Regressive versions of Hindman's Theorem

Leonardo Mainardi

Department of Computer Science, Sapienza University of Rome

January 25, 2023 Logic Seminar - National University of Singapore

Leonardo Mainardi Regressive versions of Hindman's Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

- In Reverse Mathematics, Hindman's Theorem represents an active line of research: for instance, the strength of the theorem itself is a long-standing open question.
- The same applies to many of its variants formulated over the decades.
- We isolate a new natural variant of Hindman's Theorem, called the Regressive Hindman's Theorem, modelled on Kanamori-McAloon's Regressive Ramsey's Theorem.
- We investigate its strength in terms of provability over RCA₀ and in terms of computable reductions.

In terms of computable reductions, we focus on Weihrauch reductions.

They concern principles in the form $(\forall X)[\varphi(X) \rightarrow (\exists Y) \psi(X, Y)]$. We call X s.t. $\varphi(X)$ an instance and Y s.t. $\psi(X, Y)$ a solution for X.

- Q is Weihrauch reducible to P (denoted $Q \leq_W P$) if there exist Turing functionals Φ and Ψ such that for every instance X of Q we have that $\Phi(X)$ is an instance of P, and if \hat{Y} is a solution to P for $\Phi(X)$ then $\Psi(X \oplus \hat{Y})$ is a solution to Q for X.
- **Q** is strongly Weihrauch reducible to P (denoted $Q \leq_{sW} P$) if there exist Turing functionals Φ and Ψ such that for every instance X of Q we have that $\Phi(X)$ is an instance of P, and if \hat{Y} is a solution to P for $\Phi(X)$ then $\Psi(\hat{Y})$ is a solution to Q for X.

イロト イタト イヨト イヨト 三日 二

• Let us recall the Infinite Ramsey's Theorem (RT):

Theorem (Ramsey, 1930)

For all n > 0, k > 0 and $c : [\mathbf{N}]^n \to k$ there exists an infinite set $H \subseteq \mathbf{N}$ such that c is constant on $[H]^n$.

- The set *H* is called homogeneous or monochromatic for *c*.
- For n > 0, k > 0, we use RTⁿ_k to denote the restriction of RT to colourings of n-tuples into k colours, while we use RTⁿ to indicate ∀k RTⁿ_k.

イロト イポト イヨト イヨト 三日 二

• The following Erdős and Rado's Canonical Ramsey's Theorem (canRT) is a generalization of RT to infinitely many colours.

Theorem (Erdős-Rado, 1950)

For all n > 0 and $c : [\mathbf{N}]^n \to \mathbf{N}$ there exists an infinite set $H \subseteq \mathbf{N}$ and a subset S of $\{1, \ldots, n\}$ such that for any $I \in [H]^n$, c(I) is determined only by the elements of I with indexes in S.

- The set *H* is called canonical for *c*.
- We use canRTⁿ to denote the restriction of canRT to colourings of *n*-tuples.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Regressive Ramsey's Theorem

• In order to introduce a further variation of RT, we need the following definition:

Definition (Regressive functions)

Let n > 0. A function $c : [\mathbf{N}]^n \to \mathbf{N}$ is called regressive if and only if, for all $l \in [\mathbf{N}]^n$, $c(l) < \min(l)$ if $\min(l) > 0$, else c(l) = 0.

• By applying canRT to regressive functions, we obtain the Regressive Ramsey's Theorem (regRT):

Theorem (Kanamori-McAloon, 1987)

For all n > 0 and all regressive $c : [\mathbb{N}]^n \to \mathbb{N}$ there exists an infinite $H \subseteq \mathbb{N}$ such that, for any $I, J \in [H]^n$, min $(I) = \min(J)$ implies c(I) = c(J).

