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Question 1 [6 marks] CS 5236 – Solutions

Each state of a Moore machine contains a, perhaps empty, word which is output
whenever the machine is in that state. The transitions of a Moore machine are like
those of a finite automaton, upon reading of a symbol, it transfers to some other state;
a Moore machine is deterministic iff there is exactly one start state and for each pair
of state and symbol there is exactly one transition. A run of the Moore machine is
valid if it is at the end of the run in an accepting state.

Construct a Moore machine, which replaces in a ternary input word 0 by 1, 1 by 10
and 2 by 100. The empty word is mapped to the empty word. For example, 20120 is
mapped to 1001101001.

Solution. The start state s has the empty word ε as output. Furthermore, there are
states q0, q1, q2 such that their outputs are 1, 10 and 100, respectively. From each of
the states s, q0, q1, q2, the Moore machine, upon reading symbol d ∈ {0, 1, 2}, transfers
to state qd.
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Question 2 [6 marks] CS 5236 – Solutions

Construct a dfa which for each binary number anan−1 . . . a0 checks whether∑
even i

ai + 2
∑
odd j

aj ≡ 2 (modulo 3).

Furthermore, provide a regular expression for this language which can use finite sets
of binary words, concatenation, union, intersection, Kleene star, Kleene plus and
brackets for making binding order clearer when needed.

The above sum only applies to i, j ∈ {0, 1, . . . , n} which are also even or odd, respec-
tively. For example, the dfa should accept 1011 (eleven) as the above sum is 5 which
is 2 modulo 3 and reject 101010 (twenty-one) as the above sum is 6 which is 0 modulo
3. The dfa reads the binary number from the front to the end, so when processing
1011 the digits are read in the sequence 1, 0, 1, 1.

Solution. The numbers 2, 8, 32 and so on have remainder 2 by 3, the numbers 1, 4, 16
and so on have remainder 1 by 3. Thus the algorithm counts, modulo 3 the value of
all 2m · am and that is the value of the given the binary number modulo 3. This is
equivalent to checking whether the binary number itself has the value 2 modulo 3.

This can be done by the following dfa which reads the number from the front: It has
three states z, o, t which stand for zero, one and two of the part read so far modulo 3.
z is the start state and t is the only accepting state. On 0 the remainder is doubled
modulo 2, so z goes on 0 to z, o goes on 0 to t and t goes on 0 to o. On 1 the
remainder is first doubled and then incremented, so z goes to o, o goes to z and t
goes to itself.

The regular expression is given as follows: Let I = {00, 10}∗ · {01, 11} · {00, 10}∗ and
J = {00, 01}∗ · {10, 11} · {00, 01}∗. Furthermore, in the following, ∩ binds more than
∪. Now the full regular expression is given by (I · I · I)∗ ∩ ((J · J · J)∗ · J) ∪ ((I · I ·
I)∗ · I) ∩ ((J · J · J)∗ · J · J) ∪ ((I · I · I)∗ · I · I) ∩ (J · J · J)∗.
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Question 3 [6 marks] CS 5236 – Solutions

Construct a deterministic Büchi automaton which recognises the set of all ω-words
over {0, 1, 2, 3}ω in which occur at least two different digits infinitely often. The au-
tomaton should not have more than 8 states; correct solutions with more states get
only partial credit. Also write why the Büchi automaton does what it should do.

Here the automaton should be deterministic and complete, that is, for each combina-
tion of state and symbol there is exactly one successor. Furthermore an ω-word is in
L iff the automaton goes infinitely often through an accepting state when processing
the ω-word.

