# Generalisations of a result by Gul'ko on 

 spaces of continuous functionsJan Baars

May 10, 2023

## Spaces of continuous functions

Let $X$ be a Tychonov space.
Define $C(X)=\{f: X \rightarrow \mathbb{R}: f$ is continuous $\} \subseteq \mathbb{R}^{X}$.

Endow $\mathbb{R}^{X}$ with the product topology.
We denote $C(X)$ as a subspace of $\mathbb{R}^{X}$ by $C_{p}(X)$.
$C_{p}(X) \subseteq \mathbb{R}^{X}$ is a

- topological space.
- topological vector space (linear space).
- topological ring.


## Functional Equivalences

Let $X$ and $Y$ be spaces

- If $C_{p}(X)$ and $C_{p}(Y)$ are homeomorphic, then $X$ and $Y$ are defined to be t-equivalent. Notation $X \stackrel{t}{\sim} Y$
- If $C_{p}(X)$ and $C_{p}(Y)$ are linearly homeomorphic, then $X$ and $Y$ are defined to be I-equivalent. Notation $X \stackrel{I}{\sim} Y$

Fact: We have $X \approx Y \Rightarrow X \stackrel{\perp}{\sim} Y \Rightarrow X \stackrel{t}{\sim} Y$

Theorem: [Nagata, 1949]
If topological rings $C_{p}(X)$ and $C_{p}(Y)$ are topologically isomorphic, then $X$ and $Y$ are homeomorphic.

## Functional Equivalences

Theorem: [Dobrowolski, Gul'ko \& Mogilski, 1990]
All metrizable countable non-discrete spaces are t-equivalent.
Theorem: [Arkhangelsk'ii, 1982]
If $X$ and $Y$ are l-equivalent, then $X$ is compact iff $Y$ is compact.
Corollary: $\mathbb{Q}$ and $\omega+1$ are $t$-equivalent but not $/$-equivalent.
Corollary: $X \stackrel{t}{\sim} Y \nRightarrow X \stackrel{\perp}{\sim} Y$.

## Examples:

- $\omega+1$ and $\omega^{2}+1$ are $/$-equivalent and
- $\omega^{2}$ and $\omega^{\omega}$ are l-equivalent.

Corollary: $X \stackrel{\perp}{\sim} Y \nRightarrow X \approx Y$.

## Linear invariant properties

Define a topological property $\mathcal{P}$ to be $l$-invariant if for $l$-equivalent spaces $X$ and $Y$ we have $X$ has property $\mathcal{P}$ iff $Y$ has property $\mathcal{P}$.

Some examples

1. For Tychonov spaces:

- Compact, pseudocompact (Arkhangel'skii, 1982)
- Lindelöf (Velichko, 1998)
- Dimension (Gul'ko, 1993)

2. For metric spaces:

- Locally compact, scattered (Baars \& de Groot, 1992)
- Čech complete (Baars, de Groot \& Pelant 1993)

3. Open problem for countably compactness

## Classification of function spaces

## General question:

What are the common properties that two spaces need to have to be l-equivalent (or $t$-equivalent)?

- They need to have the same cardinality.
- If $|X|=|Y|=n$, then $C_{p}(X) \approx C_{p}(Y) \approx \mathbb{R}^{n}$.
- For countably infinite spaces the situation is not clear, but partial results are found
- For $X$ countable, since $C_{p}(X) \subseteq \mathbb{R}^{X}$ we have $C_{p}(X)$ is metrizable even $X$ is not.


## Countably infinite spaces

Theorem: [Dobrowolski, Marciszewski \& Mogilski, 1991]
All countable non-discrete spaces $X$ for which $C_{p}(X)$ is $\mathcal{F}_{\sigma \delta}$ are t-equivalent.

In particular this holds for all metrizable countable non-discrete spaces. For l-equivalent spaces the situation is quite different.

For linear equivalence, a complete classification has been found for

- Countable compact metrizable spaces.
- Countable locally compact metrizable spaces.
- Countable metrizable spaces of scattered height $\leq \omega$.


