
labelled (0,0), (ε,0), (1,1), (ε,1), (0,0), (ε,0), (1,1), (ε,1).
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Example 10.4: Substring

The following automaton recognises the relation of all (x,y)
where x is a nonempty substring of y, that is, x 6= ε and
y = vxw for some v,w ∈ {0,1}∗.

sstart t u

(ε, 0), (ε, 1)

(0, 0), (1, 1)

(0, 0), (1, 1)

(0, 0), (1, 1)

(0, 0), (1, 1)

(ε, 0), (ε, 1)

In s: Parsing (ε,v);
From s to u: Parsing (x,x);
In u: Parsing (ε,w).

Quiz: Which labels must be added for Σ = {0,1,2,3}?
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Exercise 10.5: Rational Relations

Rational relations got their name, as one can use them in
order to express relations between the various inputs words
which are rational. For example, over alphabet {0}, the

relation of all (x,y) with |x| ≥ 2
3
|y|+ 5 is recognised as

follows:

sstart t
(00000, ε)

(0, ε), (0, 0), (00, 000)

Make automata which recognise the following relations:

(a) {(x,y) ∈ (0∗,0∗) : 5 · |x| = 8 · |y|};

(b) {(x,y, z) ∈ (0∗,0∗,0∗) : 2 · |x| = |y|+ |z|};

(c) {(x,y, z) ∈ (0∗,0∗,0∗) : 3 · |x| = |y|+ |z| ∨ |y| = |z|}.
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Transducers

Transducers are automata recognising rational relations
where the first parameter x is called input and the second
parameter y is called output.

In particular one is interested in transducers computing
functions: Two possible runs accepting (x,y) and (x, z)
must satisfy y = z. Given x, there is a run accepting some
pair (x,y) iff x is in the domain of the function.

Two main concepts:

Mealy machines:
Input/Output pairs on transition-labels.

Moore machines:
Input on transition-labels; output in states.
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Mealy machine

A Mealy machine computing a rational function f is a
non-deterministic finite automaton such that each transition
is attributed with a pair (v,w) of strings and whenever the
machine follows a transition (p, (v,w),q) from state p to
state q then one says that the Mealy machine processes
the input part v and produces the output part w.

Every automatic function is also a rational function and
computed by a transducer, but not vice versa.

Mealy machine can compute π with π(0) = 0, π(1) = ε,
π(2) = ε, π(v ·w) = π(v) · π(w):

sstart (0, 0), (1, ε), (2, ε)
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Moore machine

Moore machine
Non-deterministic finite automaton such that:
Possibly several starting states and final states;
Transitions (q, a,p) with input symbol a ∈ Σ;
States q labelled with output string wq ∈ Σ∗;

Word a1 . . . an translated into wq0
wq1

. . .wqn
iff q0 is a

starting state and qn is a final state and (qm, am+1,qm+1) is
a valid transition for all m < n.

Moore machine erasing all 1,2 and preserving 0 computing
function π with π(012012) = 00.

εstart 0

1,2

0

0

1,2
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Example: Function f

Let f(a1a2 . . . an) = 012a1a1a2a2 . . . anan012, so
f(01) = 0120011012. Moore machine for f :

state starting acc/rej output on 0 on 1 on 2

s yes rej 012 p, p′ q, q′ r, r′

p no rej 00 p, p′ q, q′ r, r′

q no rej 11 p, p′ q, q′ r, r′

r no rej 22 p, p′ q, q′ r, r′

s′ yes acc 012012 – – –

p′ no acc 00012 – – –

q′ no acc 11012 – – –

r′ no acc 22012 – – –

Quiz: Write Mealy machine for f .
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Example: Function g

Let g(a1a2 . . . an) = (max({a1, a2, . . . , an}))
n. So g(ε) = ε,

g(000) = 000, g(0110) = 1111 and g(00212) = 22222.

Nodes {s,q0, r0,q1, r1,q2, r2};
Starting nodes: s;
Accepting nodes: s, r0, r1, r2.
Output in nodes: ws = ε; wq0

= wr0 = 0; wq1
= wr1 = 1;

wq2
= wr2 = 2.

Transitions: (s,0, r0), (s,1, r1), (s,2, r2), (s,0,q1), (s,0,q2),
(s,1,q2), (r0,0, r0), (q1,0,q1), (q1,1, r1), (r1,0, r1),
(r1,1, r1), (q2,0,q2), (q2,1,q2), (q2,2, r2), (r2,0, r2),
(r2,1, r2), (r2,2, r2).

Comment: State q0 is unreachable and can be omitted;
States qa are for outputting a until a has been seen on the
input, states ra are for confirmed output a. s is start state.

Quiz: Write a Mealy machine for g.
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Quiz

Determine the minimum number m such that every rational
function can be computed by a non-deterministic Moore
machine with at most m starting states and no ε-transition.

