
Advanced Automata Theory 11
Regular Languages and Learning

Theory

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 1

Repetition: Rational Relations

Automatic Relation: Finite automaton reads all inputs
involved at the same speed with # supplied for exhausted
inputs.

Rational Relation: Nondeterministic finite automaton reads
all inputs individually and can read them at different speed.

The first type of automata is called synchronous, the
second type is called asynchronous.

There are many relations which are rational but not
automatic.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 2

Repetition: Formal definition

A rational relation R ⊆ (Σ∗)n is given by an
non-deterministic finite state machine which can process n

inputs in parallel and does not need to read them in the
same speed. Transitions from one state p to a state q are
labelled with an n-tuple (w1,w2, . . . ,wn) of words
w1,w2, . . . ,wn ∈ Σ∗ and the automaton can go along this
transition iff for each input k the next |wk| symbols in the
input are exactly those in the string wk (this condition is void
if wk = ε) and in the case that the automaton goes on this
transition, |wk| symbols are read from the k-th input word.

A word (x1,x2, . . . ,xn) is in R iff there is a run of the
machine with transitions labelled by (w1,1,w1,2, . . . ,w1,n),
(w2,1,w2,2, . . . ,w2,n), . . ., (wm,1,wm,2, . . . ,wm,n) ending up
in an accepting state such that x1 = w1,1w2,1 . . .wm,1,
x2 = w2,1w2,2 . . .wm,2, . . ., xn = w1,nw2,n . . .wm,n.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 3

Repetition: Example 10.4

The following automaton recognises the relation of all (x,y)
where x is a nonempty substring of y, that is, x 6= ε and
y = vxw for some v,w ∈ {0,1}∗.

sstart t u

(ε, 0), (ε, 1)

(0, 0), (1, 1)

(0, 0), (1, 1)

(0, 0), (1, 1)

(0, 0), (1, 1)

(ε, 0), (ε, 1)

In s: Parsing (ε,v);
From s to u: Parsing (x,x);
In u: Parsing (ε,w).

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 4

Repetition: Transducers

Transducers are automata recognising rational relations
where the first parameter x is called input and the second
parameter y is called output.

In particular one is interested in transducers computing
functions: Two possible runs accepting (x,y) and (x, z)
must satisfy y = z. Given x, there is a run accepting some
pair (x,y) iff x is in the domain of the function.

Two main concpets:

Mealy machines:
Input/Output pairs on transition-labels.

Moore machines:
Input on transition-labels; output in states.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 5

Learning Theory

Formal models of learning processes

Query Learning
Dialogue between learner (pupil) and teacher.
Learner asks queries using a specific query language.
Teacher provides answers to these queries.

Learning from Data
Learner reads more and more data about the concept to be
learnt.
In response to the data, learner conjectures one or several
hypotheses.
The last hypothesis conjectured must be correct.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 6

Angluin’s DFA Learner

Query language – Learner can ask the following questions:

• Equivalence query (EQ): Does this DFA recognise the
language L to be learnt?
Teacher says “YES” or “NO”; when saying “NO” an x is
provided on which the DFA does the opposite of what L
does.

• Membership query (MQ): Is x a member of L?
Teacher says “YES” or “NO”.

Learner could use a list of all DFAs and ask: does the first
DFA recognise L; does the second DFA recognise L; ...?

This needs more than 2n steps in order to deal with all
languages recognised by DFA’s with n states.

Angluin’s algorithm needs much less queries.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 7

Data of Angluin’s algorithm

Represent set S of states by strings x ∈ S on which
automaton goes into corresponding states. x ∈ S is an
accepting state iff x ∈ L.

Represent set E of observations so large that for each
distinct x,y ∈ S there is an z ∈ E with L(xz) 6= L(yz); that is

rowE(x) 6= rowE(y) where rowE(u) = {(z,T(uz)) : z ∈ E}.

Make a transition from x ∈ S on symbol a ∈ Σ to the y ∈ S

with rowE(y) = rowE(xa).

Maintain for this a table T of observations such that for all
w ∈ S · E ∪ S ·Σ · E, the entry T(w) is equal to L(w).

