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Spaces of continuous functions

Let X be a Tychonov space.

Define C (X ) = {f : X → R : f is continuous} ⊆ RX .

Endow RX with the product topology.

We denote C (X ) as a subspace of RX by Cp(X ).

Cp(X ) ⊆ RX is a

– topological space.

– topological vector space (linear space).

– topological ring.



Functional Equivalences

Let X and Y be spaces

– If Cp(X ) and Cp(Y ) are homeomorphic, then

X and Y are defined to be t-equivalent. Notation X
t∼ Y

– If Cp(X ) and Cp(Y ) are linearly homeomorphic, then

X and Y are defined to be l-equivalent. Notation X
l∼ Y

Fact: We have X ≈ Y ⇒ X
l∼ Y ⇒ X

t∼ Y

Theorem: [Nagata, 1949]

If topological rings Cp(X ) and Cp(Y ) are topologically isomorphic,

then X and Y are homeomorphic.



Functional Equivalences

Theorem: [Dobrowolski, Gul’ko & Mogilski, 1990]

All metrizable countable non-discrete spaces are t-equivalent.

Theorem: [Arkhangelsk’ii, 1982]

If X and Y are l-equivalent, then X is compact iff Y is compact.

Corollary: Q and ω + 1 are t-equivalent but not l-equivalent.

Corollary: X
t∼ Y ⇏ X

l∼ Y .

Examples:

– ω + 1 and ω2 + 1 are l-equivalent and

– ω2 and ωω are l-equivalent.

Corollary: X
l∼ Y ⇏ X ≈ Y .



Linear invariant properties

Define a topological property P to be l-invariant if for l-equivalent

spaces X and Y we have X has property P iff Y has property P.

Some examples

1. For Tychonov spaces:

– Compact, pseudocompact (Arkhangel’skii, 1982)

– Lindelöf (Velichko, 1998)

– Dimension (Gul’ko, 1993)

2. For metric spaces:

– Locally compact, scattered (Baars & de Groot, 1992)

– Čech complete (Baars, de Groot & Pelant 1993)

3. Open problem for countably compactness



Classification of function spaces

General question:

What are the common properties that two spaces need to have to

be l-equivalent (or t-equivalent)?

– They need to have the same cardinality.

– If |X | = |Y | = n, then Cp(X ) ≈ Cp(Y ) ≈ Rn.

– For countably infinite spaces the situation is not clear, but

partial results are found

– For X countable, since Cp(X ) ⊆ RX we have Cp(X ) is

metrizable even X is not.



Countably infinite spaces

Theorem: [Dobrowolski, Marciszewski & Mogilski, 1991]

All countable non-discrete spaces X for which Cp(X ) is Fσδ are

t-equivalent.

In particular this holds for all metrizable countable non-discrete

spaces. For l-equivalent spaces the situation is quite different.

For linear equivalence, a complete classification has been found for

– Countable compact metrizable spaces.

– Countable locally compact metrizable spaces.

– Countable metrizable spaces of scattered height ≤ ω.



Countably infinite spaces with only one non-isolated point

Let A = {X : |X | = ω ∧ only one x ∈ X is not isolated}.

Let F be a free filter on ω and define ωF = ω ∪ {∞}, where

– Each element of ω is isolated

– {F ∪ {∞} : F ∈ F} is a neighborhood base for ∞

Then X ∈ A iff there is F ∈ F such that X ≈ ωF .

We assume A = {ωF : F ∈ F}

Let B = {ωF ∈ A : F is a free ultrafilter on ω} ⊆ A

Then X ∈ B iff there is u ∈ ω∗ = βω \ ω such that

X ≈ ωu = ω ∪ {u}.

We assume B = {ωu : u ∈ ω∗}



Filters and ultrafilters on ω

A = {ωF : F ∈ F}, B = {ωu : u ∈ ω∗} and B ⊆ A

Question: Let X ,Y ∈ A be l-equivalent spaces. Are X and Y

homeomorphic?

Theorem: [Gul’ko, 1990]

If X ,Y ∈ B are l-equivalent spaces, then X ≈ Y .

Other claims by Gul’ko

1. If X ,Y ∈ A are l-equivalent spaces, then X ∈ B iff Y ∈ B.

2. If X ∈ B and n,m ∈ ω, then Cp(X )n and Cp(X )m are linearly

homeomorphic iff n = m.