- The set H is called min-homogeneous for c.
- We denote by regRTⁿ the principle regRT restricted to colourings of *n*-tuples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

6/32

Regressive Ramsey's Theorem

• In order to introduce a further variation of RT, we need the following definition:

Definition (Regressive functions)

Let n > 0. A function $c : [\mathbf{N}]^n \to \mathbf{N}$ is called regressive if and only if, for all $l \in [\mathbf{N}]^n$, $c(l) < \min(l)$ if $\min(l) > 0$, else c(l) = 0.

• By applying canRT to regressive functions, we obtain the Regressive Ramsey's Theorem (regRT):

Theorem (Kanamori-McAloon, 1987)

For all n > 0 and all regressive $c : [\mathbf{N}]^n \to \mathbf{N}$ there exists an infinite $H \subseteq \mathbf{N}$ such that, for any $I, J \in [H]^n$, $\min(I) = \min(J)$ implies c(I) = c(J).

- The set *H* is called min-homogeneous for *c*.
- We denote by regRTⁿ the principle regRT restricted to colourings of *n*-tuples.

We can graphically summarize the relations - over RCA_0 - between the versions of RT presented above as follows (double arrows indicate strict implications):

These results are mainly due to Clote, Hirst, Jockusch, Mileti and Simpson.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

• We denote by FS(X) the set of all finite non-empty sums of distinct elements of $X \subseteq \mathbf{N}$.

Theorem (Hindman, 1972)

For all k > 0 and for all $c : \mathbf{N} \to k$ there exists an infinite set $H \subseteq \mathbf{N}$ such that c is constant on FS(H).

- Similarly to RT, for n > 0, k > 0, we use $HT_k^{=n}$ and $HT_k^{\leq n}$ to denote, respectively, the restrictions of HT to sums of exactly *n* elements $(FS_k^{=n})$ and to sums of at most *n* elements $(FS_k^{\leq n})$.
- Again, $HT^{=n}$ means $\forall k HT_k^{=n}$ and $HT^{\leq n}$ means $\forall k HT_k^{\leq n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Versions of Hindman's Theorem

• For
$$n = 2^{t_1} + \cdots + 2^{t_p}$$
 with $t_1 < \cdots < t_p$, let $\lambda(n) = t_1$ and $\mu(n) = t_p$.

Definition (Apartness)

A set $X = \{x_1, x_2, ...\}$ satisfies the apartness condition if for all $x, x' \in X$ such that x < x', we have $\mu(x) < \lambda(x')$.

• If P is a Hindman-type principle, we denote by P[ap] the principle P with the apartness condition imposed on the solution set.

Versions of Hindman's Theorem

• For
$$n = 2^{t_1} + \cdots + 2^{t_p}$$
 with $t_1 < \cdots < t_p$, let $\lambda(n) = t_1$ and $\mu(n) = t_p$.

Definition (Apartness)

A set $X = \{x_1, x_2, ...\}$ satisfies the apartness condition if for all $x, x' \in X$ such that x < x', we have $\mu(x) < \lambda(x')$.

• If P is a Hindman-type principle, we denote by P[ap] the principle P with the apartness condition imposed on the solution set.

Proposition

Over RCA₀, HT and HT[ap] are equivalent.

• It is unknown whether the same applies to $HT_k^{=n}$ and $HT_k^{\leq n}$.

▲母▶▲国▶▲国▶ ヨ のへで 9/32

Versions of Hindman's Theorem

- We denote by FIN(N) the set of non-empty finite subsets of N.
- Taylor proved the analogous version of canRT for HT, i.e. the Canonical Hindman's Theorem (canHT):

Theorem (Taylor, 1976)

For all $c : \mathbf{N} \to \mathbf{N}$ there exists an infinite set $H = \{h_0 < h_1 < ...\} \subseteq \mathbf{N}$ such that one of the following holds:

- For all $I, J \in FIN(\mathbf{N}), c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j).$
- For all $I, J \in FIN(\mathbf{N}), c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$ iff I = J.
- For all $I, J \in FIN(\mathbb{N}), c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$ iff $\min(I) = \min(J)$.
- For all $I, J \in FIN(\mathbb{N})$, $c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$ iff max(I) = max(J).
- For all $I, J \in FIN(\mathbb{N})$, $c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$ iff min(I) = min(J)and max(I) = max(J).
- The set *H* is called canonical for *c*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Based on the previous propositions and on some well-known results, we can start drawing some implications.

