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Finite Automata

Recognising Multiples of Three
Three states: Remainders 0 (initial), 1, 2.
Update of state on digit: (s,d) 7→ (s+ d)mod3;
for example, state 2 and input 8 give new state 1.
Accept numbers where final state is 0.
Input: 2 5 6 1 0 2 4 2 0 4 8

State: 0 2 1 1 2 2 1 2 1 1 2 1

Final Decision: Reject

Multiples of p
States {0,1, . . . ,p− 1}; initial state 0.
Update: (s,d) 7→ ((s · 10) + d)modp.
Accept numbers where final state is 0.
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Automatic Structures - Example

Operations calculated or verified by finite automata
Automaton reads (from front or from end) inputs and has
missing digits be replaced by symbol different from the
alphabet. Here decimal adder with three states: n (no carry
and correct), c (carry and correct), i (incorrect). Automaton
works from the back to the front; start state and accepting
state are n; states i and c are rejecting.

Correct Addition Incorrect Addition

# 2 3 5 8 . 2 2 5 3 3 3 3 . 3 3 #

# 9 1 1 2 . # # # # # 2 2 . 2 2 2

1 1 4 7 0 . 2 2 5 # 1 5 5 . 5 5 2

n c n n c n n n n n i i n n n n n n n

Alignment at the positions of “.”; if no alignment rule is
given, alignment at the first member of the string; “#” are
placed to fill up free positions after alignment is done.
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Automatic Structures - Formal

In an automatic structure,

• the domain is coded as a regular set;

• each relation in the structure is recognised by a finite
automaton reading all inputs at same speed;

• each function in the structure is verified by a finite
automaton: the automaton recognises the graph
consisting of all valid (input,output)-tuples.

Examples: integers with addition and order; rationals with
order, minimum and maximum; positive terminating decimal
numbers with addition; finite subsets of the natural numbers
with union and intersection and set-inclusion.

The inventors: Bernard R. Hodgson (1976, 1983); Bakha-
dyr Khoussainov and Anil Nerode (1995); Achim Blumen-
sath and Erich Grädel (1999, 2000).
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Characterising automatic functions

Theorem [Case, Jain, Seah and Stephan 2013].
A function f : Σ∗ → Σ∗ is automatic iff there is a Turing
machine with exactly one tape which computes f in linear
time and which lets its output start at the same position
where originally the input started.

Turing machine can use tape alphabet Γ much larger than
Σ; time-bound linear in input-length.

Finite Automaton Turing Machine
Goes in one direction Goes forward and backward
Reads symbols Reads and writes symbols
Finitely many states Finitely many states;

however, utilises tape as
additional memory
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Groups

A group (G,+) satisfies the following axioms:

• (Associativity) ∀x,y, z ∈ G [(x+ y) + z = x+ (y + z)];

• (Neutral element) 0 ∈ G∧∀x ∈ G [x+ 0 = x∧ 0+x = x];

• (Inverse element) ∀x ∈ G ∃y ∈ G [x+ y = 0].

Abelian groups are commutative: ∀x,y ∈ G [x+ y = y + x].

Examples are integers, rationals and reals with addition as
well as finite groups (remainder groups):

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Finitely Generated Semiautomatic Groups – p. 6



Semiautomatic Structures

Automatic structures are quite restrictive and many
structures cannot be represented.

Theorem [Tsankov 2011]. The additive group of the
rationals is not automatic.

Semiautomatic structures try to represent more structures
using automata. Idea: Instead of requiring that a function is
an automatic function in all inputs, one requires only that
the projected functions obtained by fixing all but one inputs
by constants are automatic; similarly for relations including
equality.

More formally, a structure like (Q,=, <; +) is semiautomatic
if the sets and relations and functions before the semicolon
are automatic and those after the semicolon are only
semiautomatic.
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Cayley Automatic Groups

Definition [Kharlampovich, Khoussainov and Miasnikov
2011]. A group (A,=; {x 7→ x ◦ a : a ∈ A}) is Cayley
automatic iff it is finitely generated, the domain is regular,
the equality is automatic and for every a ∈ A, the mapping
x 7→ x ◦ a is automatic. If a finitely generated group satisfies
that (A,=; ◦) is semiautomatic then it is called Cayley
biautomatic.

Theorem [Miasnikov and Šunić 2012].
There are Cayley automatic groups which are not Cayley
biautomatic.
The conjugacy problem and the first-order theory of some
Cayley automatic groups are undecidable.

Theorem [Jain, Khoussainov and Stephan 2016].
If (A, ◦) is a Cayley automatic group then (A; ◦,=) is
semiautomatic.
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Implication

Let a Cayley automatic representation
(B,=; {x 7→ x ◦ a : a ∈ A}) be given.

Now A = {(x,y) : x,y ∈ B} with (x,y) representing x−1 ◦ y.

