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Repetition: Learning Theory

Formal models of learning processes

Query Learning
Dialogue between learner (pupil) and teacher.
Learner asks queries using a specific query language.
Teacher provides answers to these queries.

Learning from Data
Learner reads more and more data about the concept to be
learnt.
In response to the data, learner conjectures one or several
hypotheses.
The last hypothesis conjectured must be correct.
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Repetition: Angluin’s DFA Learner

Query language – Learner can ask the following questions:

• Equivalence query (EQ): Does this DFA recognise the
language L to be learnt?
Teacher says “YES” or “NO”; when saying “NO” an x is
provided on which the DFA does the opposite of what L
does.

• Membership query (MQ): Is x a member of L?
Teacher says “YES” or “NO”.

Learner could use a list of all DFAs and ask: does the first
DFA recognise L; does the second DFA recognise L; ...?

This needs more than 2n steps in order to deal with all
languages recognised by DFA’s with n states.

Angluin’s algorithm needs much less queries.
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Repetition: Learning from Data

A text T for L is an infinite sequence T(0),T(1), . . . of
strings and pause symbols # describing L: w ∈ L iff w 6= #
and w = T(n) for some n.

Learner M starts with initial memory mem0 and hypothesis
e0. In the n-th cycle, M updates memn and input T(n) to
memn+1 and en+1; in short: M maps (memn,T(n)) to
(memn+1, en+1). The values e1, e2, . . . depend on T.

Learner M learns L iff, on every text T for L, almost all
hypotheses en of M are the same e describing L.
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Repetition: Learnability

Theorem [Gold 1967]
The class of all regular languages cannot be learnt from
positive data.

Theorem [Angluin 1980]
An automatic family {Le : e ∈ I} can be learnt from positive
data iff there is for every e ∈ I a finite subset Fe ⊆ Le such
that there is no d ∈ I with Fe ⊆ Ld ⊂ Le.

Example
The class of Lε = Σ∗ and Lx = {y ∈ Σ∗ : |y| < |x|} with

x ∈ Σ+ does not satisfy Angluin’s tell-tale condition; hence
this class is not learnable.
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Repetition: Automatic Learners

Automatic learner given by mem0, e0 and
uf : conv(memn,xn) 7→ conv(memn+1, en+1).
memn is a string in an arbitrary alphabet;
en is a hypothesis from I when learning {Le : e ∈ I};
uf is an automatic update function of the learner.

Automatic learners can only remember few information
about the past, as there is a constant c with
|memn+1| ≤ max{|memn|, |xn|}+ c for all n.

Explicit memory bounds (with constant k) when learning Ld:

Word-sized: |memn+1| ≤ max{|x0|, |x1|, . . . , |xn|}+ k.

Hypothesis-sized: |memn+1| ≤ |en+1|+ k.

Target-sized: |memn+1| ≤ |d|+ k.

Constant: |memn+1| ≤ k.
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Repetition: Example 11.7

Assume Σ = {0,1,2} and
I = {conv(v,w) : v,w ∈ Σ∗ ∧ v ≤lex w} ∪ {conv(3,3)} with
Lconv(v,w) = {u ∈ Σ∗ : v ≤lex u ≤lex w} for all

conv(v,w) ∈ I; note that Lconv(3,3) = ∅.

Data seen so far Hypothesis Conjectured language

— conv(3,3) ∅

# conv(3,3) ∅

# 00 conv(00,00) {00}

# 00 0000 conv(00,0000) {00, 000, 0000}

# 00 0000 1 conv(00,1) {u : 00 ≤lex u ≤lex 1}

# 00 0000 1 0 conv(0,1) {u : 0 ≤lex u ≤lex 1}

# 00 0000 1 0 112 conv(0,112) {u : 0 ≤lex u ≤lex 112}

# 00 0000 1 0 112 # conv(0,112) {u : 0 ≤lex u ≤lex 112}
Advanced Automata Theory 12 Open Problems in Automata Theory – p. 7



Repetition: Limitations

Theorem 11.10
Let I = Σ∗, Lε = Σ+ and Ld = {w ∈ Σ∗ : w <ll d} for

d ∈ Σ+. The class {Ld : d ∈ I} can be learnt using a
word-sized memory but not using an hypothesis-sized
memory.