DFA(S,E,T) describes the DFA given by S,Σ,E,T as
above.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 8

The Algorithm

Angluin’s Algorithm (Slightly Modified) to learn unknown
regular language L using MQs and EQs.

1. Let S = {ε} and E = {ε};

2. Make MQs to determine L(w) for all w ∈ S · (Σ ∪ {ε}) ·E
and let T(w) = L(w) (where not done before);

3. Let rowE(u) = {(z,T(uz)) : z ∈ E} for all
u ∈ S · (Σ ∪ {ε}) and search for an u ∈ S and a ∈ Σ with

rowE(ua) 6= rowE(u′) for all u′ ∈ S;
if found then let S = S ∪ {ua} and go to 2 else go to 4;

4. Make EQ whether DFA(S,E,T) is correct;

5. If the answer is “YES” then terminate;

6. If the answer is “NO” with counter example w then let
E = E ∪ {v : ∃u [w = uv]} and go to 2.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 9

Verification

Let (Q,Σ, δ, s,F) be the smallest dfa for L.

(A) If x,y ∈ S are distinct then δ(s,x) 6= δ(s,y).

(B) If an equivalence query is made then a new state is
added eventually.

(C) Angluin’s learner uses at most |Q| equivalence queries.

(D) When reaching line 4, DFA(S,E,T) is complete, that is,
for every u ∈ S and a ∈ Σ there is a u′ ∈ S with

rowE(u′) = rowE(ua).

(E) If z ∈ E then DFA(S,E,T) accepts z iff T(z) = 1.

(F) The number of membership queries is bounded by
|Q| · (r+ 1) · (|Σ|+ 1) where r is the sum of the lengthes of
all counter examples.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 10

Original Algorithm

Teacher has regular set L and learner makes membership
and equivalence queries.
1. Initialise S = {ε} and E = {ε}.
2. For all w ∈ S · E ∪ S ·Σ · E where T(w) is undefined,
make MQ to find L(w) and let T(w) = L(w).
3. If there are u,u′ ∈ S, a ∈ Σ and v ∈ E such that

rowE(u) = rowE(u′) and T(uav) 6= T(u′av) then let
E = E ∪ {av} and go to 2.

4. If there are u ∈ S and a ∈ Σ with rowE(ua) 6= rowE(u′)
for all u′ ∈ S then let S = S ∪ {ua} and go to 2.
5. Make an EQ whether DFA(S,E,T) recognises L.
6. If the answer is “YES” then terminate with DFA(S,E,T).
7. If the answer is “NO” with counterexample w then let
S = S ∪ {u : ∃v [uv = w]} and go to 2.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 11

Learning from Positive Data

A text T for L is an infinite sequence T(0),T(1), . . . of
strings and pause symbols # describing L: w ∈ L iff w 6= #
and w = T(n) for some n.

Learner M starts with initial memory mem0 and hypothesis
e0. In the n-th cycle, M updates memn and input T(n) to
memn+1 and en+1; in short: M maps (memn,T(n)) to
(memn+1, en+1). The values e1, e2, . . . depend on T.

Learner M learns L iff, on every text T for L, almost all
hypotheses en of M are the same e describing L.

Hypothesis Repetition. Learners might output ? to indicate
that the last hypothesis should be repeated — this is used
to model strong memory restrictions.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 12

Example

Let I = {0}∗ and Le = {x ∈ {0,1}∗ : |x| < |e|}. For example,
L00 = {ε,0,1} and L000 = {ε,0,1,00,01,10,11}.

The class {Le : e ∈ I} can be learnt from positive data.

memn is the longest datum seen before round n and
memn = # if no datum has been seen before round n.

If memn = # then en = ε else en = 0k+1 for the length k of
memn.

When learning L0k then after some time some string of
length k− 1 has shown up in the input and from then

onwards, memn is that string and en = 0k. So the learner
eventually converges to the right hypothesis.