These results are mainly due to Carlucci, Hindman, Kołodziejczyk, Lepore and Zdanowski.

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ミークへで 11/32

• In order to formulate our regressive version of Hindman's Theorem, we need the following definition:

Definition (λ -regressive functions)

A function $c : \mathbf{N} \to \mathbf{N}$ is called λ -regressive if and only if, for all $n \in \mathbf{N}$, $c(n) < \lambda(n)$ if $\lambda(n) > 0$ and c(n) = 0 if $\lambda(n) = 0$.

• Then, by applying canHT to λ -regressive functions, we finally obtain the Regressive Hindman's Theorem (λ regHT):

Theorem (Carlucci-M., 2022)

For all λ -regressive $c : \mathbb{N} \to \mathbb{N}$ there exists an infinite $H \subseteq \mathbb{N}$ such that FS(H) is min-term-homogeneous, i.e. for all $I, J \in FIN(\mathbb{N})$, if $\min(I) = \min(J)$ then $c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$.

・ロト ・御 ト ・ ヨ ト ・ ヨ ト ・ ヨー

• In order to formulate our regressive version of Hindman's Theorem, we need the following definition:

Definition (λ -regressive functions)

A function $c : \mathbf{N} \to \mathbf{N}$ is called λ -regressive if and only if, for all $n \in \mathbf{N}$, $c(n) < \lambda(n)$ if $\lambda(n) > 0$ and c(n) = 0 if $\lambda(n) = 0$.

• Then, by applying canHT to λ -regressive functions, we finally obtain the Regressive Hindman's Theorem (λ regHT):

Theorem (Carlucci-M., 2022)

For all λ -regressive $c : \mathbf{N} \to \mathbf{N}$ there exists an infinite $H \subseteq \mathbf{N}$ such that FS(H) is min-term-homogeneous, i.e. for all $I, J \in FIN(\mathbf{N})$, if $\min(I) = \min(J)$ then $c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ 三 ⑦ Q ○ 12/32

- Now, we want to investigate the strength of this novel theorem, in terms of implications over RCA₀ and of computable reductions.
- First, we can observe that canHT implies λregHT[ap], since canHT is equivalent to canHT[ap] and, by apartness and λ-regressivity, only case 1 and case 3 of canHT can occur.

Recall the five conditions of canHT are: are: For all $I, J \in FIN(N), c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j).$ For all $I, J \in FIN(N), c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$ iff I = J.For all $I, J \in FIN(N), c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$ iff min(I) = min(J).For all $I, J \in FIN(N), c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$ iff max(I) = max(J).For all $I, J \in FIN(N), c(\sum_{i \in I} h_i) = c(\sum_{j \in J} h_j)$ iff min(I) = min(J) and max(I) = max(J).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

- Also, similarly to HT and to canHT, we have that $\lambda regHT$ and $\lambda regHT[ap]$ are equivalent over RCA₀, since $\lambda regHT$ implies RT¹ and RT¹ can be used to get apartness.
- Moreover, we can easily prove that λregHT implies HT[ap], by simply applying λregHT[ap] to the colouring:

$$extsf{g}(n) = egin{cases} f(n) & extsf{if}(n) < \lambda(n), \ 0 & extsf{otherwise}. \end{cases}$$

where $f : \mathbf{N} \to k$ is the original colouring. Then, apartness guarantees that all but at most the first k elements of the solution of $\lambda \operatorname{regHT}[ap]$ for g fall into the second case; so, we just need an application of RT^1 to obtain a solution of $\operatorname{HT}[ap]$ for f (that is why the argument does not witness a Weihrauch reduction).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○へ⊙

Then, we can draw some additional implications (in blue) in our schema.

