MA 4207 - Mathematical Logic

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogicug.html Homework due in Week 4.

Frank Stephan. Departments of Mathematics and Computer Science,
10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11,
National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Monday 10.00-11.00h at Mathematics S17#07-04

Homework 4.1

Let $atom(\phi)$ be the set of atoms used in ϕ , so $atom(((A_1 \lor A_2) \land A_2)) = \{A_1, A_2\}$ and $atom((0 \lor 1)) = \emptyset$. Let WFF be the set of well-formed formulas. Let

 $C_1 = \{ \phi \in WFF : \forall v [\text{if } v(A) = 1 \text{ for some } A \in atom(\phi) \text{ then } \overline{v}(\phi) = 1] \}.$

For which of the connectives $\neg, \land, \lor, \rightarrow, \leftrightarrow, \oplus$ is C_1 closed under the connective? Here one says that C is closed under the connective \oplus if all formulas $\phi, \psi \in C$ satisfy that $(\phi \oplus \psi) \in C$. Similarly for other connectives.

Homework 4.2

Let $atom(\phi)$ and WFF be defined as in Homework 4.1. Let

 $C_2 = \{ \phi \in WFF : \forall v [\text{if } v(A) = 0 \text{ for at most one } A \in atom(\phi) \text{ then } \overline{v}(\phi) = 1] \}.$

For which of the connectives $\neg, \land, \lor, \rightarrow, \leftrightarrow, \oplus$ is C_2 closed under the connective?

Homework 4.3

Let $C_3 = \{\phi \in WFF : \text{every } A \in atom(\phi) \text{ occurs in } \phi \text{ exactly once and } 0, 1 \text{ do not occur in } \phi\}$. Prove by induction that C_3 does not contain any tautology and also not contain any antitautology. Here a tautology is a formula which is always true (independent of the choice of the truth-values of the atoms) and an antitautology is a formula which is always false.

Homework 4.4

Define on WFF by recursion the functions $atom (\phi \mapsto atom(\phi))$ and $maxatom (\phi \mapsto max \{k : A_k \in atom(\phi)\})$, where the atoms A_1, A_2, \ldots can be used and max $\emptyset = 0$. So $maxatom((A_1 \lor (A_4 \land A_5))) = 5$ and $maxatom((0 \lor 1)) = 0$.

Homework 4.5

Define on WFF by recursion the function $numcon(\phi)$ as the number of connectives $\land, \lor, \rightarrow, \leftrightarrow, \oplus$ occurring in ϕ . Furthermore define the function $numneg(\phi)$ as the number of negations occurring in ϕ . Determine the best-possible constants c, m, n such that

$$|\phi| \le c \cdot numcon(\phi) + n \cdot numneg(\phi) + m$$

for all WFF ϕ .

Homework 4.6

Let $C_6 = \{\phi \in WFF : \text{every } A \in atom(\phi) \text{ occurs in } \phi \text{ exactly once}\}$; note that formulas in C_6 might have occurrences of the constants 0 and 1. Define by recursion a function F from C_6 into the rational numbers between 0 and 1 which returns for each formula $\phi \in C_6$ the truth-probability $n/2^m$ where n is the number of rows in the truth-table of ϕ evaluated to 1 and m is the number of atoms used in the formula so that 2^m is the overall number of rows in the truth-table of ϕ . For example, F(1) = 1, $F((A_1 \oplus (A_2 \vee A_3))) = 1/2$ and $F(((A_2 \vee A_5) \wedge (A_3 \vee 0))) = 3/8$.

Homework 4.7

Let $C_7 = \{\phi \in WFF : \phi \text{ can use the constants } 0, 1 \text{ and the only connectives in } \phi \text{ are } \land \text{ and } \lor \}$. Prove by induction that a formula $\phi \in C_7$ is a tautology iff $\overline{v}(\phi) = 1$ for the truth-assignment v with $v(A_k) = 0$ for all k.

Homework 4.8

Let $C_8 = \{\phi \in WFF : \phi \text{ can use the constants } 0, 1 \text{ and the only connectives in } \phi \text{ are } \land \text{ and } \lor \}$. Prove by induction that a formula $\phi \in C_8$ is an antitautology iff $\overline{v}(\phi) = 0$ for the truth-assignment v with $v(A_k) = 1$ for all k.

Homework 4.9

Let U be a finite set of atoms and $C_9 = \{\phi \in WFF : atom(\phi) \subseteq U\}$. Prove that there is a finite set F of formulas such that for every formula $\phi \in C_9$ there is a $\psi \in F$ with $(\psi \leftrightarrow \phi)$ being a tautology.

Homework 4.10

The following formulas have brackets omitted according to the rule that the binding strengths of the connectives is ordered as $\neg, \land, \lor, \oplus, \rightarrow, \leftrightarrow$. Insert back the needed brackets for getting a member of WFF.

- 1. $A_1 \land \neg A_2 \lor A_3 \to A_4 \land \neg A_5;$
- 2. $A_1 \lor \neg A_2 \land \neg A_3 \leftrightarrow A_4 \to A_5;$
- 3. $\neg \neg A_1 \lor \neg A_2$.

Homework 4.11

Is there a formula using the connectives \oplus and \neg but no other connectives where the value of the formula depends on the placement of brackets?

Homework 4.12

Let $v(A_1) = 1$, $v(A_2) = 1$, $v(A_3) = 0$. The below formulas are given in Polish notation. Write them as WFF and evaluate them according to v:

- 1. $\neg \leftrightarrow \oplus A_1 A_2 A_3;$
- $2. \land \lor \neg \lor A_1 A_2 A_3 A_1;$
- 3. $\oplus \wedge A_1 A_2 \wedge A_2 A_3$.

Homework 4.13

Write the following formula in Polish notation: $\neg((A_1 \lor \neg A_2) \land (A_2 \lor \neg A_3) \land (A_3 \lor \neg A_1)).$