Unclear hint of a proof for (1) and the proof of (2) was not correct.



Some observations

Observation 1:

Let X1,X2 ∈ A. Then X1 ⊕ X2 has two non-isolated points.

Define Y to be the quotient space of X1 ⊕ X2 by identifying the

non-isolated points of X1 and X2.

Then Y ∈ A and X1 ⊕ X2
l∼ Y .

Observation 2:

Let X ∈ A \ B and let ∞ be the only non-isolated point.

Then X = Y1 ∪ Y2, where Y1 ∩ Y2 = {∞} and ∞ is non-isolated

in Y1 and Y2.

We have Y1,Y2 ∈ A and X
l∼ Y1 ⊕ Y2.



Generalisations of Gul’ko’s result

Theorem 1:

If X =
⊕n

i=1 Xi and Y =
⊕m

i=1 Yi are l-equivalent spaces with

each Xi ∈ B and each Yi ∈ A, then

– m ≤ n and if m = n, then each Yi ∈ B.

Theorem 2:

If X =
⊕n

i=1 Xi and Y =
⊕n

i=1 Yi are l-equivalent spaces with

each Xi ,Yi ∈ B, then there is a permutation

π : {1, · · · , n} → {1, · · · , n} such that each Xi ≈ Yπ(i)

In particular X and Y are homeomorphic.

Corollary: Gul’ko’s claims follow from Theorem 1.



The support function

Let L(X ) = {F : Cp(X ) → R : F is a linear functional}.

For x ∈ X define ξx : Cp(X ) → R by ξx(f ) = f (x).

Then {ξx : x ∈ X} is a Hamel basis for L(X ).

Let ϕ : Cp(X ) → Cp(Y ) be a continuous linear function.

For y ∈ Y define ψy ∈ L(X ) by ψy (f ) = ϕ(f )(y).

There are x1, · · · , xn ∈ X and λ1, · · · , λn ∈ R \ {0} such that

ψy =
∑n

i=1 λiξxi .

Then for every f ∈ Cp(X ) we have

ϕ(f )(y) =
∑n

i=1 λi f (xi ).

We define the support of y by suppϕ(y) = {x1, · · · , xn}.



Properties of the support function

1. If f = g on suppϕ(y), then ϕ(f )(y) = ϕ(g)(y).

2. Let ϕ : Cp(X ) → Cp(Y ) be a continuous linear homeorphism.

For y ∈ Y we have y ∈ suppϕ−1(suppϕ(y)).

Hence there is x ∈ suppϕ(y) such that y ∈ suppϕ−1(x).

Proof of (2):

Suppose y /∈ suppϕ−1(suppϕ(y)). Find g ∈ Cp(Y ) such that

g(y) = 1 and g(suppϕ−1(suppϕ(y))) = 0.

Let f ∈ Cp(X ) be such that ϕ(f ) = g .

Then g = 0 on suppϕ−1(suppϕ(y)).

Hence by (1), ϕ−1(g) = f = 0 on suppϕ(y).

Again by (1), ϕ(f )(y) = g(y) = 0. Contradiction.



The θ function

Let ϕ : Cp(X ) → Cp(Y ) be a linear homeorphism.

Define θϕ(y) = {x ∈ suppϕ(y) : y ∈ suppϕ−1(x)}.

Then θϕ(y) ̸= ∅.

Note that x ∈ θϕ(y) iff y ∈ θϕ−1(x).

The following lemma is generalized version of a result by Gul’ko.

Main Lemma: Let X and Y be spaces and let

ϕ : Cp(X ) → Cp(Y ) be a linear homeomorphism. Let B be a

countable discrete clopen subset of X and let A be a countable

subset of Y such that for every y ∈ A, θϕ(y) ∩ B ̸= ∅. Then A is

closed and discrete in Y .



A property of the θ function

Lemma:

Let X and Y be spaces and let ϕ : Cp(X ) → Cp(Y ) be a linear

homeomorphism. Then for every y ∈ Y we have∑
{λyzµzy : z ∈ θϕ(y)} = 1.