Inversion: (x,y) 7→ (y,x).
Group operation with constants:
(x,y) 7→ (x,y ◦ a) represents (x−1 ◦ y) ◦ a;
(x,y) 7→ (x ◦ a−1,y) represents a ◦ (x−1 ◦ y).
(x,y) equals a iff x ◦ a−1 = y what can be checked for every
fixed a ∈ B.

In summary: (A,x 7→ x−1; ◦,=) is semiautomatic and
equals the given Cayley automatic group.

Separation: Open Problem for Finitely Generated Groups.
There are semiautomatic groups which are not finitely
generated and thus not Cayley automatic.
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Inversion

Proposition.
If (A; ◦,=) is semiautomatic, so is (B,x 7→ x−1; ◦,=) for a
suitably coded copy B of A.

Here B = {x,x′ : x ∈ A} consist of two regular copies of A
where for each x ∈ A, x′ denotes the inverse of x.
The mappings x 7→ x ◦ a and x 7→ a ◦ x are extended from
domain A to domain B by defining x′ ◦ a = (a−1 ◦ x)′ and
a ◦ x′ = (x ◦ a−1)′.
Furthermore, one tests whether x′ = a by testing whether
x = a−1, so the representatives of a form the regular set
{x : x ∈ A and x = a} ∪ {x′ : x ∈ A and x = a−1}.
The inversion maps x ∈ A to x′ and x′ with x ∈ A to x. So ′

is appended if it is not there and deleted if it is at the end of
x. The special symbol ′ is at the end of x or absent.
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Semidirect Products

Let (A, ◦,=) be an automatic group and (B; ◦,=) be a
semiautomatic group. Furthermore, let ϕb for every b ∈ B

be an automatic group automorphism A → A such that
ϕb◦b′(a) = ϕb(ϕb′(a)) for all a ∈ A,b,b′ ∈ B. Now one
defines for a,b that b ◦ a = ϕb(a) ◦ b and extends so ◦ to the
set of all {a ◦ b : a ∈ A,b ∈ B}. The so obtained group is
called the semidirect product A⋊ϕ B of A and B.

The set {(a,b, a′) : a, a′ ∈ A,b ∈ B} permits to define a
semiautomatic group operation, where (a,b, a′) stands for
a ◦ b ◦ a′.

One can show that the restriction • of ◦ to one operand
being from A ◦ {ε} ◦A is automatic. Furthermore, equality
is semiautomatic and for each fixed b ∈ B, equality
restricted to {(a,b, a′) : a, a′ ∈ A} is automatic.
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Nilpotent Groups

A finitely generated group has nilpotency class k iff for all
elements a0, a1, a2, . . . , ak the sequence b0 = a0 and
bh+1 = b−1

h
◦ a−1

h
◦ bh ◦ ah ends in a bk such that bk is the

neutral element ε. Here bh ◦ ah = ah ◦ bh ◦ bh+1 and
therefore one calls bh+1 also the communitator of ah,bh;
groups of nilpotency class 1 are Abelian.

Theorem [Kharlampovich, Khoussainov and Miasnikov
2011]. Finitely generated groups of nilpotency class 2 are
Cayley automatic.

Theorem [Jain, Khoussainov and Stephan 2016].
Every finitely generated group of nilpotency class 3 is
semiautomatic.

Question.
Is there a finitely generated group of nilpotency class 3
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Examples and Facts

The class of all upper unitriangular n× n matrices like

1 a b c 1 0 b c

0 1 d e or 0 1 0 e

0 0 1 f 0 0 1 0

0 0 0 1 0 0 0 1

has nilpotency class n− 1, the one in the picture nilpotency
class 3. A communicator of m elements has 0 in the first
m− 1 semidiagonals above the diagonal; thus if m = n then
it is the unit matrix which is the neutral element. In the
above example, the matrices on the right side form a
commutative subgroup of the group.

Direct products of nilpotent groups are nilpotent groups.

A group is Abelian iff it has nilpotency class 1.
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Main Result

Let (A, ◦) be finitely generated and have nilpotency class 3.

The set B of the subgroup generated by elements of the
form x−1 ◦ y−1 ◦ x ◦ y is called the commutator subgroup; it
is an Abelian subgroup.

The set C generated by {x−1 ◦ y−1 ◦ x ◦ y : x ∈ A,y ∈ B}
commutes with all elements of A.

Theorem [Jain, Khoussainov and Stephan 2016]
(a) Let • the restriction of ◦ to one input being from B. The
structure (A,B,x 7→ x−1, •; ◦,=) is semiautomatic.

(b) For some choices of A, the structure (A,B,=, •; ◦) is not
semiautomatic, as one can code NP-complete problems or
even undecidable problems into the theory of the structure.
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Construction of (a)

The quotient group A/B is Abelian, thus one has finitely
many generators a1, a2, . . . , an and each of them can occur
in form amk

k
with either mk ∈ Z or mk ∈ {0,1, . . . ,pk − 1} for

some pk ≥ 2.

