
Theory of Computation 13
Undecidability in Formal Languages

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 13 Undecidability in Formal Languages – p. 1



Repetition 1

Polynomials P(N) and P(Z)
A function f(x,y1, . . . ,yn) is in P(Z) if it is a sum of products
of integer constants and variables x,y1, . . . ,yn. This
function is in P(N) iff all the integer constants occurring are
in N.

Diophantine Sets
A set A ⊆ N is Diophantine iff there is f ∈ P(Z) such that
x ∈ A ⇔ ∃y1, . . . ,yn ∈ N [f(x,y1, . . . ,yn) = 0].

Hilbert’s Tenth Problem [1900]
Construct a Decision Procedure for Diophantine sets.

Theorem [Matiyasevich 1970]
A set is Diophantine iff it is r.e.; thus it can be undecidable.

Theory of Computation 13 Undecidability in Formal Languages – p. 2



Repetition 2

Definition 12.11
A set A ⊆ N is called arithmetic iff there is a formula using
existential (∃) and universal (∀) quantifiers over variables
such that all variables except for x are quantified and that
the predicate behind the quantifiers only uses Boolean
combinations of polynomials from P(N) compared by < and
= in order to evaluate the formula.

Theorem [Church 1936; Turing 1936; Tarski 1936]
Arithmetic sets can be undecidable; the halting problem
(suitably coded) is an example of such a set.

Theory of Computation 13 Undecidability in Formal Languages – p. 3



The Entscheidungsproblem

Question 1928
Hilbert asked whether one can check whether a sentence in
first-order logic is valid, that is, true in all logical structures
which can be defined. For example, ∀x∃y[y < x] is not
valid, as it is not true in (N, <) and it applies to all structures
which have a relation called <. The formula
∀x ∀y [x < y or ¬(x < y)] is an example of a valid formula.

Theorem [Church 1936; Turing 1936]
The Entscheidungsproblem is undecidable.

This proof also works by coding up the machine
computations and show that the corresponding halting set
is undecidable; if σ codes the computations of machine e on
input e and τ consists of sufficiently many axioms of (N,+, ·)
then τ → σ is valid iff the coded Turing machine e halts on
input e.

Theory of Computation 13 Undecidability in Formal Languages – p. 4



Repetition 3

Proving Undecidability of Arithmetics
Code machine simulation into an arithmetic formula:

• Code the run of a Registermachine in Arithmetics;

• Make sure that the configurations of the Register
machine at the various steps can be decoded with an
arithmetic formula;

• Construct a formula which checks for each two
successive configurations that the next one is obtained
by going one step in the register program from the
previous configuration;

• Construct a formula which checks that the initial
configuration codes the input and the last one codes
the output and is in a halting line number;

• Combine all this to one arithmetic formula which is true
iff there is a run and a way to code this run such that the
input produces the correct output.

Theory of Computation 13 Undecidability in Formal Languages – p. 5



Repetition 4

An index set is a set for each functions either either all or no
indices. It is based on acceptable numberings.

Definition 12.17: Acceptable Numbering [Gödel 1931]
A numbering ϕe of partial functions is a partial-recursive
function e,x 7→ ϕe(x). A numbering is acceptable iff for
every further numbering ψ there is a recursive function f

such that, for all e, ψe = ϕf(e).

That is, f translates “indices” or “programs” of ψ into
“indices” or “programs” of ϕ which do the same.

The universal functions for register machines and for Turing
machines constructed by Turing and others are actually
acceptable numberings.

Theory of Computation 13 Undecidability in Formal Languages – p. 6



Repetition 5

Theorem 12.19 [Rice 1953]
Let ϕ be an acceptable numbering and I be an index set
(with respect to ϕ).

(a) The set I is recursive iff I = ∅ or I = N.

(b) The set I is recursively enumerable iff there is a
recursive enumeration of finite lists (x1,y1, . . . ,xn,yn) of
conditions such that every index e satisfies that e ∈ I iff
there is a list (x1,y1, . . . ,xn,yn) in the enumeration for
which ϕe(x1) = y1 and . . . and ϕe(xn) = yn.

