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Finite Automata

Recognising Multiples of Three

Three states: Remainders 0 (initial), 1, 2.

Update of state on digit: (s,d) — (s + d) mod 3;
for example, state 2 and input 8 give new state 1.
Accept numbers where final state is 0.

Input: 2 5 6 1 0 2 4 2 0 4 8
State: 0 211 2 2121121
Final Decision: Reject

Multiples of p

States {0,1,...,p — 1}; initial state 0.
Update: (s,d) — ((s-10) + d) mod p.
Accept numbers where final state is 0.
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Automatic Structures - Example

Operations calculated or verified by finite automata
Automaton reads (from front or from end) inputs and has
missing digits be replaced by symbol different from the
alphabet. Here decimal adder with three states: n (no carry
and correct), ¢ (carry and correct), i (incorrect). Automaton
works from the back to the front; start state and accepting
state are n; states i and c are rejecting.

Correct Addition Incorrect Addition
# 2 358 . 2 25 333 3 . 3 3 #
# 911 2 . # # # # # 2 2 2 2 2
1 1 4 7 0 2 2 5 # 1 5 5 5 5 2
n cnmnacnnmnmnn 1 1 nNnnnnnnan

Alignment at the positions of “.”; if no alignment rule is
given, alignment at the first member of the string; “#” are
placed to fill up free positions after alignment is done.
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Automatic Structures - Formal

In an automatic structure,
e the domain is coded as a regular set;

e each relation in the structure is recognised by a finite
automaton reading all inputs at same speed;

e each function in the structure is verified by a finite
automaton: the automaton recognises the graph
consisting of all valid (input,output)-tuples.

Examples: integers with addition and order; rationals with
order, minimum and maximum; positive terminating decimal
numbers with addition; finite subsets of the natural numbers
with union and intersection and set-inclusion.

The inventors: Bernard R. Hodgson (1976, 1983); Bakha-
dyr Khoussainov and Anil Nerode (1995); Achim Blumen-
sath and Erich Gradel (1999, 2000).
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Characterising automatic functions

Theorem [Case, Jain, Seah and Stephan 2013].

A function f : 3* — 3* Is automatic iff there is a Turing
machine with exactly one tape which computes f in linear
time and which lets its output start at the same position
where originally the input started.

Turing machine can use tape alphabet I' much larger than
3:; time-bound linear in input-length.

Finite Automaton Turing Machine

Goes in one direction | Goes forward and backward

Reads symbols Reads and writes symbols

Finitely many states | Finitely many states;
nowever, utilises tape as
additional memory
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Groups

A group (G, +) satisfies the following axioms:
e (Associativity) Vx,y,z€ G[(x+y) +z=x+ (y + 2)];
e (Neutralelement) 0 c GAVx e G[x+0=xA0+x = x|;
e (Inverse element) vx € Gdy € G[x+y = 0|.

Abelian groups are commutative: Vx,y € G [x +y =y + x].

Examples are integers, rationals and reals with addition as
well as finite groups (remainder groups):

+10 1 2 3 - 1
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Semiautomatic Structures

Automatic structures are quite restrictive and many
structures cannot be represented.

Theorem [Tsankov 2011]. The additive group of the
rationals is not automatic.

Semiautomatic structures try to represent more structures
using automata. Idea: Instead of requiring that a function is
an automatic function in all inputs, one requires only that
the projected functions obtained by fixing all but one inputs
by constants are automatic; similarly for relations including
equality.

More formally, a structure like (Q, =, <;+) Is semiautomatic
If the sets and relations and functions before the semicolon
are automatic and those after the semicolon are only
semiautomatic.
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Cayley Automatic Groups

Definition [Kharlampovich, Khoussainov and Miasnikov
2011]. Agroup (A,=;{x+—xoa:ac A})is Cayley
automatic iff it is finitely generated, the domain is regular,
the equality is automatic and for every a € A, the mapping
X — x o a IS automatic. If a finitely generated group satisfies
that (A, =;0) is semiautomatic then it is called Cayley
biautomatic.

Theorem [Miasnikov and Sunié 2012].

There are Cayley automatic groups which are not Cayley
biautomatic.

The conjugacy problem and the first-order theory of some
Cayley automatic groups are undecidabile.