## Countably infinite spaces with only one non-isolated point

Let $\mathcal{A}=\{X:|X|=\omega \wedge$ only one $x \in X$ is not isolated $\}$.
Let $\mathcal{F}$ be a free filter on $\omega$ and define $\omega_{\mathcal{F}}=\omega \cup\{\infty\}$, where

- Each element of $\omega$ is isolated
$-\{F \cup\{\infty\}: F \in \mathcal{F}\}$ is a neighborhood base for $\infty$
Then $X \in \mathcal{A}$ iff there is $F \in \mathcal{F}$ such that $X \approx \omega_{\mathcal{F}}$.
We assume $\mathcal{A}=\left\{\omega_{\mathcal{F}}: F \in \mathcal{F}\right\}$
Let $\mathcal{B}=\left\{\omega_{\mathcal{F}} \in \mathcal{A}: \mathcal{F}\right.$ is a free ultrafilter on $\left.\omega\right\} \subseteq \mathcal{A}$
Then $X \in \mathcal{B}$ iff there is $u \in \omega^{*}=\beta \omega \backslash \omega$ such that
$X \approx \omega_{u}=\omega \cup\{u\}$.
We assume $\mathcal{B}=\left\{\omega_{u}: u \in \omega^{*}\right\}$


## Filters and ultrafilters on $\omega$

$\mathcal{A}=\left\{\omega_{\mathcal{F}}: F \in \mathcal{F}\right\}, \mathcal{B}=\left\{\omega_{u}: u \in \omega^{*}\right\}$ and $\mathcal{B} \subseteq \mathcal{A}$
Question: Let $X, Y \in \mathcal{A}$ be $l$-equivalent spaces. Are $X$ and $Y$ homeomorphic?

Theorem: [Gul'ko, 1990]
If $X, Y \in \mathcal{B}$ are $l$-equivalent spaces, then $X \approx Y$.
Other claims by Gul'ko

1. If $X, Y \in \mathcal{A}$ are $l$-equivalent spaces, then $X \in \mathcal{B}$ iff $Y \in \mathcal{B}$.
2. If $X \in \mathcal{B}$ and $n, m \in \omega$, then $C_{p}(X)^{n}$ and $C_{p}(X)^{m}$ are linearly homeomorphic iff $n=m$.

Unclear hint of a proof for (1) and the proof of (2) was not correct.

## Some observations

## Observation 1:

Let $X_{1}, X_{2} \in \mathcal{A}$. Then $X_{1} \oplus X_{2}$ has two non-isolated points.
Define $Y$ to be the quotient space of $X_{1} \oplus X_{2}$ by identifying the non-isolated points of $X_{1}$ and $X_{2}$.
Then $Y \in \mathcal{A}$ and $X_{1} \oplus X_{2} \stackrel{\perp}{\sim} Y$.

Observation 2:
Let $X \in \mathcal{A} \backslash \mathcal{B}$ and let $\infty$ be the only non-isolated point.
Then $X=Y_{1} \cup Y_{2}$, where $Y_{1} \cap Y_{2}=\{\infty\}$ and $\infty$ is non-isolated in $Y_{1}$ and $Y_{2}$.
We have $Y_{1}, Y_{2} \in \mathcal{A}$ and $X \stackrel{\perp}{\sim} Y_{1} \oplus Y_{2}$.

## Generalisations of Gul'ko's result

## Theorem 1:

If $X=\bigoplus_{i=1}^{n} X_{i}$ and $Y=\bigoplus_{i=1}^{m} Y_{i}$ are I-equivalent spaces with each $X_{i} \in \mathcal{B}$ and each $Y_{i} \in \mathcal{A}$, then

- $m \leq n$ and if $m=n$, then each $Y_{i} \in \mathcal{B}$.


## Theorem 2:

If $X=\bigoplus_{i=1}^{n} X_{i}$ and $Y=\bigoplus_{i=1}^{n} Y_{i}$ are I-equivalent spaces with each $X_{i}, Y_{i} \in \mathcal{B}$, then there is a permutation
$\pi:\{1, \cdots, n\} \rightarrow\{1, \cdots, n\}$ such that each $X_{i} \approx Y_{\pi(i)}$
In particular $X$ and $Y$ are homeomorphic.
Corollary: Gul'ko's claims follow from Theorem 1.