Then, by now we know that $ACA_0 \leq HT \leq \lambda regHT \leq canHT$ over RCA_0 .

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 15/32

Bounded Regressive Hindman's Theorem

- Since ACA₀ is already implied by some restrictions of HT, we wonder whether this is the case for λ regHT as well.
- In general, we want to investigate the strength of various natural restrictions of λ regHT.
- Then, by defining $FS^{\leq n}(X)$ (resp. $FS^{=n}(X)$) the set of all non-empty sums of at most (resp. exactly) n > 0 distinct elements of $X \subseteq \mathbf{N}$, we can formulate the Bounded Regressive Hindman's Theorems:

Definition

Let $n \ge 1$. We denote by $\lambda \operatorname{regHT}^{\le n}$ (resp. $\lambda \operatorname{regHT}^{=n}$) the following principle: for all λ -regressive $c : \mathbb{N} \to \mathbb{N}$ there exists an infinite $H \subseteq \mathbb{N}$ such that $\operatorname{FS}^{\le n}(H)$ (resp. $\operatorname{FS}^{=n}$) is min-term-homogeneous for c.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ・ つくで

16/32

Bounded Regressive Hindman's Theorem

• Similarly to full λ regHT, we have:

$$\begin{aligned} \mathsf{RCA}_0 \vdash \lambda \mathsf{regHT}^{\leq n}[\mathsf{ap}] \to \mathsf{HT}^{\leq n}[\mathsf{ap}] \\ \mathsf{RCA}_0 \vdash \lambda \mathsf{regHT}^{=n}[\mathsf{ap}] \to \mathsf{HT}^{=n}[\mathsf{ap}] \end{aligned}$$

• However, for these bounded versions, we also have the following reductions:

$$\lambda \operatorname{reg} \operatorname{HT}^{\leq n}[\operatorname{ap}] \geq_{c} \operatorname{HT}^{\leq n}[\operatorname{ap}]$$

 $\lambda \operatorname{reg} \operatorname{HT}^{=n}[\operatorname{ap}] \geq_{c} \operatorname{HT}^{=n}[\operatorname{ap}]$

- By the previous implications and the fact that $HT_2^{=3}[ap]$ is equivalent to ACA₀, we can easily infer that $\lambda regHT^{=3}[ap]$ implies ACA₀.
- However, by a more careful approach, we can improve this result, thus giving a lower bound for $\lambda \operatorname{regHT}^{=n}[\operatorname{ap}]$ for any $n \ge 2$.

Theorem (Carlucci-M., 2022)

Let $n \ge 2$. Over RCA₀, $\lambda \operatorname{regHT}^{=n}[\operatorname{ap}]$ implies ACA₀.

Proof. We prove the principle RAN (equivalent to ACA₀) stating that for each injective function $f : \mathbf{N} \to \mathbf{N}$, the range of f (denoted $\rho(f)$) exists.

Since $x \in \rho(f) \iff \exists z (f(z) = x)$, RCA₀ can not decide $\rho(f)$.

Then, our idea is to use $\lambda \operatorname{regHT}^{=n}[\operatorname{ap}]$ to bound the search for z.

We define c(m) = the unique $x < \lambda(m)$ such that:

- there exists $j \in [\lambda(m), \mu(m))$ such that f(j) = x, and
- for all $j < j' < \mu(m)$, $f(j') \ge \lambda(m)$.

If no such x exists or m is a power of 2, we set c(m) = 0.

Intuitively c checks whether there are values $<\lambda(m)$ in $\rho(f \upharpoonright [\lambda(m), \mu(m))$. If any, it returns the latest one, i.e., the one obtained as image of the maximal $j \in [\lambda(m), \mu(m))$ that is mapped by f below $\lambda(m)$.