Note that m cannot be 1 as there is a function which maps ε
to 0 and every non-empty word to 1. Give the Moore
machine for this function.

Can the same be done to rule out m = 2?
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Exercises 10.10 and 10.11

A Moore machine / Mealy machine is deterministic, if it has
exactly one starting state and each transition reads exactly
one input symbol and for each pair (state,input symbol)
there is at most one transition which applies.

Exercise 10.10. Make a deterministic Moore machine and a
deterministic Mealy machine which flips input bits from 1 to
0 until it gets a 0 which is flipped to 1 and which from then
onwards copies input to output.

Examples for input 7→ output are 0001 7→ 1001, 110 7→ 001,
1111 7→ 0000, 0 7→ 1 and 110011 7→ 001011.

Exercise 10.11. Let the alphabet be {0,1,2} and let
R = {(x,y, z,u) : u has |x| many 0s, |y| many 1s and |z|
many 2s}.

Is R a rational relation? Prove your result.
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Theorem of Nivat

Theorem 10.12 [Nivat 1968]
Let Σ1,Σ2, . . . ,Σm be disjoint alphabets. Let πk preserve
the symbols from Σk and erase all other symbols.
Now a relation R ⊆ Σ∗

1 ×Σ∗
2 × . . .×Σ∗

m is rational iff there is

a regular set P over a sufficiently large alphabet such that
(w1,w2, . . . ,wn) ∈ R ⇔ ∃v ∈ P [π1(v) = w1 ∧ π2(v) = w2 ∧
. . . ∧ πm(v) = wm].

Example
Consider the subsequence relation where x1x2 . . .xm is a
subsequence of y1y2 . . .yn when deleting the overlines.
Now the regular set as requested by Nivat is, for ternary

alphabet, P = {0,00,1,11,2,22}∗.

Now 0010 is subsequence of 00100 and 012012012012 but

not of 220011. Here 000011000 and 0012001120012012

are in P and witness the two subsequence relations.
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General Form of Theorem of Nivat

A relation R is rational iff there are functions (more
precisely homomorphisms) π1, . . . , πn such that for each
symbol a at most one πk maps a to some nonzero word
which consists of one symbol and a regular set P such that,
for all x1, . . . ,xn, R(x1, . . . ,xn) holds iff there is y ∈ P with
π1(y) = x1, π2(y) = x2, . . ., πn(y) = xn.

The subsequence relation of binary strings can be realised
by π1(0) = 0, π1(1) = 1, π2(2) = 0, π2(3) = 1 and π1, π2
mapping all other symbols to ε and x1 is a subsequence of
x2 iff there is a word y ∈ {02,13,2,3}∗ with π1(y) = x1 and
π2(y) = x2.
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Example

The relation R = {(0n,1n
2

) : n ≥ 1} is not rational.

To see this, one uses the Theorem of Nivat and considers a
regular set P such that for each n there is a word y ∈ P with

0n = π1(y) and 1n
2

= π2(y).

As the set is regular, it satisfies the block pumping lemma
with a constant k. There is an n which is large enough so

that n2 > (k+ 1) · (n+ 1). Thus there are at least k+ 1

many 1 without a 0 between them in any word y ∈ P with

0n = π1(y) and 1n
2

= π2(y). Thus one can cut the word into
blocks such that all inner blocks contain each at least one 1

and no 0.

Now when one pumps up with the block pumping lemma,
the number of 1 increases while the number of 0 remains
the same. The pumping destroys R and R is not rational.
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Rational Structures

A structure (A,R1,R2, . . . ,Rk, f1, f2, . . . , fh) is rational iff all
the A is regular and R1,R2, . . . ,Rk are rational relations
and f1, f2, . . . , fh are rational functions.

Furthermore, structures isomorphic to a rational structure
might also be called rational.

Every automatic structure is by definition also a rational
structure, but not vice versa.

The monoid ({0,1}∗, ·, ε) with · being the concatenation is a
rational structure but not an automatic structure, that is, not
a fully automatic semigroup.
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Theorem of Khoussainov and Nerode

The Theorem of Khoussainov and Nerode does not hold for
rational structures.

• There are relations and functions which are first-order
definable from rational relations without being a rational
relation;

• There is no algorithm to decide whether a given
first-order formula in a rational structure is true.

However, certain structures which are not automatic, are
still rational.
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Post Correspondence Problem

Let I be an index alphabet of at least two symbols and
f ,g : I∗ → I∗ rational functions which replace every symbol
e ∈ I by a word f(e) and g(e), respectively. Furthermore,

f(e1e2 . . . en) = f(e1) · f(e2) · . . . · f(en)

and similarly for g. Now the Post Correspondence Problem
(I, f ,g) has a solution iff there is u ∈ I+ with f(u) = g(u). It
is undecidable whether any given instance of the Post
Correspondence Problem has a solution.