## The support function

Let $L(X)=\left\{F: C_{p}(X) \rightarrow \mathbb{R}: F\right.$ is a linear functional $\}$.
For $x \in X$ define $\xi_{x}: C_{p}(X) \rightarrow \mathbb{R}$ by $\xi_{x}(f)=f(x)$.
Then $\left\{\xi_{x}: x \in X\right\}$ is a Hamel basis for $L(X)$.
Let $\phi: C_{p}(X) \rightarrow C_{p}(Y)$ be a continuous linear function.
For $y \in Y$ define $\psi_{y} \in L(X)$ by $\psi_{y}(f)=\phi(f)(y)$.
There are $x_{1}, \cdots, x_{n} \in X$ and $\lambda_{1}, \cdots, \lambda_{n} \in \mathbb{R} \backslash\{0\}$ such that

$$
\psi_{y}=\sum_{i=1}^{n} \lambda_{i} \xi_{x_{i}}
$$

Then for every $f \in C_{p}(X)$ we have

$$
\phi(f)(y)=\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) .
$$

We define the support of $y$ by $\operatorname{supp}_{\phi}(y)=\left\{x_{1}, \cdots, x_{n}\right\}$.

## Properties of the support function

1. If $f=g$ on $\operatorname{supp}_{\phi}(y)$, then $\phi(f)(y)=\phi(g)(y)$.
2. Let $\phi: C_{p}(X) \rightarrow C_{p}(Y)$ be a continuous linear homeorphism. For $y \in Y$ we have $y \in \operatorname{supp}_{\phi^{-1}}\left(\operatorname{supp}_{\phi}(y)\right)$. Hence there is $x \in \operatorname{supp}_{\phi}(y)$ such that $y \in \operatorname{supp}_{\phi^{-1}}(x)$.

## Proof of (2):

Suppose $y \notin \operatorname{supp}_{\phi^{-1}}\left(\operatorname{supp}_{\phi}(y)\right)$. Find $g \in C_{p}(Y)$ such that

$$
g(y)=1 \text { and } g\left(\operatorname{supp}_{\phi^{-1}}\left(\operatorname{supp}_{\phi}(y)\right)\right)=0 .
$$

Let $f \in C_{p}(X)$ be such that $\phi(f)=g$.
Then $g=0$ on $\operatorname{supp}_{\phi^{-1}}\left(\operatorname{supp}_{\phi}(y)\right)$.
Hence by $(1), \phi^{-1}(g)=f=0$ on $\operatorname{supp}_{\phi}(y)$.
Again by (1), $\phi(f)(y)=g(y)=0$. Contradiction.

## The $\theta$ function

Let $\phi: C_{P}(X) \rightarrow C_{P}(Y)$ be a linear homeorphism.
Define $\theta_{\phi}(y)=\left\{x \in \operatorname{supp}_{\phi}(y): y \in \operatorname{supp}_{\phi^{-1}}(x)\right\}$.
Then $\theta_{\phi}(y) \neq \emptyset$.
Note that $x \in \theta_{\phi}(y)$ iff $y \in \theta_{\phi^{-1}}(x)$.
The following lemma is generalized version of a result by Gul'ko.
Main Lemma: Let $X$ and $Y$ be spaces and let
$\phi: C_{p}(X) \rightarrow C_{p}(Y)$ be a linear homeomorphism. Let $B$ be a countable discrete clopen subset of $X$ and let $A$ be a countable subset of $Y$ such that for every $y \in A, \theta_{\phi}(y) \cap B \neq \emptyset$. Then $A$ is closed and discrete in $Y$.

## A property of the $\theta$ function

## Lemma:

Let $X$ and $Y$ be spaces and let $\phi: C_{p}(X) \rightarrow C_{p}(Y)$ be a linear homeomorphism. Then for every $y \in Y$ we have

$$
\sum\left\{\lambda_{z}^{y} \mu_{y}^{z}: z \in \theta_{\phi}(y)\right\}=1
$$

## Proof:

Let $g \in C_{p}(Y)$ be such that $g(y)=1$ and $g\left(\operatorname{supp}_{\phi^{-1}}\left(\operatorname{supp}_{\phi}(y)\right) \backslash\{y\}\right)=0$. Then

$$
\begin{aligned}
1=g(y) & =\sum\left\{\lambda_{z}^{y} \phi^{-1}(g)(z): z \in \operatorname{supp}_{\phi}(y)\right\} \\
& =\sum\left\{\lambda_{z}^{y} \mu_{w}^{z} g(w): z \in \operatorname{supp}_{\phi}(y) \wedge w \in \operatorname{supp}_{\phi^{-1}}(z)\right\} \\
& =\sum\left\{\lambda_{z}^{y} \mu_{y}^{z}: z \in \theta_{\phi}(y)\right\} .
\end{aligned}
$$