Word-sized Learner
Memory are length-lexicographically smallest and largest
words seen so far.
If ε has not been seen, conjecture Σ+. If ε and w are
minimal and maximal words seen so far then let d be the
successor of w and conjecture Ld.
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Overview

Open Problems from Work in Singapore
These problems are not that famous but also not that
difficult. There is some chance to get them out with some
good ideas.

Famous Open Problems
Some of these problems have been open for many years or
decades. They are difficult to get out. However, once, the
undergraduate student Róbert Szelepcsényi from Slovakia

(at that time ČSSR) solved one problem of this type by
showing that the complements of context-sensitive
languages are context-sensitive; he and Neil Immerman
from the USA solved this problem independently.
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Open Problems from Lecture 11

1. Does every automatic family which has an automatic
learner also have a learner with word-sized memory?

2. Does every automatic family which has a learner with
hypothesis-sized memory also have a learner with
word-sized memory?

3. Does every automatic family which has a learner with
hypothesis-sized memory also have an iterative
learner?
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Many-One and One-One Reducibilities

One says a set A is many-one reducible to B via f iff
∀x [A(x) = B(f(x))]. If f is one-one then A is one-one
reducible to B via f .

The set A is many-one / one-one reducible to B iff there is
a function f witnessing this of a corresponding type (like
being automatic or rational).

Incomparable sets: For alphabet {0,1}, the sets {0}∗ and
{0}∗ · {1} · {0,1}∗ are incomparable with respect to
automatic one-one reducibility.
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Automatic Reducibility

Reducibilities without base set
Let A ≤au B denote that there is an automatic function f

such that ∀x,y ∈ A [(x 6= y ⇒ f(x) 6= f(y)) ∧ f(x) ∈ B].

Similarly one writes A ≤tr B for the corresponding definition
where f is any function computed by a finite transducer.

Example
{0}∗ ∪ {1}∗ ≤tr {2}

∗ and {0}∗ ∪ {1}∗ 6≤au {2}∗.

A regular set A has size Θ(nk) iff there is c > 0 with

∀n [nk/c− c ≤ |{x ∈ A : |x| ≤ n}| ≤ nk · c+ c]

and if A is infinite and does not have size Θ(nk) for any k

then A is exponential-sized.
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Results of Tan Wai Yean

Theorem [Tan 2010]
Let A,B be regular sets.

1. The sets A,B are comparable for tr-reducibility:
A ≤tr B or B ≤tr A. Furthermore, A ≤tr B if one of the
following conditions holds:

• A,B are both finite and |A| ≤ |B|;

• A is finite and B infinite;

• A has size Θ(nk) and B has size Θ(nh) with k ≤ h;

• B is exponential-sized.

2. If A is polynomial-sized or finite then A ≤au B or

B ≤au A. If either A is of size Θ(nk), B is of size Θ(nh)
and k < h or if A is polynomial-sized and B is
exponential-sized then A ≤au B and B 6≤au A.
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Exercise and Open Problem

Quiz
Show that {0,1}9 · {2}∗ ≤au {0}∗ · {1}∗.

Exercise 12.4
Make an automatic one-one function which maps the
domain A = 0∗(1∗ ∪ 2∗) to a subset of
B = (0000)∗(1111)∗(2222)∗, that is, show that A ≤au B.

Open Problem [Tan 2010]
Are there regular sets A,B such that A 6≤au B and
B 6≤au A?

Remark
There are context-free sets A,B with A 6≤au B and
B 6≤au A: A = {0}∗ and
B = {x2y : x,y ∈ {0,1}∗ ∧ |x| = |y|}.

Advanced Automata Theory 12 Open Problems in Automata Theory – p. 14



The XX-Problem

For the following, consider the fixed one-one reductions

x 7→ xx and x 7→ x(xmi). They are not automatic.

Open Problem [Zhang 2013]

1. Given a regular language A, is there a regular language
B such that, for all x, A(x) = B(xx)?

2. Given a context-free language A, is there a context-free
language B such that, for all x, A(x) = B(xx)?

Zhang [2013] solved the reverse directions: If B is regular
then the set A = {x : xx ∈ B} is also regular. However, the

set B = {0n1n2m0m1k2k : n,m,k ∈ N} is context-free while
the corresponding set A = {x : xx ∈ B} = {0n1n2n : n ∈ N}
is properly context-sensitive.
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The XM-Problem

Theorem [Fung 2014]
Assume that A is a regular set and let B = {u : there are an

odd number of pairs (y, z) with u = yz, y ∈ A and zmi ∈ A}.