Theorem [Jain, Khoussainov and Stephan 2016].
If (A, o) is a Cayley automatic group then (A;o,=) is
semiautomatic.
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Implication

Let a Cayley automatic representation
(B,=;{x+— xo0a:aec A}) be given.

Now A = {(x,y) : x,y € B} with (x,y) representing x 1 oy.

Inversion: (x,y) — (y,X).

Group operation with constants:

(x,y) — (x,y oa) represents (x 1 oy)oa;

(x,y) — (xoa 1l y) representsao (x toy).

(x,y) equals a iff x o a=1 = y what can be checked for every
fixed a € B.

In summary: (A,x +— x !;0,=) is semiautomatic and
equals the given Cayley automatic group.

Separation: Open Problem for Finitely Generated Groups.
There are semiautomatic groups which are not finitely
generated and thus not Cayley automatic.
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Inversion

Proposition.
If (A;o0,=) is semiautomatic, sois (B,x +— x 1;0,=) for a
suitably coded copy B of A.

Here B = {x,x’ : x € A} consist of two regular copies of A
where for each x € A, x’ denotes the inverse of x.

The mappings x +— x o a and x — a o x are extended from
domain A to domain B by defining x' oa = (a=! o x)’ and
aox = (Xoa_l)’.

Furthermore, one tests whether x’ = a by testing whether
x = a~ !, so the representatives of a form the regular set
[x:xcAandx=alU{x':xc Aandx=a1}.

The inversion maps x € A to x’ and x’ with x € A to x. So’
IS appended if it is not there and deleted if it is at the end of
x. The special symbol " is at the end of x or absent.
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Semidirect Products

Let (A, o, =) be an automatic group and (B;o,=) be a
semiautomatic group. Furthermore, let ¢y, for every b € B
be an automatic group automorphism A — A such that
Obob (@) = vp(vw (a)) foralla € A, b,b" € B. Now one
defines for a,b that b o a = ¢ (a) o b and extends so o to the
setofall {aob:a e A b e B}. The so obtained group is
called the semidirect product A x, B of A and B.

The set {(a,b,a’) : a,a’ € A, b € B} permits to define a
semiautomatic group operation, where (a, b, a’) stands for
aoboad.

One can show that the restriction e of o to one operand
being from A o {¢} o A Is automatic. Furthermore, equality
IS semiautomatic and for each fixed b € B, equality
restricted to {(a,b,a’) : a,a’ € A} is automatic.

Finitely Generated Semiautomatic Groups — p. 11



Nilpotent Groups

A finitely generated group has nilpotency class k iff for all
elements ag, aj, as, ..., ax the sequence bg = ag and

bni1 = b, ' oa; ! oby oay ends in a by such that by is the
neutral element . Here by, o a}, = ay, o by, o by,,.1 and
therefore one calls by, 1 also the communitator of ay,, by;
groups of nilpotency class 1 are Abelian.

Theorem [Kharlampovich, Khoussainov and Miasnikov
2011]. Finitely generated groups of nilpotency class 2 are
Cayley automatic.

Theorem [Jain, Khoussainov and Stephan 2016].
Every finitely generated group of nilpotency class 3 is
semiautomatic.

Question.
Is there a finitely generated group of nilpotency class 3
which is not Cayley automatic?
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Examples and Facts

The class of all upper unitriangular n x n matrices like

or

o O O
O O W
O~ O O
= H O Q
o O O
O O O
O OO0
R O O O

has nilpotency class n — 1, the one in the picture nilpotency
class 3. A communicator of m elements has 0 in the first

m — 1 semidiagonals above the diagonal; thus if m = n then
it is the unit matrix which is the neutral element. In the
above example, the matrices on the right side form a
commutative subgroup of the group.

Direct products of nilpotent groups are nilpotent groups.
A group is Abelian iff it has nilpotency class 1.
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Main Result

Let (A, o) be finitely generated and have nilpotency class 3.

The set B of the subgroup generated by elements of the
form x~! oy~! o x oy is called the commutator subgroup; it
Is an Abelian subgroup.

The set C generated by {x 1oy loxoy:xc A,y € B}
commutes with all elements of A.

Theorem [Jain, Khoussainov and Stephan 2016]
(a) Let e the restriction of o to one input being from B. The

structure (A, B,x — x 1, e;0,=) is semiautomatic.

