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1. Analyzing a Formal Grammar. Consider the following grammar:

• Start symbol S;

• Terminal alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

• Nonterminal alphabet {S,A,B,C};

• Rules: S → SABC, S → 1, AB → BA, BA → AB, AC → CA, CA → AC,
BC → CB, CB → BC, A → 2, B → 3, C → 4.

Apply the rules S → SABC, S → SABC, S → 1, CA → AC, CB → BC, BA →
AB, A → 2, B → 3, C → 4. A → 2, B → 3, C → 4 in this order. What is the result
of that derivation?

Which of the following numbers are in this set: 1, 10, 15, 1234, 1432, 1223344,
1342342, 1444433, 1444433332222, 14444333322220? Characterize the set of decimal
numbers generated by the grammar.

2. Designing a formal grammar. Write grammars G1 and G2 which generate
all binary numbers (0, 1, 10, 11, 100, 101, 110, 111, 1000, . . .) which are multiple of 3
and 5, respectively. So G1 generates the set {0, 11, 110, 1001, 1100, 1111, . . .} and G2

generates {0, 101, 1010, 1111, . . .}.

3. Recursively enumerable sets. Which two of the following statements are
equivalent to A being a recursively enumerable set of words over Σ?
(a) There is a grammar which generates A.
(b) Every Turing machine halts on an input x iff x ∈ A.
(c) There is a Turing machine which halts on input x if and only if x ∈ A.
(d) There is a computable function from words to {0, 1} which outputs 0 if x /∈ A and

1 if x ∈ A.

4. Computable functions. Let 1n denote a word consisting of n ones, so 12 = 11
and 13 = 111. Which 3 of the following statements is equivalent to saying that f is a
computable function from the natural numbers to the natural numbers?
(a) There is a Turing machine which halts on input 1n with output 1f(n) if f(n) is

defined and does not halt otherwise.
(b) The set {1n01m : f(n) ↓ ∧m < f(n)} is recursively enumerable.
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(c) The set {1n01m : f(n) ↓ ∧m = f(n)} is recursively enumerable.
(d) The set {1m01n : f(n) ↓ ∧m < f(n)} is recursively enumerable.
(e) The set {1m01n : f(n) ↓ ∧m = f(n)} is recursively enumerable.

5. Turing machines. Construct a Turing machine which works on the alphabet
consisting of 0, 1, 2 plus the blanc and which does the following: It changes in an input
word w every 0 to 1 and every 1 to 0. Every 2 remains unchanged.

Some Information on formal grammars. This information is based on

http://en.wikipedia.org/wiki/Formal_grammar

but contains only those parts which are relevant to this lecture.

In computer science a formal grammar is an abstract structure that describes a formal
language precisely, that is, a set of rules that mathematically delineates a (usually
infinite) set of finite-length strings (= words) over a finite alphabet. Formal grammars
are so named by analogy to grammar in human languages.

A grammar consists of a set of rules by which all possible strings in the language
to be described can be generated by successively rewriting strings starting from a
designated start symbol. It in effect formalizes an algorithm that generates strings in
the language.

This set of rules for is used for transforming strings. To generate a string in the
language, one begins with a string consisting of only a single start symbol and then
successively applies the rules (any number of times, in any order) to rewrite this
string. The language consists of all the strings that can be generated in this manner.
Any particular sequence of legal choices taken during this rewriting process yields
one particular string in the language, but there might be multiple different ways of
generating a single string.

For example, assume the alphabet consists of ‘a’ and ‘b’, the start symbol is ‘S’
and that the following rules are given:

1. S -> aSb

2. S -> ba

Then a derivation starts with ‘S’ and one can choose a rule to apply to it. If one
chooses rule 1, then ’S’ is replaced with ’aSb’ and one obtains ‘aSb’. Choosing rule 1
again and replacing ’S’ with ‘aSb’ gives ‘aaSbb’. This process is repeated until only
symbols from the alphabet remain, that is, the symbols ‘a’ and ‘b’. Finishing off the
example, if now rule 2 is chosen, the ‘S’ is replaced by ‘ba’ giving ‘aababb’. One can
write this series of choices more briefly, using symbols:

S -> aSb -> aaSbb -> aababb.

The language of the grammar is the set of all the strings that can be generated using
this process: {ba, abab, aababb, aaababbb, . . .} = {anbabn | n ≥ 0}.

Formal definition. Noam Chomsky introduced the concept of formal grammars. A
grammar G consists of the following components:

• A finite set N of nonterminal symbols.
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• A finite set Σ of terminal symbols that is disjoint from N .

• A finite set P of production rules where a rule α → β where α contains at least
one symbol from N and α, β are finite words over the alphabet N ∪ Σ.

• A symbol S in N that is indicated as the start symbol.

Usually such a formal grammar G is simply summarized as (N, Σ, P, S).

Examples. Consider the grammar G with N = {S,B}, Σ = {a, b, c} and P consisting
of the following production rules

1. S -> aBSc

2. S -> abc

3. Ba -> aB

4. Bb -> bb

and the nonterminal symbol S as the start symbol. Some examples of the derivation
of strings in L(G) are

* S -> (2) abc

* S -> (1) aBSc -> (2) aBabcc -> (3) aaBbcc -> (4) aabbcc

* S -> (1) aBSc -> (1) aBaBScc -> (2) aBaBabccc -> (3) aaBBabccc

-> (3) aaBaBbccc -> (3) aaaBBbccc -> (4) aaaBbbccc

-> (4) aaabbbccc

where the used production rules are indicated in brackets. This grammar defines the
language {anbncn | n > 0}.

The language {anbn | n > 0} has a much easier grammar where Σ = {a, b}, N = {S},
the unique element S of N is the start symbol and the following two rules exist:

1. S -> aSb

2. S -> ab

The last example gives the language {anbm | n,m > 0} where one does not enforce
that the number of ‘a’ and ‘b’ is equal. A grammar for this language uses again
Σ = {a, b} and N = {A,B, S} where S is the start symbol. The productions are

1. S -> aA

2. A -> aA

3. A -> bB

4. A -> b

5. B -> bB

6. B -> b

Note that these productions are of a special form: on the right side, the nonterminals
are always at the end of the generated word and there is always only one of them.
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