Then B is regular and for all x, x ∈ A ⇔ x · xmi ∈ B.

Open Problem
Given a context-free set A, is there a context-free set B

such that for all x, x ∈ A ⇔ x · xmi ∈ B?

Quiz
Let A = {0}+ · {1}+. Finds sets B,C such that, for all x,

x ∈ A ⇔ xx ∈ B and x ∈ A ⇔ x · xmi ∈ C.
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Ordered Groups

An ordered group (G,+, <,0) satisfies the group and order
axioms and for all x,y, z that x < y implies x+ z < y+ z and
z+ x < z+ y.

Theorem [Jain, Khoussainov, Stephan, Teng and Zou 2014]
If an ordered group has a regular domain and fully
automatic addition then the group is commutative.

Question [Khoussainov] Is there a fully automatic copy of
(Z,+,0) such that the set {x ∈ Z : x > 0} is not regular?

Theorem [Jain, Khoussainov, Stephan, Teng and Zou 2014]
There is a fully automatic copy of ({x · 6y : x,y ∈ Z},+,0) in
which neither the order nor the set of positive numbers is
automatic.
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Synchronising words

Definition
Given a dfa with states Q and transition function δ, a word w

is called synchronising iff δ(p,w) = δ(q,w) for all p,q ∈ Q.

Example
The dfa which accepts all decimal numbers which are
multiples of 3 does not have a synchronising word.

Example
The dfa of two states which accepts a decimal number iff it
ends with 0,2,4,6,8 and rejects a decimal number iff it
ends with 1,3,5,7,9 has a synchronising word.

Theorem [Černý 1964]
For each n there is a complete dfa with n states which has a

synchronising word of length (n− 1)2 and no shorter ones.
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Example for 3 States, Length 4

q r

s

0

1

1

0

0,1

The word 0110 is a synchronising word which sends all
states to r.

Quiz: Are 11,101,1001,10011001 synchronising words?
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Example for 4 States, Length 9

Alphabet {0,1,2} and synchronising word 012020120.

q r

s t

0

0

0

1

1

2 2

1,2 0,1

2
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Upper Bounds

Černý’s lower bound is quadratic, all known upper bounds
are cubic or worse.

Theorem [Frankl 1982; Klyachko, Rystov and Spivac 1987;
Pin 1983]. Assume a complete dfa has n states and has a
synchronising word. Then it has a synchronising word not

longer than (n3 − n)/6.

Example
If n = 3 and the dfa has a synchronising word then there is
a synchronising word of length up to 4.

Černý’s Conjecture
If a dfa of n states has a synchronising word then it has one

not longer than (n− 1)2.

Exercise 12.13
Prove Černý’s conjecture for n = 4.
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Star Height

Consider regular expressions formed by union,
concatenation and Kleene star and count how often stars
are nested:

• Let S0 contain all finite languages, note that S0 is closed
under union and concatenation;

• For each n, let Sn+1 contain all languages which can be
formed by taking unions and concatenations of
languages of the form L or L∗ with L ∈ Sn.

The star-height of a regular language L is the minimal n
with L ∈ Sn.

Theorem
For each n there is a regular language of star height n.
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Examples

Here some examples for the lowest levels.

• The language L0 = {0,11,222,3333} is finite and has
star-height 0;

• The language L1 = {00,11}∗ has star-height 1;

• The language
L2 = ({00,11}∗ · {22,33} · {00,11}∗ · {22,33})∗ has
star-height 2.
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Generalised Star-Height

Let T0 contain the all sets formed from Σ∗ and all finite
languages by iterated use of intersection, union,
concatenation and set-difference. Let Tn+1 be all sets
fromed from languages L and L∗ with L ∈ Tn by iterated
use of intersection, union, concatenation and set-difference.
The languages L ∈ Tn which are not in any Tm with m < n

have generalised star-height n.