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ミークへで 18/32

Lower bound for Bounded Regressive Hindman's Theorem

Example:

In this case, c(m) = x since:

• $x < \lambda(m)$, and

• there exists $j \in [\lambda(m), \mu(m))$ such that f(j) = x, and

• for all $j < j' < \mu(m)$, $f(j') \ge \lambda(m)$.

·문···문···문··

Lower bound for Bounded Regressive Hindman's Theorem

Let $H = \{h_0 < h_1 < \dots\} \subseteq \mathbf{N}^+$ be an apart solution to $\lambda \text{regHT}^{=2}$ for c.

Claim: if $x < \lambda(h_i)$ and $x \in \rho(f)$, then $x \in \rho(f \upharpoonright [0, \mu(h_{i+1})))$.

Suppose otherwise and let $x < \lambda(h_i)$ s.t. $x \in \rho(f)$ but $x \notin f([0, \mu(h_{i+1}))$. Let *b* be the true bound for the elements $< \lambda(h_i)$ in $\rho(f)$, whose existence is given by strong Σ_1^0 -bounding (in RCA₀):

$$\forall n \exists b \forall i < n (\exists j (f(j) = i) \rightarrow \exists j < b (f(j) = i)).$$

Let h_j in H be such that $h_j > h_{i+1}$ and $\mu(h_j) \ge b$.

 $x \notin f([0, \mu(h_{i+1}))$ but $x \in f([0, \mu(h_j))$, so $c(h_i + h_{i+1}) \neq c(h_i + h_j)$, hence contradicting min-term-homogeneity.

Then we can decide $\rho(f)$ as follows using H: given x, pick any $h_i \in H$ such that $x < \lambda(h_i)$ and check whether x appears in $f([0, \mu(h_{i+1})))$.

The previous argument also proves that $\lambda \operatorname{regHT}^{=n}[\operatorname{ap}] \geq_{\mathrm{W}} \operatorname{RAN}$.

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 • つへ ○ 20/32</p>

Upper bound for Bounded Regressive Hindman's Theorem

• As for the upper bound, we can easily prove the reversal of the previous result:

Theorem (Carlucci-M., 2022)

Let $n \ge 2$. ACA₀ proves $\lambda \operatorname{reg} HT^{=n}[ap]$.

- The proof is quite simple: given a λ-regressive colouring f : N → N, we define a colouring g of n-tuples using the f-colour of the sum of the elements of the tuples, i.e. g(x₁,...,x_n) = f(x₁ + ··· + x_n). Since ACA₀ implies regRTⁿ, we can apply it to get a min-homogeneous set for g, which is also a solution to λregHT⁼ⁿ[ap] for f.
- The previous argument also proves that $\lambda \operatorname{reg} HT^{=n}[ap] \leq_{sW} \operatorname{reg} RT^{n}$.

Bounds for Bounded Regressive Hindman's Theorem

• Since the lower bound and the upper bound for $\lambda \operatorname{reg} \operatorname{HT}^{=n}[\operatorname{ap}]$ coincide, we have that:

Theorem (Carlucci-M., 2022)

Over RCA₀, λ regHT⁼ⁿ[ap] is equivalent to ACA₀, for any $n \ge 2$.

- To sum up, we have that the following are equivalent over RCA₀:
 - ACA₀.
 - **2** regRT^{*n*}, for any fixed $n \ge 2$.
 - **O** RT_k^n , for any fixed $n \ge 3$, $k \ge 1$.
 - $HT_k^{=n}[ap]$, for any fixed $n \ge 3$, $k \ge 1$.
 - $\lambda \operatorname{regHT}^{=n}[\operatorname{ap}]$, for any fixed $n \geq 2$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ● 22/32

Then, the complete diagram of the implications over RCA_0 is the following:

