
NATIONAL UNIVERSITY OF SINGAPORE

CS 5236 – Advanced Automata Theory

(Semester 1: AY 2016/2017)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. This assessment paper consists of TEN (10) questions and comprises ELEVEN
(11) printed pages plus ONE (1) empty page.

2. Students are required to answer ALL questions.

3. This is a CLOSED BOOK examination.

4. It is permitted to use calculators, provided that all memory and programs are
erased prior to the assessment; no other material or devices are permitted.

5. Every question is worth SIX (6) marks. The maximum possible marks are 60.

6. Please write your Student Number below (including all digits and letters). Do
not write your name.

MATRICULATION NO:

This portion is for examiner’s use only

Question Marks Remarks Question Marks Remarks
Q01: Q06:
Q02: Q07:
Q03: Q08:
Q04: Q09:
Q05: Q10:

Total:

Question 1 [6 marks] CS 5236 – Solutions

Construct a context-sensitive grammar for the language L = {00w00w00w : w ∈
{0, 1}∗}. For example, 000000000000 ∈ L, 001001001 ∈ L and 010101 /∈ L. Any
grammar is allowed which satisfies |l| ≤ |r| and l ∈ (N ∪ Σ)∗ − Σ∗ for every rule
l→ r.

Solution. The non-terminals are S, U, V,W,X, Y, Z, the terminals are 0, 1, 2 and the
start symbol is S. The rules are the following: S → UVW , U → U0X|U1Y |00Z,
X0→ 0X, X1→ 1X, XV → V 0X, XW → W0, Y 0→ 0Y , Y 1→ 1Y , Y V → V 1Y ,
YW → W1, Z0→ 0Z, Z1→ 1Z, ZV → 00Z, ZW → 00.

2

Question 2 [6 marks] CS 5236 – Solutions

Consider the set L = {0i1j0k : i, j, k ∈ N ∧ j ≤ i+ k ≤ 2j}.

What is the level of L in the Chomsky hierarchy?
regular, context-free and not regular,
context-sensitive and not context-free,
recursively enumerable and not context-sensitive.

Give a justification for your choice, by providing the corresponding grammars or
automata to show that the language is in that level and by applying the pumping
lemmas or similar methods to show that it is in no better level (if applicable).

Solution. The language is context-free. The grammar is ({S, T, U}, {0, 1}, P, S) with
P containing the rules S → TU , T → 0T1|00T1|ε and U → 1U0|1U00|ε. However,
the language is not regular. As it is infinite, one can apply the pumping lemma and
there is a word uvw with uv∗w ⊆ L and v 6= ε. As there are only two alternations
between 0 and 1, the word v must from {0}+∪{1}+. When pumping up, the number
of occurrences of one of the digits is increased in an arbitrary amount while the
number of the occurrences of the other digit remains constant. This contradicts the
condition that the zeroes occur at least as often as a ones and at most twice often as
the ones.

3

Question 3 [6 marks] CS 5236 – Solutions

A well-known result says that every context-free subset of {0}∗ is regular. One tries
to generalise this statement by considering subsets of Σ∗ for arbitrary alphabet Σ,
but with the side condition that there is a constant c such that for each length n,
Σn ∩ L has at most c members. Note that subsets of {0}∗ satisfy this condition with
c = 1. Thus one considers the following generalisation:

(∗) If a context-free language L ⊆ Σ∗ satisfies ∃c∀n [|Σn ∩ L| ≤ c] then L is regular.

Is the statement (∗) true? Yes, No.

Prove your answer.

Solution. The answer is “no”. The reason is that the language {0m10m : m ∈ N}
has for each n at most one word of length n, namely when n = 2m + 1 the word
0m10m and when n = 2m it does not contain any word. The language is context-free
by a grammar with non-terminal and start symbol S and rules S → 0S0|1. One can
see that L is not regular, as each derivative L0n1 is {0n} and so the language has
infinitely many different derivatives and is not regular by the Theorem of Myhill and
Nerode.

4

Question 4 [6 marks] CS 5236 – Solutions

Consider the following game: Anke and Boris start with the number 99999999 and
both players alternately reduce one digit by 1 or by 2, but not by more. The digits
are decimal digits from {0, 1, 2, . . . , 9} and a digit 1 can only be reduced to 0 and a
digit 0 cannot be modified. That player who makes the last digit 0 wins the game,
Anke moves first. Which player has a winning strategy for this game?

Some example moves in the game are 99999999→ 99999799→ 99999789→ 99999788
→ 99999786.