Open Problem
For which levels n > 1 do there exist regular languages of
generalised star-height n?
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Examples

• The language {0,1}∗ has generalised star-height 0, as

{0,1}∗ = Σ∗ −
⋃

a∈Σ−{0,1}
Σ∗aΣ∗;

• L2 from above has generalised star-height 1, as
L2 = {00,11,22,33}∗ ∩
({0,1}∗ · {22,33} · {0,1}∗ · {22,33})∗

and so L2 is the intersection of two languages of
generalised star-height 1;

• L3 = {w : w does not have a substring of the form v}
for a fixed v is of generalised star-height 0 as
L3 = Σ∗ −Σ∗ · v ·Σ∗;

• L4 = {w : w has an even number of 0} is of generalised
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Quiz

Determine the generalised star-height of the following
languages over the alphabet {0,1,2} – it is zero or one:

1. {00,11,22}∗ · {000,111,222}∗;

2. {0,1}∗ · 2 · {0,1}∗ · 2 · {0,1}∗;

3. ({0,1}∗ · 2 · {0,1}∗ · 2 · {0,1}∗)∗;

4. ({0,1}∗ · 2 · {0,1}∗)∗;

5. ({0,1}+ · 22)∗;

6. ({0,1}∗ · 22)∗;

7. (((00)+ · 11)+ · 22)+.
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Recognising Languages

Deciding Membership
Let L be a language and let n = |w| be the length of an
input word w. For various types of L there are methods to
decide whether w ∈ L.
If L is regular then a dfa can check in linear time whether a
word w ∈ L.
If L is context-free then one can check in time O(n3)
whether w ∈ L; this algorithm of Cocke, Kasami and

Younger has been improved to O(n2.38) by Coppersmith
and Winograd.
If L is context-sensitive then one can check in time O(cn)
for some c whether w ∈ L; furthermore, the membership
problem is in nondeterministic linear space and in
deterministic quadratic space.
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Questions

Open Problem
What is the best time complexity to decide the membership
of a context-free language?

Open Problem
Can the membership in a given context-sensitive language
be decided in deterministic linear space?

This is related to the overall problem whether a
non-determinisitc algorithm using space s(n) can be made
into a deterministic algorithm using space O(s(n)); the best

upper bound known is O(s2(n)).

Open Problem
Given an automatic group G with a finite generator set F,
let L = {w ∈ F∗ : w and ε represent the same member of
G}. Is L solvable in logarithmic space?
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Isomorphism Problems

In certain cases one does not ask how difficult a problem is
but only whether it has at all an algorithmic solution. One
can, for example, for automatic well-orderings (A, <) and
(B, <) decide with an algorithm whether they are
isomorphic; similarly for automatic linear orders. One
cannot do this for automatic equivalence relations.

Open Problem

• Assume that (A,SuccA,PA) and (B,SuccB,PB) are
automatic structures such that (A,SuccA) and
(B,SuccB) are isomorphic to the natural numbers with
successor and that PA and PB are regular predicates
(subsets) on A and B. Can one decide whether
(A,SuccA,PA) and (B,SuccB,PB) are isomorphic?

• Can one decide whether the commutative fully
automatic groups (A,+) and (B,+) are isomorphic?
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Complexity of Deciding Games

One studies the complexity of deciding games (or other
problems) in dependence of parameters. For parity games,
the parameters taken here are the number n of nodes and
the number m of values.

• McNaughton 1993: O((kn)m+1) for some k.

• Browne, Clarke, Jah, Long and Marrero 1997:

O(n2 · (2n/m)(m+3)/2).

• Jurdinski, Patterson and Zwick 2006/2008: nk·√n for
some k.

• Schewe 2007/2016: n2 · (k · n ·m−2)m/3 for some k.

• Calude, Jain, Khoussainov, Li and Stephan 2017:

O((m/ log(n))4 · n3.45+log(m/ log(n)+3)).

Open Problem: Can parity games be decided in polynomial time?
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Winning Statistics 1

Modify parity game to parity game with winning statistics.
Winning statistics are vectors b0 b1 . . . ,bk with
k = ⌈log(n) + 2⌉ with the following meaning: bi > 0 stands

for the observation of 2i nodes in the play so far such that
between any of these nodes the highest value was of the
player’s parity and bi is the largest value observed from the
end of the sequence onwards. If bi,bj > 0 and j < i then

the sequence for bj can only start after the 2i nodes of the

previous sequence and also the node with value bi have
been observed.