Corollary 12.20
Let I = {e : ∀x [ϕe(x) is defined]}. The set I of indices of
total functions is arithmetic and not recursively enumerable.

Theory of Computation 13 Undecidability in Formal Languages – p. 7



Repetition 6

Observation 12.21
If A,B are sets and B is recursively enumerable and if
there is a recursive function g with x ∈ A ⇔ g(x) ∈ B then
A is also recursively enumerable. Similarly, if B is recursive
then so is A.

Definition 12.22
A set A is many-one reducible to a set B iff there is a
recursive function g such that, for all x, x ∈ A ⇔ g(x) ∈ B.

Theorem
A set is recursively enumerable iff it is many-one reducible
to the halting problem. A set is recursive iff it is many-one
reducible to the set of odd numbers.

One can prove undecidability of a set B by finding a set A
known to be undecidable such that one can construct a
many-one reduction from A to B.

Theory of Computation 13 Undecidability in Formal Languages – p. 8



Counter Automata

Counter automata are modifications of register machines.

• The counters (= registers) have much more restricted
operations: One can add or subtract 1 or compare
whether they are 0. Initival values of all counters is 0.

• Like a pushdown automaton, one can read one symbol
from the input at a time; depending on this symbol, the
automaton can go to the corresponding line. One
makes the additional rule that a run of the counter
automaton is only valid iff the full input was read.

• The counter automaton can either terminate in lines
with the special commands “ACCEPT” and “REJECT”
or signal “REJECT” by running forever.

Goal: Configurations and runs are more compatible with
grammars while automaton is still able to simulate
everything.

Theory of Computation 13 Undecidability in Formal Languages – p. 9



Example

Counter automaton accepts words which have, in all initial
parts, at least as many 0 as 1.

Line 1: Counter Automaton Zeroone;

Line 2: Input Symbol – Symbol 0: Goto Line 3; Symbol 1:
Goto Line 4; No further Input: Goto Line 7;

Line 3: R1 = R1 + 1; Goto Line 2;

Line 4: If R1 = 0 Then Goto Line 6;

Line 5: R1 = R1 − 1; Goto Line 2;

Line 6: REJECT;

Line 7: ACCEPT.

Rune of automaton with input 001 and 001111000:

Line: 1 2 3 2 3 2 4 5 2 7 |... 5 2 4 5 2 4 6

Input: 0 0 1 - |... 1 1

R1: 0 0 0 1 1 2 2 2 1 1 |... 2 1 1 1 0 0 0

Theory of Computation 13 Undecidability in Formal Languages – p. 10



Adding on Counter Machine

Counter Automaton Translation for R1 = R2 +R3.

Line 1: ... // R4 is 0;

Line 2: If R1 = 0 Then Goto Line 4;

Line 3: R1 = R1 − 1; Goto Line 2;

Line 4: If R2 = 0 Then Goto Line 6;

Line 5: R4 = R4 + 1; R2 = R2 − 1; Goto Line 4;

Line 6: If R4 = 0 Then Goto Line 8;

Line 7: R1 = R1 + 1; R2 = R2 + 1; R4 = R4 − 1; Goto
Line 6;

Line 8: If R3 = 0 Then Goto Line 10;

Line 9: R4 = R4 + 1; R3 = R3 − 1; Goto Line 8;

Line 10: If R4 = 0 Then Goto Line 12;

Line 11: R1 = R1 + 1; R3 = R3 + 1; R4 = R4 − 1; Goto
Line 10;

Line 12: ... // Continue with next command, R4 is 0 again;
Theory of Computation 13 Undecidability in Formal Languages – p. 11



Subtracting from Constant

Counter Automaton Translation for R1 = 2−R2.

Line 1: ... // Previous Operation

Line 2: If R1 = 0 Then Goto Line 4;

Line 3: R1 = R1 − 1; Goto Line 2;

Line 4: R1 = R1 + 1; R1 = R1 + 1;

Line 5: If R2 = 0 Then Goto Line 10;

Line 6: R1 = R1 − 1; R2 = R2 − 1;

Line 7: If R2 = 0 Then Goto Line 9;

Line 8: R1 = R1 − 1;

Line 9: R2 = R2 + 1;

Line 10: ... // Continue with next command;

Theory of Computation 13 Undecidability in Formal Languages – p. 12



Quiz

Quiz 13.3
Provide counter automaton translations for the following
commands:

• R1 = 2;

• R2 = R2 + 3;

• R3 = R3 − 2.

