MA 4207 - Mathematical Logic

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogicug.html Homework

Frank Stephan. Departments of Mathematics and Computer Science, 10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11, National University of Singapore, Singapore 119076. Email fstephan@comp.nus.edu.sg Telephone office 65162759 and 65164246 Office hours Tuesday 13.00-14.00h at Mathematics S17#07-04

Homework 2.1

Cantor's function $x, y \mapsto (x+y) \cdot (x+y+1)/2 + y$ is a bijection from $\mathbb{N} \times \mathbb{N}$ onto \mathbb{N} . Construct a bijection from $\mathbb{Z} \times \mathbb{Z}$ onto \mathbb{Z} .

Homework 2.2

Prove that there is no set X such that its powerset $\{Y : Y \subseteq X\}$ has five elements.

Homework 2.3

Show that a power set has always more elements than the given set, that is, fill out the missing details at the following proof-sketch. Recall that $\operatorname{Card}(A) \leq \operatorname{Card}(B)$ iff there is a one-one function from A to B and show that $\operatorname{Card}(\mathbb{P}(A)) \leq \operatorname{Card}(A)$.

Proof-Sketch: The \emptyset has 0 and $\mathbb{P}(\emptyset)$ has one element, namely \emptyset , hence one cannot have a one-one mapping from $\mathbb{P}(\emptyset)$ to \emptyset . Now assume that A is not empty and $f : A \to \mathbb{P}(A)$ is a function. Show that there is a set $B \subseteq A$ which is not in the range of f. Then consider any function $g : \mathbb{P}(A) \to A$ and prove that this function cannot be one-one, as otherwise a surjective f from A to $\mathbb{P}(A)$ would exist. Hence $\operatorname{Card}(\mathbb{P}(A)) \not\leq \operatorname{Card}(A)$.

Homework 2.4

Use Homework 2.3 to prove that there is no set X such that $\operatorname{Card}(\mathbb{P}(X)) = \aleph_0$. The fact that every set X is either finite or satisfies $\aleph_0 \leq \operatorname{Card}(X)$ can be used in the proof.

Homework 2.5

Determine the cardinality of the set $\{X \subseteq Y : Card(X) = 3\}$ for each of the following sets Y: (a) $Y = \{0, 1\}$; (b) $Y = \{0, 1, 2, 3, 4\}$; (c) $Y = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$; (d) $Y = \mathbb{N}$.

Homework 2.6

Consider the set $\mathbb{D} = \{q : q \text{ is a rational number with } 0 \leq q < 1 \text{ such that its denominator is a power of } 2\}$. Construct a bijection from \mathbb{N} to \mathbb{D} explicitly.

Homework 2.7

A set X is well-ordered iff every non-empty subset $Y \subseteq X$ contains a minimal element, that is, an element $z \in Y$ with z < u for all $u \in Y - \{z\}$. A set X is strongly wellordered iff every non-empty subset $Y \subseteq X$ contains a minimal element and a maximal element. Determine for which cardinals κ there is a strongly well-ordered set X with $Card(X) = \kappa$.

Homework 2.8

Consider the following sets X and Y and show that they satisfy Card(X) = Card(Y)by constructing explicitly a bijection g from X to Y. Here

$$X = \{f : \operatorname{dom}(f) = \mathbb{N} \text{ and } \operatorname{ran}(f) \subseteq \mathbb{N}\} \text{ and}$$

$$Y = \{f : \operatorname{dom}(f) = \mathbb{N} \text{ and } \operatorname{ran}(f) \subseteq \mathbb{N} \text{ and } \forall n [f(n) < f(n+1)]\}$$

and one has to define which function g(f) is for each $f \in X$.

Homework 2.9

Use the Theorem of Schröder and Bernstein to show that the following two sets V and W have the same cardinality:

$$V = \{f : \operatorname{dom}(f) = \mathbb{N} \text{ and } \operatorname{ran}(f) = \mathbb{N} \} \text{ and}$$
$$W = \mathbb{P}(\mathbb{N}).$$

Homework 2.10

Which of the following sets is a function is a valid pair-function on the natural numbers: Note that a valid pair-function must satisfy for all $a, b, c, d \in \mathbb{N}$ that $\langle a, b \rangle = \langle c, d \rangle$ iff a = c and b = d. Furthermore, say which of these functions is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} . The candidate functions are the following ones:

1.
$$a, b \mapsto 2^{a} \cdot 3^{b};$$

2. $a, b \mapsto (a+b)^{3} + b^{3};$
3. $a, b \mapsto (a+b)^{2} - (a-b)^{2};$
4. $a, b \mapsto (0+1+2+\ldots+(a+b)) + a;$
5. $a, b \mapsto 2^{a \cdot b} + b.$

Homework 2.11

Consider the set $\mathbb{D} = \{q : q \text{ is a rational number with } 0 \leq q < 1 \text{ such that its}$ denominator is of the form $2^i \cdot 3^j$ for some $i, j \in \mathbb{N}\}$. Construct a bijection from \mathbb{N} to \mathbb{D} explicitly.