Solution. The automaton has a start state s and for each digit d ∈ {0, 1, 2, 3} the
state qd. If the automaton is in s and sees a digit d then it goes to qd. If the automaton
is in qd and sees the digit d then it stays in qd while on all other digits it goes to s.
The state s is the only accepting state. One can see that whenever the automaton
returns from qd to s then it has seen besides d some other digit. Therefore if it goes to
s at least 12k times then it has seen two digits at least k times; to see this, one picks
the most frequently visited state qd when coming from s. This state has been visited
at least 3k times and thus the automaton has seen d at least k times. Furthermore,
the automaton has returned from qd to s at least 3k times, thus it has seen one of
the digits different to d also at least k times. Therefore, if the automaton returns to
s infinitely often then it has seen two digits at least infinitely often.
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Question 4 [6 marks] CS 5236 – Solutions

Consider the following game: First Anke puts a natural number x > 1. Then Boris
can move as often as he wants and can always do one of the following mappings:
Replace x by 2x; if x is a multiple of 3 then replace x by x/3; if x− 1 is multiple of 3
then replace x by (x− 1)/3. Anke wins the game if the game never goes into 1. Boris
wins the game if the game after finitely many moves reaches 1. Who has a winning
strategy for this game?

Anke; Boris.

Give a proof for your answer.

Solution. x Boris: Boris wins the game for all natural numbers x > 1.

If x or x− 1 is a multiple of 3 and x > 1 then Boris can either go to x/3 or (x− 1)/3
and both are smaller nonzero natural numbers, that is, they are at least 1. If x− 2 is
a multiple of 3 then Boris can move from x to 2x and 2x−4, 2x−1 are both multiples
of 3 and thus Boris can move on to (2x − 1)/3 which is a nonzero natural number
smaller than x. So in all situations Boris can go from x to a natural number y with
1 ≤ y < x. As it is always Boris’ turn to move, he will eventually reach 1.
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Question 5 [6 marks] CS 5236 – Solutions

Three players, Anke, Boris and Claudia, play a game by adding numbers modulo 60.
Anke can add 12 or 24 or 36 or 48, Boris can add either 20 or 40, Claudia can add 15
or 30 or 45. The game starts at 0 and the first player who moves back to 0 wins and
the player to move after his player is second and the other player third. If the game
runs forever, it becomes a draw. The first move which goes away from 0 has always
to be made. The players move in sequence Anke - Boris - Claudia - Anke - Boris -
Claudia - . . . until the game is back to 0.

(a) Are there players who can achieve that the game runs forever and becomes a
draw, irrespective what the other two players do? If yes, which players are these?

(b) Are there coalition of players who can force a win? That is, they can make sure
that the game terminates and one of them goes first and the other one goes second.
If so, which pairs of players can form such a coalition?

(c) Assume that the game has gone on already for some while and all players agree
on bringing it to an end in the fastest way possible, without caring who will be first,
second or third. How many moves does this take in the worst case?

Solution. (a) Each player can block the game from terminating. If one looks at the
remainders of the current number by (4, 5, 6), respectively, Anke is the only player
who can modify the remainder by 5, Boris is the only player who can modify the
remainder by 3 and Claudia is the only player who can modify the remainder by 4.
Each player has several choices and can therefore achieve that the remainder stays
nonzero throughout the infinite duration of the game. Note that the first move in the
game of each player has to move the own remainder from zero to some nonzero value.

(b) In the light of (a), even coalitions of two players cannot force a termination of the
game and thus cannot enforce a win.

(c) For this question it is sufficient to distinguish the case that the own remainder
of a player is zero or nonzero. If the own remainder is zero, the player has to make
it nonzero, if it is nonzero, the player can either move to another number with a
nonzero own remainder or to a number with a zero own remainder. Assume that it
is Anke’s turn to move. There are several cases depending on what the remainders
of the players are. Here they are listed as Anke’s remainder (by 5), Boris’ remainder
(by 3) and Claudia’s remainder (by 4).