Proof:

Let g ∈ Cp(Y ) be such that g(y) = 1 and

g(suppϕ−1(suppϕ(y)) \ {y}) = 0. Then

1 = g(y) =
∑

{λyzϕ−1(g)(z) : z ∈ suppϕ(y)}

=
∑

{λyzµzwg(w) : z ∈ suppϕ(y) ∧ w ∈ suppϕ−1(z)}

=
∑

{λyzµzy : z ∈ θϕ(y)}.



Theorem 1: Sketch of a proof for n = 1

Let X = ωu ∈ B and U the corresponding ultrafilter.

Let Y ,Z ∈ A be with one non-isolated point.

Assume ϕ : Cp(X ) → Cp(Y ⊕ Z ) is a linear homeomorphism.

For x ∈ X , let T (x) = θϕ(θϕ−1(x)).

Claim: U = {x ∈ ω : |T (x)| = 1} ∈ U .

Proof: For y ∈ θϕ−1(x) we have x ∈ θϕ(y), hence x ∈ T (x).

Suppose U /∈ U . Then V = {x ∈ ω : |T (x)| > 1} ∈ U .

For x ∈ V , pick σ(x), ξ(x) ∈ T (x) with σ(x) ̸= ξ(x).

Let C = {σ(x) : x ∈ V } and D = {ξ(x) : x ∈ V }.

Pick τ(x) ∈ Y ⊕ Z such that τ(x) ∈ θϕ−1(x) and σ(x) ∈ θϕ(τ(x))

Pick κ(x) ∈ Y ⊕ Z such that κ(x) ∈ θϕ−1(x) and ξ(x) ∈ θϕ(κ(x))



Theorem 1: Sketch of a proof for n = 1

Let A = {τ(x) : x ∈ V }

By the main lemma, A is not closed and discrete.

Since C = {σ(x) : τ(x) ∈ A}, by the main lemma C ∈ U .

Define π : ω → ω by π(σ(x)) = ξ(x) and π(x) ̸= x elsewhere.

Then π has no fixed points. By a result of Katetov,

ω = Z1 ∪ Z2 ∪ Z2 with π(Zi ) ∩ Zi = ∅.

Assume Z1 ∈ U . Then E = C ∩ Z1 ∈ U and hence π(E ) /∈ U .

Let B = {κ(x) : σ(x) ∈ E} and D = {ξ(x) : κ(x) ∈ B}.

By the main lemma B is not closed and discrete and D ∈ U .

For ξ(x) ∈ D, we have σ(x) ∈ E , hence D ⊆ π(E ). Contradiction.

This proves the claim.



Theorem 1: Sketch of a proof for n = 1

We conclude that U = {x ∈ ω : |T (x)| = 1} ∈ U

Let V = {x ∈ ω : θϕ−1(x) ∩ Y ̸= ∅} and

W = {x ∈ ω : θϕ−1(x) ∩ Z ̸= ∅}.

By the main lemma, V ∈ U and W ∈ U .

Hence U ∩ V ∩W ∈ U .

Pick x ∈ U ∩ V ∩W and let Q = θϕ−1(x). Then |Q| ≥ 2.

For every y ∈ Q we have θϕ(y) = {x}.

For every y ∈ Q we have
∑

{λyzµzy : z ∈ θϕ(y)} = λyxµ
x
y = 1.

We also have 1 =
∑

{λyxµxy : y ∈ Q} ≥ 2. Contradiction.



Theorem 2: Sketch of a proof

For i ≤ n, let ωui , ωvi ∈ B with Ui ,Vi the corresponding ultrafilters.

Assume ϕ : Cp(⊕n
i=1ωui ) → Cp(⊕n

i=1ωvi ) is a linear

homeomorphism.

Define U1 ⊆ ωu1 by U1 = {x ∈ ω : θϕ−1(x) ∩ ωv1 ̸= ∅}.

Suppose U1 ∈ U1. There is f : ωu1 → ωv1 such that

f (x) ∈ θϕ−1(x) ∩ ωv1 for x ∈ U1 and f (u1) = v1.

By the main lemma, f is continuous and f (U1) ∈ V1.

Define V1 = {y ∈ f (U1) : θϕ(y) ∩ ωu1 ̸= ∅}. Then V1 ∈ V1.

As above, there is a continuous g : ωv1 → ωu1 with g(v1) = u1.

A result on the Rudin-Keisler order on βω gives ωu1 ≈ ωv1 .