Note that for fixed f ,g, they are computed by transducers.
Furthermore, equality is a rational relation. Thus the
formula

∃u ∈ I∗ [u 6= ε ∧ f(u) = g(u)]

is first-order defined in the rational structure (I∗, f ,g,=, ε).
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Additional Explanation

Given I = {0,1, . . . ,k}, f(0), f(1), . . . , f(k) and
g(0),g(1), . . . ,g(k), one defines the transducer for f by a
single accepting and starting state s with transitions labelled
(a, f(a)) for all a ∈ I. Similarly one verifies that g is rational.

Now if the first-order theory of rational structures would be
decidable (in a uniform way as automatic structures), then
there would be an algorithm which receives as input the
finite automata of all functions, relations and sets involved
and which receives a formula like

(PCP) ∃u ∈ I∗ [u 6= ε ∧ f(u) = g(u)]

in a machine-readable form and then produces an output
whether this formula is true or false in the structure. In this
case, one would feed the automata for f ,g and some info
on I and then a specialised algorithm would say whether
the formula (PCP) is true or false.
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Theory of Concatenation of Strings

A concrete rational structure with an undecidable first-order
theory is ({0,1}∗, ·,=,≺, ε,0,1) where · is the string
concatenation of binary strings and ≺ is the prefix-relation
on binary strings.

Lars Kristiansen and Juvenal Murwanashyaka provide on

https://arxiv.org/abs/1804.06367

an overview on how many quantifiers are needed to make
undecidable formulas using existential and bounded
quantifiers in the theory of binary strings with concatenation
and string extension order. They in particular show that if
the string extension order is there, then four existential
quantifiers followed by some bounded quantifiers allow to
make formulas whose truth in the theory cannot be
decided. This is done by coding the Post Correspondence
Problem in an adequate way.
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Exercise 10.15: Random Graph

There is a rational representation of the random graph.
Instead of coding (V,E) directly, one first codes a directed
graph (V,F) with the following properties:

• For each x,y ∈ V, if (x,y) ∈ F then |x| < |y|/2;

• For each finite W ⊆ V there is a y with
∀x [(x,y) ∈ F ⇔ x ∈ W].

This is done by letting V = {00,01,10,11}+ and defining
that (x,y) ∈ F iff there are n,m,k such that
y = a0b0a1b1 . . . anbn and am = ak = 0 and ah = 1 for all h
with m < h < k and x = bmbm+1 . . .bk−1. Give a
transducer recognising F and show that this F satisfies the
two properties above.

Now let (x,y) ∈ E ⇔ (x,y) ∈ F ∨ (y,x) ∈ F. Show that
(V,E) is the random graph.
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Multiplication of Natural Numbers

The multiplicative monoid (N− {0}, ∗,1) has a rational
representation. Here one would represent 2n1 ·3n2 · . . . ·pk

nk

with nk > 0 by 0n110n21 . . .0nk1 and 1 by ε.

sstart t

u

v

(ε, ε, ε)

(ε, ε, ε)

(ε, ε, ε)

(0, ε, 0), (ε, 0, 0), (1, 1, 1)

(1, 1, 1)

(ε, 0, 0), (ε, 1, 1)

(1, 1, 1)

(0, ε, 0), (1, ε, 1)
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Exercises 10.17-10.21

Let R be a binary rational relation and let L be any
language. Now define R(L) = {v : ∃w ∈ L [R(v,w)]}.
Similarly for a ternary rational relation S, let
S(L,H) = {u : ∃v ∈ L ∃w ∈ H [S(u,v,w)]}.

Exercise 10.17: Show that if L and H are regular, so are
R(L) and S(L,H).

Exercise 10.18: Show that if L is context-free, so is R(L).

Exercise 10.19: If L,H are context-free, is then also S(L,H)
context-free? Prove the answer.

Exercise 10.20: If L is context-sensitive, is so R(L)?

Exercise 10.21: For which Boolean operations (union,
intersection, set difference, symmetric difference) is there a
rational relation S such that S(L,H) is the corresponding
combination of L and H?
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Exercise 10.22-10.26

Exercise 10.22: Is there a transducer Q which recognises
the relation of all pairs (0n,1n2n) with n ∈ N?

Exercise 10.23: Construct a transducer R which recognises
a triple (u,v,w) iff v and w have a common subsequence of
length at least |u|.

Exercise 10.24: Is there a transducer S which recognises a
pair (v,w) iff v is the mirror image of w?

Exercise 10.25: Is there a transducer T which recognises a
pair (v,w) iff v occurs in w two times as a subword?

Exercise 10.26: Is there a transducer U which recognises
all pairs (v,w) such that in v,w occur the same symbols the
same number of times?
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