Next slide: Hypotheses made for data from sample text
#,#, ε,11,01,0,1, . . . and the corresponding memory.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 13

Sample Text

n first n members of T memn en Len

0 – # ε ∅

1 # # ε ∅

2 #,# # ε ∅

3 #,#, ε ε 0 {ε}

4 #,#, ε, 11 11 000 {ε, 0, 1, 00, 01, 10, 11}

5 #,#, ε, 11, 01 11 000 {ε, 0, 1, 00, 01, 10, 11}

6 #,#, ε, 11, 01, 0 11 000 {ε, 0, 1, 00, 01, 10, 11}

7 #,#, ε, 11, 01, 0, 1 11 000 {ε, 0, 1, 00, 01, 10, 11}

8 #,#, ε, 11, 01, 0, 1, 101 101 0000 {ε, 0, 1, . . . , 111}

If all data is from L0000 then the learner keeps the
hypothesis 0000 forever.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 14

Learnability of Classes

Theorem [Gold 1967]
The class of all regular languages cannot be learnt from
positive data.

Theorem [Angluin 1980]
An automatic family {Le : e ∈ I} can be learnt from positive
data iff there is for every e ∈ I a finite subset Fe ⊆ Le such
that there is no d ∈ I with Fe ⊆ Ld ⊂ Le.

Example
The class of Lε = Σ∗ and Lx = {y ∈ Σ∗ : |y| < |x|} with

x ∈ Σ+ does not satisfy Angluin’s tell-tale condition; hence
this class is not learnable.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 15

Learner for Tell-Tale Condidtion

Let {Le : e ∈ I} be a given automatic class.

Let Fe be the tell-tale of Le.

Now memn is the set of data observed before step n and
updated by memn+1 = memn ∪ {T(n)}.

Furthermore, en is the length-lexicographically least e ∈ I

with Fe ⊆ memn ⊆ Le; if such an e does not exist then en is
a default index of ∅.

When learning Le, after sufficient time the learner has seen
all data of Fe and for each d <ll e, either Fd 6⊆ Le or some
datum in Le − Ld has been observed.

Hence the learner will converge to e.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 16

Necessity of Tell-Tale Condition

Let {Le : e ∈ I} be a given automatic class and assume that
there is an e ∈ I such that for Le there does not exist a finite
tell-tale set.

Assume that M is a learner for the class.

Goal: Make a text T for Le on which M outputs infinitely
often a wrong conjecture.

Idea is to construct the text T inductively, starting with n = 0

and alternating between 1 and 2:
1. Let T(n) = minll(Le − {T(m) : m < n}), n = n+ 1;
2. Choose some Ld with {T(m) : m < n} ⊆ Ld ⊂ Le and
keep updating T(n) = minll(Ld − {T(m) : m < n}),
n = n+ 1 until the conjecture en of M equals d.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 17

Automatic Learners

Automatic learner given by mem0, e0 and
uf : conv(memn,xn) 7→ conv(memn+1, en+1).
memn is a string in an arbitrary alphabet;
en is a hypothesis from I when learning {Le : e ∈ I};
uf is an automatic update function of the learner.

Automatic learners can only remember few information
about the past, as there is a constant c with
|memn+1| ≤ max{|memn|, |xn|}+ c for all n.

Explicit memory bounds (with constant k) when learning Ld:

• Word-sized: |memn+1| ≤ max{|x0|, |x1|, . . . , |xn|}+ k.

• Hypothesis-sized: |memn+1| ≤ |en+1|+ k.

• Target-sized: |memn+1| ≤ |d|+ k.

• Constant: |memn+1| ≤ k.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 18

Example 11.6

Assume L0 = ∅, L1 = {0}∗, L2 = {1}∗ and L3 = {0,1}∗.

This finite class can be learnt by tracking whether 0 and 1

have shown up in the input:

If neither 0 nor 1 are observed: L0;
If 0 but not 1 is observed: L1;
If 1 but not 0 is observed: L2;
If both 0 and 1 are observed: L3.

This principle generalises to any finite class and learner
needs only constant memory.

Every finite class of sets has an automatic learner.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 19

Example 11.7

Assume Σ = {0,1,2} and
I = {conv(v,w) : v,w ∈ Σ∗ ∧ v ≤lex w} ∪ {conv(3,3)} with
Lconv(v,w) = {u ∈ Σ∗ : v ≤lex u ≤lex w} for all

conv(v,w) ∈ I; note that Lconv(3,3) = ∅.