## Theorem 1: Sketch of a proof for $n=1$

Let $X=\omega_{u} \in \mathcal{B}$ and $\mathcal{U}$ the corresponding ultrafilter.
Let $Y, Z \in \mathcal{A}$ be with one non-isolated point.
Assume $\phi: C_{p}(X) \rightarrow C_{p}(Y \oplus Z)$ is a linear homeomorphism.
For $x \in X$, let $T(x)=\theta_{\phi}\left(\theta_{\phi^{-1}}(x)\right)$.
Claim: $U=\{x \in \omega:|T(x)|=1\} \in \mathcal{U}$.
Proof: For $y \in \theta_{\phi^{-1}}(x)$ we have $x \in \theta_{\phi}(y)$, hence $x \in T(x)$.
Suppose $U \notin \mathcal{U}$. Then $V=\{x \in \omega:|T(x)|>1\} \in \mathcal{U}$.
For $x \in V$, pick $\sigma(x), \xi(x) \in T(x)$ with $\sigma(x) \neq \xi(x)$.
Let $C=\{\sigma(x): x \in V\}$ and $D=\{\xi(x): x \in V\}$.
Pick $\tau(x) \in Y \oplus Z$ such that $\tau(x) \in \theta_{\phi^{-1}}(x)$ and $\sigma(x) \in \theta_{\phi}(\tau(x))$
Pick $\kappa(x) \in Y \oplus Z$ such that $\kappa(x) \in \theta_{\phi^{-1}}(x)$ and $\xi(x) \in \theta_{\phi}(\kappa(x))$

## Theorem 1: Sketch of a proof for $n=1$

Let $A=\{\tau(x): x \in V\}$
By the main lemma, $A$ is not closed and discrete.
Since $C=\{\sigma(x): \tau(x) \in A\}$, by the main lemma $C \in \mathcal{U}$.
Define $\pi: \omega \rightarrow \omega$ by $\pi(\sigma(x))=\xi(x)$ and $\pi(x) \neq x$ elsewhere.
Then $\pi$ has no fixed points. By a result of Katetov,
$\omega=Z_{1} \cup Z_{2} \cup Z_{2}$ with $\pi\left(Z_{i}\right) \cap Z_{i}=\emptyset$.
Assume $Z_{1} \in \mathcal{U}$. Then $E=C \cap Z_{1} \in \mathcal{U}$ and hence $\pi(E) \notin \mathcal{U}$.
Let $B=\{\kappa(x): \sigma(x) \in E\}$ and $D=\{\xi(x): \kappa(x) \in B\}$.
By the main lemma $B$ is not closed and discrete and $D \in \mathcal{U}$.
For $\xi(x) \in D$, we have $\sigma(x) \in E$, hence $D \subseteq \pi(E)$. Contradiction.
This proves the claim.

## Theorem 1: Sketch of a proof for $n=1$

We conclude that $U=\{x \in \omega:|T(x)|=1\} \in \mathcal{U}$
Let $V=\left\{x \in \omega: \theta_{\phi^{-1}}(x) \cap Y \neq \emptyset\right\}$ and
$W=\left\{x \in \omega: \theta_{\phi^{-1}}(x) \cap Z \neq \emptyset\right\}$.
By the main lemma, $V \in \mathcal{U}$ and $W \in \mathcal{U}$.
Hence $U \cap V \cap W \in \mathcal{U}$.
Pick $x \in U \cap V \cap W$ and let $Q=\theta_{\phi^{-1}}(x)$. Then $|Q| \geq 2$.
For every $y \in Q$ we have $\theta_{\phi}(y)=\{x\}$.
For every $y \in Q$ we have $\sum\left\{\lambda_{z}^{y} \mu_{y}^{z}: z \in \theta_{\phi}(y)\right\}=\lambda_{x}^{y} \mu_{y}^{x}=1$.
We also have $1=\sum\left\{\lambda_{x}^{y} \mu_{y}^{x}: y \in Q\right\} \geq 2$. Contradiction.

## Theorem 2: Sketch of a proof

For $i \leq n$, let $\omega_{u_{i}}, \omega_{v_{i}} \in \mathcal{B}$ with $\mathcal{U}_{i}, \mathcal{V}_{i}$ the corresponding ultrafilters.
Assume $\phi: C_{p}\left(\oplus_{i=1}^{n} \omega_{u_{i}}\right) \rightarrow C_{p}\left(\oplus_{i=1}^{n} \omega_{v_{i}}\right)$ is a linear homeomorphism.

