MA 4207 - Mathematical Logic

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogicug.html Homework

Frank Stephan. Departments of Mathematics and Computer Science,
10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11,
National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Tuesday 13.00-14.00h at Mathematics S17#07-04

Homework 11.1

Assume that α, β, γ are well-formed formulas. Give a formal proof of the statement

 $\{\beta,\gamma\}\models \alpha \to \beta$

which only uses the formulas from Λ and the Modus Ponens.

Homework 11.2

Assume that $\{\alpha, \beta\}$ tautologically implies γ . The below derivation is incorrect. Say what the fault is and replace it by a corrected one:

- 1. $\{\alpha, \beta\} \vdash \alpha \rightarrow \beta \rightarrow \gamma$ (Axiom Group 1)
- 2. $\{\alpha, \beta\} \vdash \beta$ (Copy)
- 3. $\{\alpha, \beta\} \vdash \beta \rightarrow \alpha \rightarrow \beta$ (Axiom Group 1)
- 4. $\{\alpha, \beta\} \vdash \alpha \rightarrow \beta$ (Modus Ponens)
- 5. $\{\alpha, \beta\} \vdash \gamma$ (Modus Ponens)

For the following exercises, P, Q are predicates and a, b, c are constants.

Homework 11.3

Make a formal proof for

$$\{ \forall x \left[P(x) \rightarrow Q(c) \right], \forall x \left[\neg P(x) \rightarrow Q(c) \right] \} \vdash Q(c)$$

Homework 11.4

Make a formal proof for $\{\forall x [P(x)], \exists y [\neg P(y)]\} \vdash Q(z).$

Homework 11.5

Make a formal proof for $\emptyset \vdash \forall x \forall y [P(x) \to Q(y)] \to P(a) \to Q(b)$.

Homework 11.6

Is the statement $\emptyset \vdash P(x) \rightarrow \forall y [P(y)]$ correct? Explain your answer.

Homework 11.7

Is the statement $\emptyset \vdash P(x) \rightarrow \forall y [P(x)]$ correct? Explain your answer.

Homework 11.8

Is the statement $\emptyset \vdash P(x) \to \exists y [P(y)]$ correct? Explain your answer.

Homework 11.9

Let (G, \circ, f, e) be a structure and Γ contain the following axioms:

- $\forall x, y, z [(x \circ y) \circ z = x \circ (y \circ z)];$
- $\forall x, y [x \circ y = y \circ x];$
- $\forall x [x \circ e = x];$
- $\forall x [x \circ f(x) = e];$
- $\forall x, y, z \ [x \circ y = x \circ z \to y = z];$

So (G, \circ) is an Abelian group with neutral element e and inversion f. Prove informally the following results:

- $\forall v, w [f(v) = f(w) \rightarrow v = w];$
- $\forall v, w [v \circ w = e \rightarrow f(v) = w];$
- $\forall v, w [f(v \circ w) = f(w) \circ f(v)].$

Homework 11.10

Consider all structures (A, \circ) where A has two elements and satisfies the axioms

$$\forall x [x \circ x = x] \text{ and } \forall x \forall y [x \circ y = y \circ x].$$

Show that all these structures are isomorphic.

Homework 11.11

Assume that $(\mathbb{N}, +, <, 0, 1, P)$ is a structure where \mathbb{N} is the set of natural numbers and +, <, 0, 1 have the usual meaning on \mathbb{N} . Let the powers of 2 be the set $\{1, 2, 4, 8, 16, \ldots\}$ and make a formula α such that $(\mathbb{N}, +, <, 0, 1, P) \models \alpha$ iff $\forall x [Px \leftrightarrow x \text{ is a power of } 2]$.

Note that such a formula only implicitly defines the powers of 2 and not explicitly; therefore this formula α does *not say* that the powers are definable from addition and order in \mathbb{N} .

Homework 11.12

Make a formula α which says that $f : A \to A$ is a one-to-one function but not an onto function. Provide a model (A, f, =) which satisfies α . Can A be finite?