Strength of Bounded Regressive Hindman's Theorem

The following diagram, instead, visualizes the known reductions:

4 ロ ト 4 団 ト 4 臣 ト 4 臣 ト 臣 の Q C²
24/32

Definition

The well-ordering preservation principle for base- ω exponentiation (in symbols, WOP($\mathcal{X} \mapsto \omega^{\mathcal{X}}$)) is the following Π_2^1 -principle:

 $\forall \mathcal{X}(\mathrm{WO}(\mathcal{X}) \to \mathrm{WO}(\omega^{\mathcal{X}})),$

where WO(Y) is the usual Π_1^1 -formula stating that Y is a well-ordering.

- It is known that WOP($\mathcal{X} \mapsto \omega^{\mathcal{X}}$) is equivalent to ACA₀ [Girard, Hirst].
- To answer questions about reducibility, we can consider the contrapositive form of WOP($\mathcal{X} \mapsto \omega^{\mathcal{X}}$): an *instance* is an infinite descending sequence in $\omega^{\mathcal{X}}$ and a *solution* is an infinite descending sequence in \mathcal{X} .

Theorem (Carlucci-M., 2022)

Let $n \geq 2$. Over RCA₀, $\lambda \operatorname{regHT}^{=n}[\operatorname{ap}]$ implies WOP($\mathcal{X} \mapsto \omega^{\mathcal{X}}$). Moreover, $\lambda \operatorname{regHT}^{=n}[\operatorname{ap}] \geq_{\mathrm{W}} \operatorname{WOP}(\mathcal{X} \mapsto \omega^{\mathcal{X}})$.

Proof. The idea is to give a procedure that, at each step, extracts from the descending sequence in $\omega^{\mathcal{X}}$ the exponent of the "next" leftmost component that eventually decreases.

 $\begin{array}{l} \mbox{Example:} \\ \alpha_1 = \fbox{0}{0}{2} + \omega^8 + \ \omega^8 + \omega^6 + \omega^4 + \omega^3 \\ \alpha_2 = \omega^8 + \omega^8 + \ \varpi^8 + \omega^6 + \omega^4 \\ \alpha_3 = \omega^8 + \omega^8 + \ \omega^8 + \omega^6 \\ \alpha_4 = \omega^8 + \omega^8 + \ \omega^8 + \omega^5 + \omega^5 + \omega^5 + \omega^5 \\ \alpha_5 = \omega^8 + \omega^8 + \ \omega^7 + \omega^7 + \omega^7 + \omega^7 \\ \cdots \\ \alpha_i = \omega^8 + \omega^8 + \cdots \\ \cdots \end{array}$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 26/32</p>

By strong Σ_1^0 -bounding, RCA₀ knows that if a component will decrease, it will do so within ℓ steps, but RCA₀ is not able to compute such ℓ .

Thus, we adopt an approach similar to the one used to prove RAN, i.e. we use $\lambda \operatorname{regHT}^{=n}[\operatorname{ap}]$ to bound the research of ℓ .

First, fixed an infinite decreasing sequence α in $\omega^{\mathcal{X}}$, we define:

- (β_n)_{n∈N} the sequence of all the exponents in α (in the example above, we have β = ⟨9,8,8,6,4,3,8,8,8,6,...⟩)
- *m*(*n*) the index of the element of *α* from which *β_n* has been extracted (e.g., *m*(7) = 2 in the example above)
- pos(n) the position of β_n in α_{m(n)} (e.g., pos(7) = 1 in the example above)

Then, we say that *j* decreases *i* (and write dec(j, i)) if i < j, pos(i) = pos(j), $\beta_i > \beta_j$ and *j* is minimal.

Now we set c(x) as the unique $i < \lambda(x)$ such that:

- there exists $j \in [\lambda(x), \mu(x))$ such that j decreases i, and
- for all $j < j' < \mu(x)$, if j' decreases i' then $i' \ge \lambda(x)$.