Data seen so far Hypothesis Conjectured language

— conv(3,3) ∅

conv(3,3) ∅

00 conv(00,00) {00}

00 0000 conv(00,0000) {00, 000, 0000}

00 0000 1 conv(00,1) {u : 00 ≤lex u ≤lex 1}

00 0000 1 0 conv(0,1) {u : 0 ≤lex u ≤lex 1}

00 0000 1 0 112 conv(0,112) {u : 0 ≤lex u ≤lex 112}

00 0000 1 0 112 # conv(0,112) {u : 0 ≤lex u ≤lex 112}
Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 20

Exercises 11.8 and 11.9

Exercise 11.8
Make an automatic learner which learns the class of all
Ld = {dw : w ∈ Σ∗} with d ∈ Σ∗; that is, I = Σ∗ in this case.

Exercise 11.9
Let {Ld : d ∈ I} be given with Ld 6= Ld′ whenever d,d′ ∈ I

are different. Assume that an automatic learner uses this
class as a hypothesis space for learning satisfying any of
the above memory constraints. Let {He : e ∈ J} be any
other automatic family containing {Ld : d ∈ I} as a
subclass. Show that there is an automatic learner satisfying
the same type of memory constraints conjecturing indices
taken from J in place of I.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 21

Separation

Theorem 11.10
Let I = Σ∗, Lε = Σ+ and Ld = {w ∈ Σ∗ : w <ll d} for

d ∈ Σ+. The class {Ld : d ∈ I} can be learnt using a
word-sized memory but not using an hypothesis-sized
memory.

Word-sized Learner
Memory are length-lexicographically smallest and largest
words seen so far.
If ε has not been seen, conjecture Σ+. If ε and w are
minimal and maximal word seen so far then let d be the
successor of w and conjecture Ld.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 22

Theorem 11.11

Theorem 11.11
There is a class which can be learnt with hypothesis-sized
memory but not with target-sized memory and not with
constant memory.

Separating Class
Lε = {0}∗ and Lx = {y ∈ {0}∗ : 1 ≤ |y| ≤ |x|} for x 6= ε.

Every Lx ⊆ Lε and thus learner with target-sized memory
must keep its memory having at most length k for some
constant k. However, it has, as long as ε is not yet seen, to
memorise the longest string seen so far in order to know
what the language Lx to be conjectured it. So no automatic
learner with target-sized or constant-sized memory exists.

If a learner has seen ε then it conjectures Lε forever else it
conjectures Lx for longest x either observed or equal to 0.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 23

Theorem 11.12

Theorem 11.12
If a learner learns a class with target-sized memory then
the learner’s memory is also word-sized on texts for
languages in the class.
In particular, if a class has an automatic learner with a
target-sized memory-limitation then it also has an automatic
learner with a word-sized memory-limitation.

Observation: If {Le : e ∈ I} is an automatic family then there
is a constant k such that for all words e ∈ I and y ∈ Σ∗ it
holds that there is an index e′ ∈ I of length at most |d|+ k

with {x ∈ Le : |x| ≤ |y|} ⊆ Ld.

Application: If y is longest datum seen so far and all data
are in Le then there is a d ∈ I with |d| ≤ |y|+ k such that all
observed data are in Ld and therefore memory has at most
length |d|+ k′ which is |y|+ k′′ for some constants k′,k′′.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 24

Proof of Observation

Assume that x,y, e are given with |x| ≤ |y| ≤ |e|. Whether
x ∈ Le depends only on the state q in which the automaton
R handling {conv(e,x) : x ∈ Le} is after having processed
the prefix conv(ẽ,x) of length |y| of conv(e,x). One can use
ẽ in place of y. Let Q′ be a subset of the states R.

There is an automatic function f with input ẽ,Q′ which finds
the shortest index d (if it exists) such that all x up to length
|ẽ|, if R(conv(ẽ,x)) goes to a state in Q′ then x ∈ Ld.

Now |f(ẽ,Q′)| ≤ |ẽ|+ const. Thus when learning a
language Le from text, there is for the longest word y seen
so far an index d of length |y|+ const containing all data
seen so far and the target-sized learner must keep the
memory bounded by |d|+ const, thus by |y|+ const.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 25

Exercise 11.14

Assume that {Ld : d ∈ I} is the class to be learnt and that
every language in the class is finite and that for every
language in the class there is exactly one index in I.