Solution. Boris has a winning strategy for the game. His strategy is to keep all
digits to be a multiple of 3. When Anke reduces one digit by a ∈ {1, 2}, this digit is
no longer a multiple of 3 and Boris restores it to be a multiple of 3 by subtracting
3 − a from the digit. This is always possible, as the digit is at least 3 − a when it
is not a multiple of 3. So eventually all digits will become 0 and Boris is always the
player who converts a digit from 1 or 2 to 0. Thus he wins the game.

5

Question 5 [6 marks] CS 5236 – Solutions

In a Büchi game, both players move alternately with player Anke starting at start
node s. Player Anke wins an infinite play iff the play goes infinitely often through
nodes in the set W of accepting nodes.

Let V = {0, 1, . . . , 31}, E = {(x, y) : if x ≤ 15 then y ∈ {2x, 2x+1} else y ∈ {2x−32,
2x− 31}}, s = 0 and W = {0, 1, 2, 3}. Which player has a winning strategy for the
Büchi game (V,E, s,W)? Can this winning strategy be chosen to be memoryless?

Solution. Boris has a winning strategy. One could interpret the numbers in the game
as five-bit numbers. Each move shifts the digits by one bit to the front, discards the
first bit and choses a new last bit. Anke wins if the game goes infinitely often through
a number of the form 000xy. However, Boris can avoid this by always putting the bit
1. Then, from the fifth move onwards, each number in the game is either of the form
1x1y1 or x1y1z and therefore the numbers will never again have the first three bits
to be 000. Note that this, in the numerical setting, coincides with Boris moving to
2x + 1 in the case that x ≤ 15 and moving to 2x − 31 in the case that x ≥ 16; thus
Boris winning strategy is also memoryless.

6

Question 6 [6 marks] CS 5236 – Solutions

A deterministic Rabin automaton (Q,Σ, δ, s, {(E1, F1), . . . , (En, Fn)}) has states Q,
alphabet Σ, start state s, a deterministic transition function δ : Q × Σ → Q. The
automaton accepts an ω-word b0b1b2 . . . ∈ Σω iff the run q0q1q2 . . . of the Rabin
automaton on the word b0b1b2 . . . satisfies that there is an m ∈ {1, 2, . . . , n} for which
there are infinitely many s with qs ∈ Em and only finitely many s with qs ∈ Fm.

(a) Give the formula which determines the run q0q1q2 . . . from the ω-word b0b1b2 . . .
on the input.

(b) Let Σ = {0, 1, 2, . . . , 9}. Construct a deterministic Rabin automaton which
accepts an ω-word b0b1b2 . . . iff the maximal digit d which occurs infinitely often in
the ω-word is even.

Solution. (a) The formula is q0 = s ∧ ∀m [qm+1 = δ(qm, bm)].

(b) The alphabet Σ is given as {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The Rabin automaton uses
Q = Σ, so one denotes every state also by a symbol. Furthermore, 0 is the start
state. The update function is δ(q, b) = b, so the successor state of any state is the
currently read symbol. Now there are five pairs (E,F) in the Rabin condition, for
each even number d one takes the pair ({d}, {d + 1, d + 2, . . . , 9}). More explicitly,
the pairs are ({0}, {1, 2, 3, 4, 5, 6, 7, 8, 9}), ({2}, {3, 4, 5, 6, 7, 8, 9}), ({4}, {5, 6, 7, 8, 9}),
({6}, {7, 8, 9}) and ({8}, {9}). Now the Rabin automaton accepts an ω-word iff for
one of these pairs (E,F) one state in E and no state in F occurs infinitely often in the
run of the automaton. Thus there is an even number d for which d appears infinitely
often as a state in the run but no digit larger than d appears infinitely often in the
run. As δ copies, with one step delay, the ω-word b0b1b2 . . . just into a sequence of
states of the same name, the run of the Rabin automaton on this input is 0b0b1b2 . . .
and if the largest d in the run is even, then the condition ({d}, {d+ 1, d+ 2, . . . , 9}) is
satisfied, as the element d of {d} appears infinitely often as a state in the run while
no element of {d+ 1, d+ 2, . . . , 9} appears infinitely often.

7

Question 7 [6 marks] CS 5236 – Solutions

Let L = {0, 1}∗ · {01, 011}. Construct the minimal deterministic automaton for
L. Note that this dfa has 4 states. Furthermore, describe the syntactic monoid
of the minimal dfa: Make a table which contains, for each member of the monoid, a
word w and how the function fw defined by the word maps the states to new states;
recall that fw(q) = δ(q, w) for all words w.