Define $U_{1} \subseteq \omega_{u_{1}}$ by $U_{1}=\left\{x \in \omega: \theta_{\phi^{-1}}(x) \cap \omega_{v_{1}} \neq \emptyset\right\}$.
Suppose $U_{1} \in \mathcal{U}_{1}$. There is $f: \omega_{u_{1}} \rightarrow \omega_{v_{1}}$ such that $f(x) \in \theta_{\phi^{-1}}(x) \cap \omega_{v_{1}}$ for $x \in U_{1}$ and $f\left(u_{1}\right)=v_{1}$.
By the main lemma, $f$ is continuous and $f\left(U_{1}\right) \in \mathcal{V}_{1}$.
Define $V_{1}=\left\{y \in f\left(U_{1}\right): \theta_{\phi}(y) \cap \omega_{u_{1}} \neq \emptyset\right\}$. Then $V_{1} \in \mathcal{V}_{1}$.
As above, there is a continuous $g: \omega_{v_{1}} \rightarrow \omega_{u_{1}}$ with $g\left(v_{1}\right)=u_{1}$.
A result on the Rudin-Keisler order on $\beta \omega$ gives $\omega_{u_{1}} \approx \omega_{v_{1}}$.

## Theorem 2: Sketch of a proof

By the main lemma for each $i \leq n$, there is $j \leq n$ such that $U_{i}^{j}=\left\{x \in \omega \subseteq \omega_{u_{i}}: \theta_{\phi^{-1}}(x) \cap \omega_{v_{j}} \neq \emptyset\right\} \in \mathcal{U}_{i}$ and hence $\omega_{u_{i}} \approx \omega_{v_{j}}$. Partition $\{1, \cdots, n\}$ by $\left\{A_{1}, \cdots, A_{N}\right\}$ and $\left\{B_{1}, \cdots, B_{N}\right\}$ such that for each $k \leq N, i \in A_{k}$ and $j \in B_{k}$ we have $\omega_{u_{i}} \approx \omega_{v_{j}}$.
For the required permutation we need to show that $\left|A_{k}\right|=\left|B_{k}\right|$.
To illustrate this assume $A_{1}=\{1,2\}$ and $B_{1}=\{1,2,3\}$.
Let $U_{1}=U_{1}^{1} \cap U_{1}^{2} \cap U_{1}^{3} \in \mathcal{U}_{1}$ and $U_{2}=U_{2}^{1} \cap U_{2}^{2} \cap U_{2}^{3} \in \mathcal{U}_{2}$.
Then $V_{1}=\left\{x \in U_{1}:\left|T(x) \cap U_{1}\right|=1 \wedge\left|T(x) \cap U_{2}\right|=1\right\} \in \mathcal{U}_{1}$.

## Theorem 2: Sketch of a proof

Pick $x_{1} \in V_{1}$.
Let $x_{2} \in T(x) \cap U_{2}$ be such that $T\left\{x_{1}, x_{2}\right\}=\left\{x_{1}, x_{2}\right\}$.
Let $Q=\theta_{\phi^{-1}}\left(\left\{x_{1}, x_{2}\right\}\right)$. Then $|Q| \geq 3$.
For every $y \in Q$ we have $\theta_{\phi}(y)=\left\{x_{1}, x_{2}\right\}$
and $\sum\left\{\lambda_{z}^{y} \mu_{y}^{z}: z \in \theta_{\phi}(y)\right\}=1$.
Also $\sum\left\{\lambda_{x_{1}}^{y} \mu_{y}^{x_{1}}: y \in \theta_{\phi^{-1}}\left(x_{1}\right)\right\}=1$
and $\sum\left\{\lambda_{x_{2}}^{y} \mu_{y}^{x_{2}}: y \in \theta_{\phi^{-1}}\left(x_{2}\right)\right\}=1$.
Then $2=\sum\left\{\lambda_{x}^{y} \mu_{y}^{x}: x \in\left\{x_{1}, x_{2}\right\} \wedge y \in Q\right\} \geq 3$. Contradiction.