Show that if there is a learner using word-sized memory for
this class, then the memory of the same learner is also
target-sized. For this, show that there is a constant k such
that all d ∈ I and x ∈ Ld satisfy |x| ≤ |d|+ k and then
deduce the full result.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 26

Iterative Learning

A learner is iterative iff memn = en, that is, the memory is
exactly the most recent hypothesis.

Exercise 11.15
Show that there is an automatic family {Ld : d ∈ I} such
that I contains for each Ld exactly one index and the Ld are
exactly the finite subsets of {0}∗ with even cardinality.

Show that the class {Ld : d ∈ I} has an iterative learner
using the given hypothesis space.

Is the same possible when the class consists of all subsets
of {0}∗ with 0 or 3 or 4 elements?

Note that an iterative learner which just conjectured an
d ∈ I must abstain from updating the hypothesis on any
datum x ∈ Ld.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 27

Automatic Families

Which of the following classes can be represented as
automatic families? If they are automatic then provide the
corresponding coding including the index set else write why
they cannot be automatic families.

Exercise 11.16: The family of all finite subsets of {0}∗ · {1}∗.

Exercise 11.17: The family of an infinite regular set L and
all subsets of up to 5 elements.

Exercise 11.18: The family of all sets of decimal numbers
which, for some n > 0, contain exactly two digits each n

times and all other digits 0 times.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 28

Learners

Exercise 11.19: Consider an automatic family {Le : e ∈ I}
which satisfies for each two distinct d, e ∈ I that either
Ld ⊂ Le or Le ⊂ Ld and in which there is for each e a
unique xe such that xe ∈ Le but xe /∈ Ld for any d with
Ld ⊂ Le. Prove that the mapping e 7→ xe is automatic and
construct an automatic learner for this family.

Exercise 11.20: Given {Ld : d ∈ I} and {He : e ∈ J} both
satisfying the specification of Exercise 11.19, construct an
automatic learner for the family of all Kconv(d,e) with

d ∈ I, e ∈ J and Kconv(d,e) = {0x : x ∈ Ld} ∪ {1y : y ∈ He}.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 29

Memory-Limitations

Consider the following classes of subsets of {0}∗:
Le = {x ∈ {0}∗ : |e| ≤ |x|};
He = {x ∈ {0}∗ : |e| 6= |x|};
Ke = {x ∈ {0}∗ : |e| ≥ |x|}.

Exercise 11.21: Which of the classes {Le : e ∈ {0}∗},
{He : e ∈ {0}∗} and {Ke : e ∈ {0}∗} can be learnt with
target-sized memory?

Exercise 11.22: Which of the classes {Le : e ∈ {0}∗},
{He : e ∈ {0}∗} and {Ke : e ∈ {0}∗} can be learnt with
hypothesis-sized memory?

Exercise 11.23: Which of the classes {Le : e ∈ {0}∗},
{He : e ∈ {0}∗} and {Ke : e ∈ {0}∗} can be learnt with
word-sized memory?

Exercise 11.24: Provide an infinite class learnable with
constant memory size but not without any memory.

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 30

Open Problems

1. Does every automatic family which has an automatic
learner also have a learner with word-sized memory?

2. Does every automatic family which has a learner with
hypothesis-sized memory also have a learner with
word-sized memory?

3. Does every automatic family which has a learner with
hypothesis-sized memory also have an iterative
learner?

Advanced Automata Theory 11 Regular Languages and Learning Theory – p. 31

	Repetition: Rational Relations
	Repetition: Formal definition
	Repetition: Example 10.4
	Repetition: Transducers
	Learning Theory
	Angluin's DFA Learner
	Data of Angluin's algorithm
	The Algorithm
	Verification
	Original Algorithm
	Learning from Positive Data
	Example
	Sample Text
	Learnability of Classes
	Learner for Tell-Tale Condidtion
	Necessity of Tell-Tale Condition
	Automatic Learners
	Example 11.6
	Example 11.7
	Exercises 11.8 and 11.9
	Separation
	Theorem 11.11
	Theorem 11.12
	Proof of Observation
	Exercise 11.14
	Iterative Learning
	Automatic Families
	Learners
	Memory-Limitations
	Open Problems