Solution. The automaton consists of the states s, z, o, p and is given by the following
transition table:

state start acc/rej successor at 0 successor at 1
s yes reject z s
z no reject z o
o no accept z p
p no accept z s

The function fw(q) is δ(q, w). As 0 maps every state to z, the equality fv0w = f0w
is true for all v, w. Furthermore, f0111 = f111. So one only needs to consider the
mappings fε, f0, f01, f011, f1, f11, f111. They are given by the following table:

function s z o p
fε s z o p
f0 z z z z
f01 o o o o
f011 p p p p
f1 s o p s
f11 s p s s
f111 s s s s

8

Question 8 [6 marks] CS 5236 – Solutions

Assume that an automatic representation of (N,+) is given. Now represent the set
Z as Z = {conv(a, b) : a, b ∈ N and a = 0 or b = 0} where conv(a, b) represents
a − b. Give formulas which define when conv(a, b) + conv(a′, b′) = conv(a′′, b′′),
when conv(a, b) < conv(a′, b′) and when 3 · conv(a, b) = conv(a′, b′)? These formulas
should use + and = and quantification over members of N. Are the so defined
functions and relations automatic?

Solution. The conditions are the following: conv(a, b) + conv(a′, b′) = conv(a′′, b′′)
iff a+ a′+ b′′ = b+ b′+ a′′; conv(a, b) < conv(a′, b′) iff ∃c ∈ N [a+ b′+ c+ 1 = a′+ b];
3 · conv(a, b) = conv(a′, b′) iff a′ = a + a + a and b′ = b + b + b. All three formulas
are first-order defined from automatic parameters; these formulas use in one case
quantification over members of N and are in two cases quantifier-free. Thus, by
a theorem of Khoussainov and Nerode, the so defined functions and relations are
automatic.

9

Question 9 [6 marks] CS 5236 – Solutions

A Moore machine is a finite automaton where each state contains a word which is
output whenever the automaton visits this state; the final output is the concatenation
of all these output words, provided that the Moore machine is in an accepting state
after processing the whole input. For a non-deterministic Moore machine with input
v, all runs leading to an accepting state must provide the same output w. The function
computed can be partial and is only defined on those inputs v for which there is an
accepting run producing some output.

Construct a Moore machine which does the following: If an input v is of even
length then the output is 0|v| else the output is 1|v|. If the Moore machine can be made
deterministic then give a deterministic machine else write a short justification
why it cannot be made deterministic.

Solution. The Moore machine is non-deterministic, since there is no way that the
Moore machine can anticipate whether the length of the input is even or odd; instead
it must start producing an output symbol for each input symbol, as it cannot store
the number of symbols until it has reached the end of the output. The Moore machine
has the following transition table, where the choices of the transitions are the same
for all symbols a ∈ Σ and only depend on the state.

state start output acc/rej successor at a
s yes ε accept ev, od
ev no 0 reject ev′

ev′ no 0 accept ev
od no 1 accept od′

od′ no 1 reject od

10

Question 10 [6 marks] CS 5236 – Solutions

Angluin’s algorithm learns a dfa with n states with polynomially many queries in
m,n where m is the length of the longest counter example given and n is the number
of states of the dfa. Her algorithm makes use of the fact that the teacher, whenever
it returns the answer “no” to an equivalence query, also provides a counter example
where the conjectured language and the language to be learnt differ. Is the same
result also possible when all queries (membership queries and equivalence
queries) are only answered by the teacher with “yes” or “no”? Clearly, as
there are exponentially many dfas with n states, the algorithm could just ask for each
dfa with 1 state whether it is equal to the target, then for each dfa with 2 states
whether it is equal to the target and so on; so the question is whether learning in
this scenario is possible with polynomially many queries.

If the answer above is “yes” then describe how the learner works; if the answer
above is “no” then explain why a learner might need exponentially many
queries.

Solution. The answer is “no”. In the queries of this proof, let L stand for the
language recognised by the unknown dfa to be learnt. For each word w ∈ {0, 1}∗
there is a dfa with |w| + 2 states which accepts w and rejects all other words and
never gets stuck. When learning the subclass of these 1-element languages (which the
learner also has to learn when the learner learns all regular languages), the learner can
find out whether L equals {w} by either asking the membership query “Is w ∈ L?”
or the equivalence query “Is L generated by DFA({w})” where DFA({w}) denotes
the dfa accepting exactly the word w. For each length n there is one w ∈ {0, 1}n−2
such that the learner asks first all other words v of the same length (by either a
membership or an equivalence query) until it checks whether L = {w}. Thus for all
n ≥ 2 there is an automaton of n states where the learner needs at least 2n−2 queries
until it finds the corresponding w. It follows that exponentially many queries are
needed in the worst case.

11

Additional Space for Writing

END OF PAPER

12