(nonzero, nonzero, nonzero): Three moves, each player makes the own remainder
zero.
(nonzero, nonzero, zero): Two moves, the first two players make the remainders zero
and then the game terminates.
(nonzero, zero, nonzero), (zero, zero, nonzero): Five moves: As Boris has to make his
remainder nonzero, it is best to have all remainders nonzero after his move and Anke
moves accordingly to make her remainder nonzero. Then Boris moves and afterwards
the three players make in sequence their remainders zero.
(nonzero,zero, zero): One move, Anke makes her remainder zero.
(zero, nonzero, nonzero): Four moves: Anke must make her remainder nonzero and
afterwards each of the players makes in one further move the own remainder zero.
(zero, nonzero, zero): Six moves, Anke has to make her remainder nonzero and then
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five more moves are needed, as from Boris perspective, at the next move, the situation
is of the form (nonzero, zero, nonzero), see above.
(zero,zero, nonzero): Five moves, Anke and Boris have to make their remainders
nonzero and after that, all three players can make their remainders in sequence zero.
(zero,zero,zero): Zero moves, as by assumption there was already an initial move in
the past and now the most recent move before the current one has brought the game
to an end.
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Question 6 [6 marks] CS 5236 – Solutions

Assume that F is a finite field and let the string a0a1 . . . an ∈ F+ represent the
polynomial a0 + a1x + . . . + anx

n where a0, a1, . . . , an are the coefficients with the
polynomial.

Recall that adding of two polynomials is done by adding component wise the coef-
ficients and omitting all am in the resulting polynomial if the coefficients from m
onwards are all 0. Similarly for subtraction. Multiplying with x is done by mapping
a0a1 . . . an to 0a0a1 . . . an and multiplying with x2+1 is done by multiplying the given
polynomial p with x2 and then forming the sum p + (x2 · p). Which of the following
operations are automatic?

(a) Adding polynomials: Yes, No.

(b) Multiplying a polynomial with x3 + x + 1: Yes, No.

(c) Multiplying a polynomial with itself: Yes, No.

Give brief reasons for the answers.

Solution. (a) Component wise addition of coordinates has no carry and can be easily
carried out, for each pair of symbols one does table look up in an addition table of the
finite field. Furthermore, all components in the addition which have a space symbol
# can be interpreted as being zero. However, when verifying p + q = r, either none
or one of the two inputs and the output have # and this has always to be the same.
For each of p, q, r, when it has at one position a 0, there should later come a non-zero
coordinate, as otherwise # has to be there.

(b) The multiplication with the fixed polynomial x3 + x + 1 is automatic. When
comparing p, q for q = (x3 + x + 1) · p, the automaton has to check that qm+3 =
pm + pm+1 + pm+3 with respect to the addition in the finite field for all applicable m.

(c) Squaring (multiplying with itself) makes the output polynomial twice as long as
the input. As the polynomials can be arbitrarily long, for every constant there is
an input where the output is by more than c symbols longer than the input. An
application of the Block pumping lemma shows that the graph of this operation
cannot be automatic, thus the function is not automatic.
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Question 7 [6 marks] CS 5236 – Solutions

Which of the following monoids (= semigroups with neutral element) have an auto-
matic or fully automatic representation? If these representations exist, explain how
to construct them. If they do not exist, write in a few sentences why.

(a) (N× N,+, (0, 0)): Is this monoid automatic? Yes, No.
Is this monoid fully automatic? Yes, No.

(b) (Finsubset(N),∪, ∅): Is this monoid automatic? Yes, No.
Is this monoid fully automatic? Yes, No.

(c) (R× R, ·, (0, 0)): Is this monoid automatic? Yes, No.
Is this monoid fully automatic? Yes, No.

Provide the constructions or reasons below. Here Finsubset(N) is the set of all finite
subsets of the natural numbers, R is the set of real numbers and · is, for the real
numbers, the multiplication.

Solution. (a) The monoid is both, automatic and fully automatic. These are based
on representations of (N,+). For the fully automatic representation, this is, in suit-
able order of bits, just the addition on binary numbers and detailed out in the lecture
notes. One takes the convolution of two such representatives (i, j) and then adds
(h, k) component wise to (i, j) giving (i + h, j + k), this pair is the represented as
conv(i+h, j+k). The automatic representation of (N,+) has the unary domain {0}∗
together with string concatenation. Now one combines two such representations to
get the domain {0}∗{1}∗ with the addition 0i1j + 0h1k = 0i+h1j+k. When (j, k) are
fixed to constants, then this operation is an automatic function. The fully automatic
addition, however, works only on representations which use digits in some form (like
binary and decimal).

