MA 4207 - Mathematical Logic

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogicug.html Homework

Frank Stephan. Departments of Mathematics and Computer Science,

10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11, National University of Singapore, Singapore 119076.

Email fstephan@comp.nus.edu.sg

Telephone office 65162759 and 65164246

Office hours Tuesday 13.00-14.00h at Mathematics S17#07-04

Homework 3.1

Let f(n) be the maximum number of negation symbols in a well-formed formula which does not contain any subformula of the form $(\neg(\neg\alpha))$ and which contains at most n atoms. Here $(\neg(A_1 \lor (\neg(A_2 \lor (\neg A_1)))))$ has 3 atoms and n is 3, as repeated atoms are counted again. Determine the value f(n) in dependence of n.

Homework 3.2

Prove by induction that a well-formed formula of length n contains less than n/3 connectives and at most (n+3)/4 atoms.

Homework 3.3

Use the truth-table method to prove that the following formulas are equivalent:

- $\bullet ((\neg A_1) \vee (\neg A_2));$
- $(\neg(A_1 \land A_2));$
- $((A_1 \vee A_2) \leftrightarrow (A_1 \oplus A_2)).$

Homework 3.4

Use the truth-table method to check whether the following statement is correct:

$$\{(A_1 \vee A_2), (A_2 \vee A_3), (A_1 \vee A_3)\} \models ((A_1 \wedge A_2) \vee A_3).$$

Homework 3.5

Use the truth-table method to check whether the following statement is correct:

$$\{(A_1 \to A_2), (A_2 \to A_3), (A_3 \to A_4)\} \models ((A_1 \to A_3) \land (A_2 \to A_4))$$

Homework 3.6

Use the truth-table method to check whether the following statement is correct:

$$\{(A_1 \to A_2), (A_2 \to A_3), (A_3 \to A_4)\} \models (A_4 \to A_1)$$

Homework 3.7

List out the truth-table for the formula $(((A_1 \oplus A_2) \land (\neg A_3)) \oplus (A_1 \lor A_3))$.

Homework 3.8

List out the truth-table for the formula $((A_1 \oplus A_3) \vee (((A_1 \oplus A_2) \wedge (A_2 \oplus A_3)))$.

Homework 3.9

Consider the following formulas:

$$\phi_1 = (((A_1 \lor A_2) \lor A_3) \land ((A_4 \lor A_5) \lor A_6));
\phi_2 = (((A_1 \lor A_2) \land (A_3 \lor A_4)) \land (A_5 \lor A_6));
\phi_3 = (((((A_1 \oplus A_2) \oplus A_3) \oplus A_4) \oplus A_5) \oplus A_6).$$

There are $2^6 = 64$ ways to assign the truth-values to the sentence symbols (or atoms) A_1, \ldots, A_6 . Determine for each of the formulas ϕ_1, ϕ_2, ϕ_3 , how many of these assignments make the formula true and how many of these assignments make the formula false.

Homework 3.10

For the formulas from Homework 3.9, is the statement

$$\{\phi_1, \phi_2, \phi_3\} \models (((((A_1 \land A_2) \land A_3) \land A_4) \land A_5) \land A_6))$$

true or false? Prove your answer.

Homework 3.11

For the formulas from Homework 3.9, is the statement

$$\{\phi_1, \phi_2, \phi_3\} \models (((((A_1 \lor A_2) \lor A_3) \lor A_4) \lor A_5) \lor A_6)$$

true or false? Prove your answer.

Homework 3.12

Using the connectives $\vee, \wedge, \rightarrow, \leftrightarrow, \oplus, \neg$, construct a formula using atoms A_1, A_2, A_3, A_4 which says that at least two and at most three of these atoms are true.

Homework 3.13

Using the connectives \vee , \wedge , \rightarrow , construct a formula using atoms A_1 , A_2 , A_3 , A_4 , A_5 , A_6 which says that either all six atoms are false or all six atoms are true.

Homework 3.14

Use the truth-table method to prove the associativity of \leftrightarrow , that is, prove that $(A_1 \leftrightarrow (A_2 \leftrightarrow A_3))$ and $((A_1 \leftrightarrow A_2) \leftrightarrow A_3)$ are the same. Furthermore, check whether there is a truth-assignment ν with $\overline{\nu}((A_1 \leftrightarrow (A_2 \leftrightarrow A_3))) = 1$ and $\nu(A_1) \neq \nu(A_2)$.

Homework 3.15

Use the truth-table method to check whether $(A_1 \oplus (A_2 \oplus A_3))$ and $(A_1 \leftrightarrow (A_2 \leftrightarrow A_3))$ are equivalent.

Homework 3.16

Make the truth-tables of \land , \oplus and \neg for $\{0, u, 1\}$ -valued logic where the value u stands for an unknown value of 0 and 1 and where the output u is taken iff one cannot derive from the inputs what the output is. Note that two inputs u need not to represent the same of 0 and 1.

Homework 3.17

Make the truth-tables of \rightarrow , \leftrightarrow and \vee for the $\{0, u, 1\}$ -valued logic from 3.16.