(b) For some choices of A, the structure (A, B, =, e;0) is not
semiautomatic, as one can code NP-complete problems or
even undecidable problems into the theory of the structure.
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Construction of (a)

The quotient group A /B is Abelian, thus one has finitely
many generators aj, ao, ..., a, and each of them can occur
in form a** with either my € Z or my € {0,1,...,px — 1} for
some pyx > 2.

Furthermore, B is Abelian and one can find generators
b1,...,bn,c1,...,cn Of B where the subgroup C
generated by cq, ..., cyr only consists of commutators of
three elements and commutes with all members of A.

One represents all members of A by a triple (b, a, b’) with
a € A/B and b,b’ € B. The members in a are represented
by aj'* o...oal*™ with the vector (my,...,my) used in the
representation; similarly vectors of the form

(mj,...,m/,, my, ... m!,)are used to represent b, b'.
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Construction of (a) Continued

The m; cannot be represented as single numbers, as
moving an a; over an a?‘j might generate not only b, ¥ but

m;(m;—1)

also some c, /2 or the like and therefore one stores
the coordinates for the mj in form hg +hy-m; +...+h, -m,
which will be updated whenever some m; changes.

Furthermore, one has some fixed linear combinations
which give 0, for example, 20 - m} — 30 - m, one can take
these into account and nevertheless test, for all fixed values

of my, ..., my,, automatically whether some vectors b, b are
equal. Furthermore, for fixed my, ..., m,, one can
automatically compute the coordinates of the b-part when
moving the b over the a and so automatically compare

whether two vectors of the formboaob’and boaob’ are
equal.
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Construction of (a) Continued

The numbers collaps to hg when my,...,m, are all 0. The
members of A which are actually in B have that the
mq,...,my, are all 0 and that therefore only the hy-entries of
the m; are relevant in b and b’; these can then simply be
added to determine their value. This permits to
automatically multiply any element from A of the form

b o a o b’ with with any element from B from either side.

When multiplying from the front, one has then only to
update the entries m; and the hg-entries for the mj in b by
adding the values of the corresponding coordinates in B;
similarly, when multiplying from the other side, one updates
the values in b’.
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Construction of (b)

Construction of group to code the NP-hard problem

S={(a.8,7): v € Zp* <V’ Ap?+v-8=al]}

which can be solved in polynomial time when group is
semiautomatic as indicated; more involved constrution
would permit to code undecidable problems.

One chooses A, B such that A/B is generated by
ai,...,ar, Bis generated by b, ..., bg, c1,ce and satisfies

aroaj; —ajocaryobq,...,aroag = agoarobq,
bioa; =ajobjocy, bgoas =asobg ocy oco,
bgoag —=agobgoce, bgjoay =aygo0bgocy,
bs o ag = a5 o bg 0 co, bg 0 ag = ag o bg o co.

If i,j < 7 then a;, b; commute. Also commutators of three
different a;, a;, ax are «.
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Construction of (b) continued

(ar, B,7v) € S iff there are x,x1,x2 € A, y,y1,y2 € B with

2

bfoyzoxzxobfoyzoc%ocg

and the following side conditions are satisfied:

A7 0X =Xoayoy,aroXy =X10aroyi,

a7 0 X2 = X2 0 a7 0y2,

Yy =Y1eYy2,

A1 0y2 —Yy2041,A20Y¥Y1 =Yy104a2,a3°y1 = Y1 ©asg,

A4 0Y1 —Y10a4,a50Yy1 —Y104a5,a6°0Y1 —Y1©ae
and, fori=1,...,6 and x = x,x71,x2 and for all y € B,

If ajox = (Xxoaj)eythenayoy =yoar.

2

Here c¢, bY, ¢]” can be computed in polynomial time and
the subsequent test is automatic.

Finitely Generated Semiautomatic Groups —p. 19



Summary

For finitely generated groups, one has the implications

automatic = Cayley biautomatic = Cayley
automatic = semiautomatic

and for all groups one has the implications

Cayley biautomatic = Cayley automatic =
semiautomatic < automatic

where no further arrow holds. It is open whether every
finitely generated semiautomatic group is Cayley automatic.

One can represent semiautomatic groups such that the
Inversion is automatic.

All finitely generated groups of nilpotency class 3 are
semiautomatic.
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