If no such *i* exists, we set c(x) = 0.

Intuitively c checks whether there are indexes below $\lambda(x)$ decreased by indexes in $[\lambda(x), \mu(x))$ and, if any, it returns the latest one.

Let $H = \{h_1 < h_2 < h_3 < \dots\}$ be an apart solution to $\lambda \operatorname{regHT}^{=n}$ for c.

Claim: For each $h_i \in H$ and each $j < \lambda(h_i)$, if there exists k s.t. k decreases j then there exists such a k smaller than $\mu(h_{i+n-1})$.

We can prove the claim by adopting the same approach used for proving that $\lambda \text{regHT}^{=n}$ implies ACA₀ over RCA₀.

Now, we compute an infinite decreasing sequence σ in \mathcal{X} as follows:

- We look for the leftmost term of α₁ that eventually decreases, i.e. we look for the least i s.t. m(i) = 1 ∧ ∃j < μ(h_{k+n-1}) (j decreases i), where h_k is the least element of H s.t. i < λ(h_k)
- we fix $\sigma_1 = \beta_i$, p = pos(i) and d = m(j)
- \bullet we repeat the procedure, this time starting from α_d .

Note that we are assuming that we can always find a term that eventually decreases, i.e. $\forall i \exists i' (\exists j < lh(\alpha_i)) (i' > i \land e((\alpha_i)_j) >_{\mathcal{X}} e((\alpha_{i'})_j))$, where $e((\alpha_m)_n)$ is the exponent of the *n*-th term of α_m .

This is true, otherwise for some *i* we could prove by Δ_1^0 -induction that: $\forall m \ (m \ge i \rightarrow \alpha_{m+1} \text{ is an initial segment of both } \alpha_m \text{ and } \alpha_i)$

which implies $\forall m \ (m \ge i \rightarrow lh(\alpha_m) > lh(\alpha_{m+1}))$, contradicting WO(ω).

Strength of Bounded Regressive Hindman's Theorem

Then, we can add this last result to our diagram of computable reductions:

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ⑦ Q ○ 30/32

Conclusions

- We formulated a novel Regressive Hindman's Theorem as a corollary of Taylor's Canonical Hindman's Theorem restricted to a suitable class of regressive functions.
- We studied the strength of this principle and of its restrictions in terms of provability over RCA₀ and computable reductions.
- In particular, we showed that the weakest non-trivial restriction of our Regressive Hindman's Theorem, λregHT⁼²[ap], is equivalent to ACA₀.
- This contrasts with the standard restrictions of Hindman's Theorem, which require at least sums of exactly 3 elements to reach ACA₀.
- This situation is analogous to that of $regRT^2$ when compared to RT_2^3 .
- Also, we proved that, for n ≥ 2, λregHT⁼ⁿ[ap] computably reduces the corresponding restrictions of Hindman's Theorem HT⁼ⁿ[ap].
- Finally, we proved that $\lambda \operatorname{regHT}^{=2}[\operatorname{ap}] \geq_W \operatorname{WOP}(\mathcal{X} \to \omega^{\mathcal{X}})$, the well-ordering preservation principle that characterizes ACA₀.

イロン 不良 とくほど 不良 とうほう

Open questions remain about the strength of the Regressive Hindman's Theorem, of its restrictions, and of related principles, for instance:

- What are the optimal upper bounds for canHT, for λregHT and for λregHT^{≤n}?
- Ooes HT imply/reduces λregHT (and similarly for bounded versions)?
- What is the strength of λregHT⁼² without apartness? More generally, how do the bounded Regressive Hindman's Theorems behave with respect to apartness?
- Can the reductions presented above be improved to stronger reductions?

Finally, it would be interesting to investigate relations between λ regHT and other principles dealing with colourings with unboundedly many colours, like Hindman-type variants of the Thin Set Theorem recently investigated by Hirschfeldt and Reitzes.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■

わくで 32/32