## An example

Gul'ko: If $u, v \in \omega^{*}$ and $\omega_{u} \stackrel{\perp}{\sim} \omega_{v}$, then $\omega_{u} \approx \omega_{v}$.
Question: Let $\alpha$ be a limit ordinal. Suppose $u, v \in \alpha^{*}=\beta \alpha \backslash \alpha$ and $\alpha_{u} \stackrel{\perp}{\sim} \alpha_{v}$. Is it always true that $\alpha_{u} \approx \alpha_{v}$ ?

Answer: No
Let $X=\omega^{2}$ and for $n<\omega, X_{n}=\omega+1$. Then $X \approx \bigoplus_{n<\omega} X_{n}$.
For $n<\omega$, let $z_{n}$ be the non-isolated point in $X_{n}$.
Let $D=\left\{z_{n}: n<\omega\right\}$. Then $\mathrm{cl}_{\beta X} D$ of $D$ in $\beta X$ is $\beta D \approx \beta \omega$.
Pick $u \in \operatorname{cl}_{\beta Z} D$ and let $X_{u}=X \cup\{u\} \subseteq \beta X$.
Then $v=\left\{A \subseteq \omega: u \in \operatorname{cl}_{\beta Z}\left\{z_{n}: n \in A\right\}\right\} \in \omega^{*}$.
Let $Y=X \oplus \omega$. Then $Y_{v}=X \oplus \omega_{v}$.
Clearly $\omega^{2}=X \approx Y$ and $X_{u} \not \approx Y_{v}$.

## An example

Claim: $X_{u} \stackrel{\perp}{\sim} Y_{v}$.

## Proof:

Note that $D$ is a retract of $Y_{v}$ and $Y_{v} \oplus D \approx Y_{v}$
Then $C_{p}\left(Y_{v}\right) \stackrel{\perp}{\sim} C_{p, D}\left(Y_{v}\right) \times C_{p}(D) \stackrel{\prime}{\sim} C_{p, D}\left(Y_{v}\right)$, where $C_{p, D}\left(Y_{v}\right)=\left\{f \in C_{p}\left(Y_{v}\right): f(D)=\{0\}\right\}$.
Define $\phi: C_{p, D}\left(Y_{v}\right) \rightarrow C_{p}\left(X_{u}\right)$ by

$$
\phi(f)(x)= \begin{cases}f(v) & \text { if } x=u \\ f(x)+f(n) & \text { if } x \in X_{n} \text { for } n<\omega\end{cases}
$$

Let $\varepsilon>0$. There is $V \subset \omega$ s.t. for $n \in V,|f(n)-f(v)|<\epsilon / 2$.
For $n \in V$ there is $\exists U_{n} \subseteq X_{n}$ n.b.h of $z_{n}$ s.t. $f\left(U_{n}\right) \subseteq(-\epsilon / 2, \epsilon / 2)$.

## An example

We have $U=\bigcup_{n \in V} U_{n} \cup\{u\}$ is a n.b.h. of $u \in X_{u}$.
For $x \in U_{n}$,

$$
\begin{aligned}
& |\phi(f)(x)-\phi(f)(u)|=|f(x)-f(n)-f(v)| \leq \\
& |f(x)|+|f(n)-f(v)|<\epsilon
\end{aligned}
$$

It follows that $\phi$ is a well-defined continuous linear function.
Define $\psi: C_{p}\left(X_{u}\right) \rightarrow C_{p, D}\left(Y_{v}\right)$ by

$$
\psi(g)(y)= \begin{cases}g(u) & \text { if } y=v \\ g(x)-g\left(z_{n}\right) & \text { if } x \in X_{n} \text { for } n<\omega \\ g\left(z_{n}\right) & \text { if } x=n \text { for } n<\omega\end{cases}
$$

Then $\psi$ is well-defined, linear and continuous. Moreover $\psi=\phi^{-1}$.

## References

囯 J．Baars，On the $I_{p}$－equivalence of ultrafilters，Bull．Pol．Acad． Sci．Math．Vol 70 No 1．（2022），63－82．

䍰 J．Baars and J．van Mill，Function spaces and points in Čech－Stone remainders，To appear in Topology and its Applications．
围 S．P．Gul＇ko，Spaces of continuous functions on ordinals and ultrafilters，Math．Notes，Vol．47，4（1990），329－334．

围 V．V．Tkachuk，A $C_{p}$－Theory Problem Book－Functional Equivalencies，Problem Books in Mathematics，Springer Verlag （2016）．