(b) As the semigroup is not finitely generated, it is not automatic. For fully auto-
matic, consider the representation by strings a0a1 . . . an with an = 1; the empty set
is represented by the empty string ε. Now m is in the set represented by a0a1 . . . an
iff m ≤ n and am = 1. Furthermore, let # be the symbol used to make the strings
into the same length for processing in the automaton. The symbols are now triples
of the form (a, b, c) with a, b, c ∈ {#, 0, 1}; on these symbols one defines the order
# < 0 < 1. Let A,B,C be finite subsets and str(A) represent the string representa-
tion of the finite set A, analogously for B and C. A dfa recognising

{conv(str(A), str(B), str(C)) : A ∪B = C}

has two states, an accepting start state s and an always rejecting state r. Once in
r, the dfa transfers on all triples to r again. In state s upon receiving a triple with
components a, b, c, if max{a, b} = c then the dfa stays in s else it goes to r.

(c) The structure is neither automatic nor fully automatic. The simplest reason is
that the domain is not countable, what is required for representing the domain as
finite words over a finite alphabet Σ. It is also known that one can not find an
ω-automatic representation of the reals and multiplication, but knowing this is not
required for this question.

9



Question 8 [6 marks] CS 5236 – Solutions

A ω-transducer is a deterministic transducer which translates infinite words as in-
puts into outputs. A run with outputs is valid iff the transducer goes infinitely often
through an accepting state while producing the output.

Say an ω-word represents a function f iff the ω-word is of the form 0f(0)10f(1)10f(2)1 . . .
and an ω-word with only finitely many 1s does not represent a valid input.

The goal is to construct a transducer which computes for ω-words representing f, g an
ω-word representing f +g; that is, the run should be valid iff the input ω-words repre-
sent some functions f, g. Now the output should be 0f(0)+g(0)10f(1)+g(1)10f(2)+g(2)1 . . .
and while writing this output, the ω-transducer should go infinitely often through an
accepting state. However, the ω-transducer goes only finitely often through accepting
states in the case that the output was not correctly guessed (due to nondeterminism)
or in the case that one of the inputs is not representing a function.

If there is a deterministic ω-transducer doing the addition, please provide correspond-
ingly a deterministic ω-transducer; however, if there is no deterministic ω-transducer,
provide a nondeterministic ω-transducer and explain why it cannot be made deter-
ministic.

Solution. The ω-transducer can be made deterministic. It has states s, t, u, s is the
start state and u is the accepting state. The transition relation and production of
output is the following:

In state s, on input (0, ε) the transducer produces the output 0 and goes to s. On
input (1, 0) the transducer produces the output 0 and goes to state t. On input (1, 1)
the transducer goes to u and produces the output 1.

In t, on input (ε, 0), the transducer produces output 0 and goes to t. On input (ε, 1)
the transducer produces output 1 and goes to u.

In u, on input (0, ε) the transducer goes to state s and produces the output 0. On
input On input (1, 0) the transducer produces the output 0 and goes to state t. On
input (1, 1) the transducer goes to u and produces the output 1.

The accepting state u is visited each time after completely reading and processing
(0f(k)1, 0g(k)1 for some k where then 0f(k)+g(k)1 is output. If the transducer gets stuck
in s or t due to reading an infinite sequence of zeroes on one of the inputs then the
transducer goes only finitely often through the state u and thus the computation is
not valid. One can easily verify that the ω-transducer is deterministic.
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Question 9 [6 marks] CS 5236 – Solutions

ONLINE LOGSPACE Algorithms. An algorithm to process words is called an
ONLINE LOGSPACE algorithm iff the following conditions are satisfied:

The algorithm is carried out by a register machine which can add, subtract and
compare (<,=, >,≤,≥, 6=). Furthermore, assignments with additive expressions and
constants are possible and conditional and nonconditional branchings and gotos. Calls
without recursion to functions are allowed. The input word is read symbol by symbol
with the special symbol # used to separate inputs and to mark the end of the last
input. Symbols can be compared with symbol constants (=, 6=) and the outcome can
be used for conditional branching.