Winning statistics indicate whether a player will eventually
win in the case that the winner plays a memoryless winning
strategy.
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Winning Statistics 2

Initialisation: All bi of a winning statistics are 0.

Update rule: For each new node with value b, choose the
largest i which can do one of the following:

• b and b0,b1, . . . ,bi−1 have the players parity and bi

does not;

• 0 < bi < b.

If found, let bi = b and all bj = 0 for all j < i.

Theorem
If Anke plays a memoryless winning strategy her winning
statistics will eventually have bk > 0 what will indicate that
she has a winning strategy while Boris’ winning statistics
will never indicate a win. Similarly for Boris and his winning
statistics.
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Reduction to Survival Games

Game graphs of survival game consist of all nodes (v,p,w)
with node v of parity game, player p to move and current
winning statistics w of Boris. Move from (v,p,w) to
(v′,p′,w′) is possible iff there is edge from v to v′ in parity
game, p 6= p′ and on move with value of v′, winning
statistics w of Boris are updated to w′ and w is not already
won for Boris. Anke loses if game gets stuck.

There is an algorithm to determine the winner of a survival
game which needs time linear in number of edges of the

survival game, so linear in time n2 · nlog(m)+4 where

nlog(m)+4 is an upper bound on the number of winning
statistics for Boris. This upper bound is based on the fact
that Winning statistics consist of ⌈log(n) + 3⌉ numbers with
⌈log(m+ 1)⌉ bits.

More careful counting gives slightly better bound.
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Exercises 12.25-12.28

Let A = {0}∗ · {1}∗, B = {00}∗ · {11}∗ · {22}∗;
C = {00,11,22}∗; D = {0,1}∗ − {1}∗.

Exercise 12.25
How are the above sets A,B,C,D ordered by ≤au?
Provide the reductions where they exist.

Exercise 12.26
How are the above sets A,B,C,D ordered by ≤tr? Provide
the reductions where they exist.

Exercise 12.27
Find for A,B,C regular sets A′,B′,C′ such that for all x,
x ∈ A ⇔ xx ∈ A′ and x ∈ B ⇔ xx ∈ B′ and x ∈ C ⇔
xx ∈ C′.

Exercise 12.28
Provide a regular set E such that E′ exists as in 12.27, but
E′ is neither E nor E · E.
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Exercises 12.29-12.31

Determine for the following languages F,G,H, I,J the
minimal complete dfa and either determine its smallest
synchronising word or show that there is no such word.

Exercise 12.29
Do the above for F = ({0}∗ · {1} · {0}∗ · {1})∗.

Exercise 12.30
Do the above for G = ({0}+ · {1} · {0}+ · {1})∗.

Exercise 12.31
Do the above for H = ({0}+ · {1} · {0}+ · {1})∗ ∪
({0,1}∗ · {11} · {0,1}∗ · {00}) ∪ ({1} · {0,1}∗ · {00}).

Exercise 12.32
Do the above for I = {0,1,2}+ · {02,12,22} · {0,1,2}∗.

Exercise 12.33
Do the above for J = {0,1}3 · {2}∗.
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Final Examination

• Final examination counts 60 marks; midterm counts 30
marks and homework counts 10 marks.

• The final examination covers all 12 lectures.

• There are 10 questions with six marks each equally
distributed over the material.

• Some material in the lecture notes was not covered or
only sketched during lecture hours; this is additional
add-on for those who are interested.

• When revising the material, look also at the exercises in
order to test whether you understood the material and
also check out the self-tests. Try to understand what
today’s open problems say and try to solve easy cases
of these. This is only needed for two questions to
distinguish good from average students.

• The other questions cover lectures 1-11.
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Mode of Exam

The Final Exam is in Class. However, due to the current
COVID 2019 Wave, there is an extra rule for students who
test positive for this illness.

Please notify through the UNIVUS App with an upload of
the positive test the NUS on the test result; furthemrore
email fstephan@comp.nus.edu.sg plus the additional
person mentioned in the email to you on your test result. Do
all these 24 hours prior to the exam latest. First notify the
NUS by App and the corresponding persons by email, then
see a doctor.

The SoC will inform you on an approval for an online exam
option which is granted to people positive for COVID 2019.
Please check your email regularly for this. The mode of the
online exam is LUMINUS FILES. All COVID 2019 negative
students have to take the exam in person.
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