Furthermore, B is Abelian and one can find generators
b1, . . . ,bn′ , c1, . . . , cn′′ of B where the subgroup C

generated by c1, . . . , cn′′ only consists of commutators of
three elements and commutes with all members of A.

One represents all members of A by a triple (b, a,b′) with
a ∈ A/B and b,b′ ∈ B. The members in a are represented
by am1

1 ◦ . . . ◦ amn
n with the vector (m1, . . . ,mn) used in the

representation; similarly vectors of the form
(m′

1, . . . ,m
′

n′ ,m′′

1, . . . ,m
′′

n′′) are used to represent b,b′.
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Construction of (a) Continued

The m′′

k cannot be represented as single numbers, as
moving an ai over an a

mj

j
might generate not only b

mj

k
but

also some c
mj(mj−1)/2
ℓ or the like and therefore one stores

the coordinates for the m′′

ℓ in form h0+h1 ·m1+ . . .+hn ·mn

which will be updated whenever some mi changes.

Furthermore, one has some fixed linear combinations
which give 0, for example, 20 ·m′

1 − 30 ·m′′

2, one can take
these into account and nevertheless test, for all fixed values
of m1, . . . ,mn, automatically whether some vectors b, b̃ are
equal. Furthermore, for fixed m1, . . . ,mn, one can
automatically compute the coordinates of the b-part when
moving the b over the a and so automatically compare
whether two vectors of the form b ◦ a ◦ b′ and b̃ ◦ a ◦ b̃′ are
equal.
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Construction of (a) Continued

The numbers collaps to h0 when m1, . . . ,mn are all 0. The
members of A which are actually in B have that the
m1, . . . ,mn are all 0 and that therefore only the h0-entries of
the m′′

k are relevant in b and b′; these can then simply be
added to determine their value. This permits to
automatically multiply any element from A of the form
b ◦ a ◦ b′ with with any element from B from either side.

When multiplying from the front, one has then only to
update the entries m′

k and the h0-entries for the m′′

ℓ in b by
adding the values of the corresponding coordinates in B;
similarly, when multiplying from the other side, one updates
the values in b′.
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Construction of (b)

Construction of group to code the NP-hard problem

S = {(α, β, γ) : ∃µ, ν ∈ Z [µ2 ≤ γ2 ∧ µ2 + ν · β = α]}

which can be solved in polynomial time when group is
semiautomatic as indicated; more involved constrution
would permit to code undecidable problems.

One chooses A,B such that A/B is generated by
a1, . . . , a7, B is generated by b1, . . . ,b6, c1, c2 and satisfies

a7 ◦ a1 = a1 ◦ a7 ◦ b1, . . ., a7 ◦ a6 = a6 ◦ a7 ◦ b1,
b1 ◦ a1 = a1 ◦ b1 ◦ c1, b2 ◦ a2 = a2 ◦ b2 ◦ c1 ◦ c2,
b3 ◦ a3 = a3 ◦ b3 ◦ c2, b4 ◦ a4 = a4 ◦ b4 ◦ c2,
b5 ◦ a5 = a5 ◦ b5 ◦ c2, b6 ◦ a6 = a6 ◦ b6 ◦ c2.

If i, j < 7 then ai,bj commute. Also commutators of three
different ai, aj, ak are ε.
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Construction of (b) continued

(α, β, γ) ∈ S iff there are x,x1,x2 ∈ A, y,y1,y2 ∈ B with

b
β
1 • y2 • x = x • bβ

1 • y2 • c
α
1 • cγ

2

2

and the following side conditions are satisfied:

a7 ◦ x = x ◦ a7 ◦ y, a7 ◦ x1 = x1 ◦ a7 ◦ y1,
a7 ◦ x2 = x2 ◦ a7 ◦ y2,
y = y1 • y2,
a1 ◦ y2 = y2 ◦ a1, a2 ◦ y1 = y1 ◦ a2, a3 ◦ y1 = y1 ◦ a3,
a4 ◦ y1 = y1 ◦ a4, a5 ◦ y1 = y1 ◦ a5, a6 ◦ y1 = y1 ◦ a6

and, for i = 1, . . . ,6 and x̃ = x,x1,x2 and for all ỹ ∈ B,

if ai ◦ x̃ = (x̃ ◦ ai) • ỹ then a7 ◦ ỹ = ỹ ◦ a7.

Here cα1 , bβ
1, cγ

2

2 can be computed in polynomial time and
the subsequent test is automatic.
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Summary

For finitely generated groups, one has the implications

automatic ⇒ Cayley biautomatic ⇒ Cayley
automatic ⇒ semiautomatic

and for all groups one has the implications

Cayley biautomatic ⇒ Cayley automatic ⇒
semiautomatic ⇐ automatic

where no further arrow holds. It is open whether every
finitely generated semiautomatic group is Cayley automatic.

One can represent semiautomatic groups such that the
inversion is automatic.

All finitely generated groups of nilpotency class 3 are
semiautomatic.
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