
Midterm Examination 1
GEM 1501: Problem Solving for Computing

Wednesday 02.03.2011, duration half an hour

Solutions

Rules
This test carries 12 marks and consists of 6 questions. Each questions carries 1 to 3
marks; full marks for a correct solution; a partial solution can give a partial credit.

Question 1 [2 marks].
Punch cards have been used in computing to feed computers with data or programs.
Describe how punch cards were used in the 19th century: What machines were in-
vented by Joseph Jacquard and by Herman Hollerith, which used the punch cards?
For what purpose needed they punch cards?

Solution. Joseph Jacquard invented a mechanical loom, that is a weaving machine,
which produces cloth. This machine could follow various patterns and the weaver
could program the patterns and their sequence with punch cards. The holes in the
cards coded which colours and threads to take and where to place them.

The 1880 census in the USA took 7 years to evaluate. Therefore the United States
Census Office called for a competition to run the census with machinery. Herman
Hollerith presented a machine which used punch cards as a data medium and this
machine produced statistical tables based on the data read from the punch cards. The
machine was called a tabulating machine and won the competition. During the census,
the officers recorded for each person the relevant data in a fixed pattern on a punch
card and then they were able to evaluate the census with these machines reading
the punch cards in six weeks. Later other countries also requested the services of
Herman Hollerith for running a census and Herman Hollerith founded the Tabulating
Machines Company which eventually merged with some other companies to form the
International Business Machines Corporation (IBM) which still exists.

1

Question 2 [2 marks].
Call a list of n different pairs of numbers (a0, b0), (a1, b1), . . . , (an−1, bn−1) sorted iff
there are no i, j with i < j, ai > aj and bi > bj. An algorithm to sort the pairs can
check whether ai < aj, ai = aj or ai > aj; similarly the algorithm can check whether
bi < bj, bi = bj or bi > bj. Note that two pairs of numbers can be incomparable as for
example (1, 4) and (2, 2). Traditional sorting algorithms do not address such data.

Is it nevertheless possible to sort all n pairs in time O(n log(n))? Give reasons for
your answer.

Solution. YES, one can still sort the pairs in time O(n log(n)). Let @ be the partial
order above where (ai, bi) @ (aj, bj) iff ai < aj ∧ bi < bj. There are incomparable pairs
with respect to @ and therefore it is better to use the lexicographic ordering where
(ai, bi) <lex (aj, bj) iff ai < aj ∨ (ai = aj ∧ bi < bj). Note that (ai, bi) @ (bi, bj) implies
(ai, bi) <lex (aj, bj) but not vice versa; furthermore, the lexicographic ordering does
not have incomparable pairs. Now one can use Mergesort to sort the pairs with respect
to <lex; note that one can find out with two comparisons whether (ai, bi) <lex (aj, bj).
First one compares ai and aj; if they are equal than one also compares bi and bj.
The sorted list produced by Mergesort is then also sorted with respect to @, that is,
it cannot happen that i < j and (aj, bj) @ (ai, bi); the reason is that by the sorting
(ai, bi) <lex (aj, bj) and therefore ai < aj or bi < bj.

There are also some other approaches to sort these pairs; nevertheless, please keep
in mind that the pairs should stay together. So a sorted list of (2, 8), (1, 7), (1, 9) is
(1, 7), (1, 9), (2, 8) but not (1, 7), (1, 8), (2, 9). Sorting the first and second component
independently does not solve the problem.

Question 3 [2 marks].
The railroad contractor problem asks for an algorithm to connect nodes in a network
such that the resulting network on one hand connects all cities and on the other
hand is as short as possible. This algorithm goes in general as follows: Starting with
a network consisting of one node, it chooses in each step one node A outsidee the
current network and links it to one node B in the network.

Describe how these two nodes A and B are selected? Draw the resulting network into
the below graphic for the given points, where the algorithm starts in the left lower
corner.

Solution. Node A is selected such that it is nearest to the currently already con-
structed network and node B is then the nearest node to A inside the network. One
could do it like this: for all nodes A outsid the network and nodes B inside the net-
work, determine the distance from A to B and then take that pair (A,B) for which

2

this distance is shortest. Connect A and B. This step is repeated so long until all
nodes are in the network.

Note that it is permitted to have branches in the network. But there should not
be any closed circles in the network.

o------o o------o

| \ |

| \ |

o o--o----o--o-o-o

| |

o o

Question 4 [3 marks].
The following Java Script function computes some number for an array called “list”:

function sumone(list)

{ var n = list.length;

var i,j; var sum = 0;

for (i=0;i<n;i=i+1)

{ for (j=0;j<n;j=j+1)

{ sum = sum+list[i]*list[j]; } }

return(sum); }

(a) What is the order of the running time of the program?

(b) Is there also a program doing the same in time O(n)?

(c) If no, explain why such a program cannot exist. If yes, please write the corre-
sponding program below.

Solution. (a) The order of the running time is O(n2). There are two nested loops
where in both cases the variables i and j, respectively, run from 0 to n-1.

(b) Yes, it is possible to make a program which runs in linear time. The essential idea
is to use that ∑

i<n

∑
j<n

list[i] · list[j] = (
∑
k<n

list[k])2.

(c) The program is the following.

3

function sumtwo(list)

{ var n = list.length;

var k; var sum = 0;

for (k=0;k<n;k=k+1)

{ sum = sum+list[k]; }

return(sum*sum); }

Question 5 [2 marks].
Write a program which does the following: It counts how many numbers of the form
x*(x*x+3) are between 0 and y. So if y is 14 then the answer should be 3; the
corresponding numbers are 0, 4 and 14. Here y is always a natural number, that is,
y is an element of the set {0, 1, 2, 3, 4, . . .}.

Solution.

function count(y)

{ var x = 0; var c = 0;

while (x*(x*x+3) <= y)

{ x=x+1; c=c+1; }

return(c); }

Question 6 [1 marks].
An NP complete problem is satisfiability. Is the following set of clauses satisfiable?
Here the clauses are 1. x1 ∨ x2; 2. x2 ∨ x3; 3. x3 ∨ x4; 4. x4 ∨ x5; 5. x5 ∨ x1;
6. ¬x1 ∨ ¬x2; 7. ¬x2 ∨ ¬x3; 8. ¬x3 ∨ ¬x4; 9. ¬x4 ∨ ¬x5; 10. ¬x5 ∨ ¬x1.

Solution. NO, this set of clauses is not solvable. To see this, one tries to satisfy all
clauses and will then see that one clause remains unsatisfied. So one starts with one
truth-value for x1. Then, for m = 1, 2, 3, 4, the clauses xm ∨ xm+1 and ¬xm ∨ ¬xm+1

can only be both true when xm+1 has the opposite truth-value than xm so that xm

makes one clause and xm+1 makes the other clause true. It follows that xm+2 has
the same truth-value as xm for m = 1, 2, 3. In particular x1, x3, x5 have the same
truth-value. But then x5 and x1 are either both true and the clause ¬x5 ∨ ¬x1 is not
satisfied or they are both false and the clause x5 ∨x1 is not satisfied. Hence it follows
that there is no satisfying assignment to make all clauses true.

4

