
Midterm Examination 2
GEM 1501: Problem Solving for Computing

Thursday 27.03.2014, duration half an hour

Matriculation Number: TEST SOLUTIONS.

Rules
This test carries 10 marks and consists of 5 questions. Each questions carries 2 marks;
full marks for a correct solution; a partial solution can give a partial credit.

Question 1 [2 marks].
Explain how bubble sort works and write down its worst case time complexity.

Solution. So sort an array of n elements by Bubble Sort, one does n scans of the
array where each scan goes from the beginning to the end of the array and swaps an
element with the neighbour whenever the element with the lower index is larger than
the element with the larger index. Due to this, in each scan, large elements bubble
up until they meet a larger one, hence the name of this sorting algorithm. One might
stop the algorithm early in the case that a scan does not find any elements to swap.

The worst case complexity is O(n2), as in the case that the first half of the array
has n/2 large elements and the second half has n/2 small elements, one needs at least
n/2 scans, as each scan moves only one large element accross the border between the
two halves.

1

Question 2 [2 marks].
Determine the worst case runtime complexity of the following program using the
parameter n being the number of array elements of a:

function findthree(a)

{ var n = a.length; var m = false;

var i; var j; var k;

for (i=0;i<n;i++)

{ for (j=i+1;j<n;j++)

{ for (k=j+1;k<n;k++)

{ if ((a[i] != a[j]) && (a[j] != a[k])

&& (a[i] != a[k])) { m = true; } } } }

return(m); }

Write down the worst case time complexity in Θ-notation and indicate whether a
better run time is possible with another algorithm. If so, give the program; if not,
say why it cannot be done.

Solution. There are three nested loops. If one restricts the range of the i in the first
loop from 0 to n/3, the j in the second loop from n/3 to 2n/3 and the k in the third
loop from 2n/3 to n, then one gets as a lower bound that the nested loops go n3/8
times through the innermost body of the loops. Thus the runtime is Θ(n3). This can
be improved with the following linear time program.

function findthree(a)

{ var n = a.length; var m = false;

var i=1;

while ((i<n)&&(a[i]==a[0])) { i++; }

var j=i+1;

while ((j<n)&&((a[j]==a[0])||(a[i]==a[j]))) { j++; }

if (j<n) { m = true; }

return(m); }

2

Question 3 [2 marks].
Consider a non-deterministic finite automaton with the following state transition di-
agramme.

q0start q1 q2 q3

0,1,2

0 1 1

2

Make an equivalent deterministic finite automaton.

Solution.

q0start

q1 q2

q3

1,2

0

1

0

2 1
2

0

0

1

2

3

Question 4 [2 marks].
Some function f satisfies f(n) > 0 for all n and f(n+m) = f(n) ·f(m). Furthermore,
let

g(n) = f(0) + f(1) + . . . + f(n)

for all n. The following algorithm uses a program for f as a subroutine and computes
g using a divide-and-conquer algorithm.

function f(n) { ... }

function g(n)

{ if (n < 1) { return(f(0)); }

if (n < 2) { return(f(0)+f(1)); }

if (n < 3) { return(f(0)+f(1)+f(2)); }

var m = Math.floor(n/2); var k = f(m+1);

return(g(m)+k*g(n-m-1)); }

When it computes g(n), this program uses Θ(n) many calls of f . Use dynamic pro-
gramming or a similar method, make a new program which computes g(n) using only
Θ(log(n)) many calls of f .

Solution. One way to solve is to use a dynamic array which stores those intermediate
values which are computed. The reason is that the program actually computes only
few values of g and these can be stored and retrieved from the array a.

function f(n) { ... }

var a = new Array();

function g(n)

{ if (n in a) { return(a[n]); }

if (n == 0) { a[n] = f(0); }

else if (n == 1) { a[n] = f(0)+f(1); }

else if (n == 2) { a[n] = f(0)+f(1)+f(2); }

else { var m = Math.floor(n/2); var k = f(m+1);

a[n] = g(m)+k*g(n-m-1); }

return(a[n]); }

4

Question 5 [2 marks].
Let a graph be given by an array edge such that each entry in edge[k] is an array
[v,w] being equal to [edge[k][0],edge[k][1]] representing an edge going from
vertex v to vertex w. Make a function which has as input an array edge and a starting
vertex v and as outputs a vertex w such that w can be reached from v and either w

can also be reached from itself by a loop (perhaps going through other vertices) or w

is a sink, that is, a vertex without outgoing edge.
For example, consider the case where edge contains the three array elements [0,1],

[0,2] and [1,2]. If the algorithm is run with inputs edge and 0 then it has to return
2 as 2 is the sink.

Solution. The goal of this exercise is to implement a greedy algorithm which is also
keeping track of all the nodes visited before (in an array u). Whenever possible, it
follows from a node an outgoing edge. Whenever it ends up in a node w which was
visited before or which does not have an outgoing edge, it returns this node.

function search(edge,v)

{ var w = v;

var u = new array();

var n = edge.length;

var m = 0;

while ((m<n)&&(!(w in u)))

{ if (w == edge[m][0])

{ u[w] = 1; w = edge[m][1]; m = 0; }

else { m++; } }

return(w); }

END OF EXAMINATION.

5