The LOGSPACE condition means that there is a polynomial p such that for inputs
with combined length of n the numerical value of each register is never smaller than
−p(n) or larger than p(n).

For example, when x, y, z are registers and s is a symbol variable, instructions like
“if x < y then let z = x + y else begin let z = x − y − 5; goto line 8 end” and “if
s = a then goto line 12” are possible. If there are two input words aab and cc then
the input read is aab#cc# and n = 7 (5 generators plus two symbols for input-end).

The Semigroup Considered. The semigroup is generated by words a, b, c, d, its
neutral element is ε (empty word). The semigroup has the rules abc = ba, cd = dc = ε,
ac = ca, ad = da, bc = cb, bd = db. Furthermore, if one uses the above rules to order
the generators in the word alphabetically, then aibjckdh = ai

′
bj

′
ck

′
dh

′
iff i = i′, j′ = j′

and k − h = k′ − h′.

The Word Problem. Let elG(u) assign to a word u ∈ {a, b, c, d}∗ the group element
represented by the word. The word-problem of a semigroup is to decide for given
words v, w over the generators whether elG(v) = elG(w).

Task. Construct an ONLINE LOGSPACE algorithm to decide the word problem
of this semigroup. Note that the words are not necessarily given in alphabetically
ordered form.

Solution. The idea of the algorithm is to transform an input word into the equivalent
word of the form aibjck where i, j ≥ 0 while k can be any value in Z. A d counts as
c−1 due to d being the inverse of c. So the following subfunction initialises variables
i, j, k, given as parameters to the subfunction and assigns to them the number of
a, b, c of the current input word, when translated into the normal form aibjck. Here
when reading an a, it must move over the currently j b which causes the creation of
j symbols c. Thus the counting algorithm is as follows, where s is a symbol variable.

1. Function Readword(i, j, k);

2. i = 0; j = 0; k = 0;

3. Read s;

4. If s = a then begin i = i + 1; k = k + j end;

5. If s = b then j = j + 1;

6. If s = c then k = k + 1;
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7. If s = d then k = k − 1;

8. If s 6= # then goto 3;

9. Return.

The main function now just compares the two inputs.

1. Function Wordcompare;

2. Read(iv, jv, kv);

3. Read(iw, jw, kw);

4. If iv = iw and jv = jw and kv = kw Then write “Words are equal” Else write
“Words are different”;

5. Return.

Note that in Readword, i, j can never be larger than n, as there are n symbols read
at most. Furthermore, k can in each step only change by at most n, thus it is never
larger than n2 or smaller than −n2. Thus the algorithm is an ONLINE LOGSPACE
algorithm.
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Question 10 [6 marks] CS 5236 – Solutions

Provide a semigroup for which the word problem cannot be decided by an ONLINE
LOGSPACE algorithm as defined in the previous question. Give a proof that this
semigroup has no such algorithm.

Solution. A possible semigroup looked for is the semigroup of binary words with
the concatenation as semigroup operation. Then 0, 1 are generators and cannot be
expressed as products of other generators; hence they have to be part of any set F
of generators. There are 2n binary words of length n. Now an ONLINE LOGSPACE
algorithm can have after processing a word u of length n followed by # only p(n) many
different configurations (memory content and position in the program). Thus there
are, for all sufficiently large n, two distinct binary words v, w ∈ {0, 1}n such that
the algorithm after processing the input v# and w# is in the same configuration.
Therefore the algorithm gives the same output on the inputs v#v# and w#v#.
However, one time the algorithm has to say “equal” and one time it has to say
“different”, thus the algorithm cannot be correct. Therefore this semigroup does not
have an ONLINE LOGSPACE algorithm. The same applies to the free group with
two generators.

END OF QUESTION PAPER.
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