Theorem 2: Sketch of a proof

By the main lemma for each i ≤ n, there is j ≤ n such that

U j
i = {x ∈ ω ⊆ ωui : θϕ−1(x) ∩ ωvj ̸= ∅} ∈ Ui and hence ωui ≈ ωvj .

Partition {1, · · · , n} by {A1, · · · ,AN} and {B1, · · · ,BN} such that

for each k ≤ N, i ∈ Ak and j ∈ Bk we have ωui ≈ ωvj .

For the required permutation we need to show that |Ak | = |Bk |.

To illustrate this assume A1 = {1, 2} and B1 = {1, 2, 3}.

Let U1 = U1
1 ∩ U2

1 ∩ U3
1 ∈ U1 and U2 = U1

2 ∩ U2
2 ∩ U3

2 ∈ U2.

Then V1 = {x ∈ U1 : |T (x) ∩ U1| = 1 ∧ |T (x) ∩ U2| = 1} ∈ U1.



Theorem 2: Sketch of a proof

Pick x1 ∈ V1.

Let x2 ∈ T (x) ∩ U2 be such that T{x1, x2} = {x1, x2}.

Let Q = θϕ−1({x1, x2}). Then |Q| ≥ 3.

For every y ∈ Q we have θϕ(y) = {x1, x2}

and
∑

{λyzµzy : z ∈ θϕ(y)} = 1.

Also
∑

{λyx1µx1y : y ∈ θϕ−1(x1)} = 1

and
∑

{λyx2µx2y : y ∈ θϕ−1(x2)} = 1.

Then 2 =
∑

{λyxµxy : x ∈ {x1, x2} ∧ y ∈ Q} ≥ 3. Contradiction.



An example

Gul’ko: If u, v ∈ ω∗ and ωu
l∼ ωv , then ωu ≈ ωv .

Question: Let α be a limit ordinal. Suppose u, v ∈ α∗ = βα \ α

and αu
l∼ αv . Is it always true that αu ≈ αv?

Answer: No

Let X = ω2 and for n < ω, Xn = ω + 1. Then X ≈
⊕

n<ω Xn.

For n < ω, let zn be the non-isolated point in Xn.

Let D = {zn : n < ω}. Then clβXD of D in βX is βD ≈ βω.

Pick u ∈ clβZD and let Xu = X ∪ {u} ⊆ βX .

Then v = {A ⊆ ω : u ∈ clβZ{zn : n ∈ A}} ∈ ω∗.

Let Y = X ⊕ ω. Then Yv = X ⊕ ωv .

Clearly ω2 = X ≈ Y and Xu ̸≈ Yv .



An example

Claim: Xu
l∼ Yv .

Proof:

Note that D is a retract of Yv and Yv ⊕ D ≈ Yv

Then Cp(Yv )
l∼ Cp,D(Yv )× Cp(D)

l∼ Cp,D(Yv ),

where Cp,D(Yv ) = {f ∈ Cp(Yv ) : f (D) = {0}}.

Define ϕ : Cp,D(Yv ) → Cp(Xu) by

ϕ(f )(x) =

 f (v) if x = u

f (x) + f (n) if x ∈ Xn for n < ω

Let ε > 0. There is V ⊂ ω s.t. for n ∈ V , |f (n)− f (v)| < ϵ/2.

For n ∈ V there is ∃Un ⊆ Xn n.b.h of zn s.t. f (Un) ⊆ (−ϵ/2, ϵ/2).



An example

We have U =
⋃

n∈V Un ∪ {u} is a n.b.h. of u ∈ Xu.

For x ∈ Un,

|ϕ(f )(x)− ϕ(f )(u)| = |f (x)− f (n)− f (v)| ≤

|f (x)|+ |f (n)− f (v)| < ϵ.

It follows that ϕ is a well-defined continuous linear function.

Define ψ : Cp(Xu) → Cp,D(Yv ) by

ψ(g)(y) =


g(u) if y = v

g(x)− g(zn) if x ∈ Xn for n < ω

g(zn) if x = n for n < ω

Then ψ is well-defined, linear and continuous. Moreover ψ = ϕ−1.



References

J. Baars, On the lp-equivalence of ultrafilters, Bull. Pol. Acad.

Sci. Math. Vol 70 No 1. (2022), 63–82.

J. Baars and J. van Mill, Function spaces and points in
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