Write them in a way that a counter Rk having the value 0

does not perform Rk = Rk − 1.

Theory of Computation 13 Undecidability in Formal Languages – p. 13



Exercises

Exercise 13.4
Provide a translation for a subtraction: R1 = R2 −R3. Here
the result is 0 in the case that R3 is greater than R2. The
values of R2,R3 after the translated operation should be
the same as before.

Exercise 13.5
Provide a translation for a conditional jump: If R1 ≤ R2 then
Goto Line 200. The values of R1,R2 after doing the
conditional jump should be the same as before the
translation of the command.

Corollary 13.6
Every language recognised by a Turing machine or a
register machine can also be recognised by a counter
machine. In particular there are languages recognised by
counter machines for which the membership problem is
undecidable.

Theory of Computation 13 Undecidability in Formal Languages – p. 14



Main Result

Theorem 13.7
If K is recognised by a counter machine then there are
deterministic context-free languages L and H and a
homomorphism h such that K = h(L ∩H). In particular, K
is generated by some grammar.

Proof
The main idea of the proof is the following: One makes L

and H to be computations such that for L the updates after
an odd number of steps and for H the updates after an
even number of steps is checked; furthermore, one
intersects one of them, say H with a regular language in
order to meet some other, easy to specify requirements on
the computation.

Furthermore, h(L ∩H) will get out the input words from the
valid counter automaton computations.

Theory of Computation 13 Undecidability in Formal Languages – p. 15



Coding Configurations

The simulated counter automaton M has registers
R1,R2, . . . ,Rn and lines 1,2, . . . ,m. A configuration
consists of the input read (if any), the line number of the
current statement and the register contents before the
current statement is done.

Code is b · 3LN · 4x

Here b ∈ {ε,0,1,2}: ε – no input processed; 2 – input
exhausted; 0,1 – respective input bit read.

4x: x = pR1

1 · pR2

2 · . . . · pRn

n where p1,p2, . . . ,pn are the first

n primes.

So if R1 = 3, R3 = 1 and R4 = 1 and all other registers are

0 then x = 23 · 5 · 7 = 280.

Theory of Computation 13 Undecidability in Formal Languages – p. 16



Update Set

Let I be the set of possible configurations,

I = {ε,0,1,2} · {3,33, . . . ,3m} · {4}+

where some illegal values of x are not checked (like p3
n+1).

Let J = {v ·w : v,w ∈ I and counter automaton goes from
configuration v to configuration w in one step}.

Next slides: J,J∗, I · J∗ are deterministic context-free. The
deterministic pushdown automaton for J is explained for
representative cases of configurations v,w.

General outline: The pushdown automaton stores values of

b,3LN in memory and counts up the 4 of v in stack and
counts down the 4 of w in stack, sometimes with different
speed to check multiplications / divisions by pk.

Theory of Computation 13 Undecidability in Formal Languages – p. 17



Increment

Line i: Rk = Rk + 1;
In this case, one has that the configuration update must be
of the form

{3i} · {4}x · {0,1,2, ε} · {3i+1} · {4}x·pk

and the deterministic pushdown automaton checks whether
the new number of 3 is one larger than the old one and
whether when comparing the second run of 4 those are pk

times many of the previous run, that is, it would count down
the stack only after every pk-th 4 and keep track using the
state that the second number of 4 is a multiple of pk.

Theory of Computation 13 Undecidability in Formal Languages – p. 18



Decrement

Line i: Rk = Rk − 1;
In this case, one has that the configuration update must be
of the form

{3i} · {4}x · {0,1,2, ε} · {3i+1} · {4}x/pk

and the deterministic register machine checks whether the
new number of 3 is one larger than the old one and whether
when comparing the second run of 4 it would count down
the stack by pk symbols for each 4 read and it would use
the state to check whether the first run of 4 was a multiple
of pk in order to make sure that the subtraction is allowed.

Theory of Computation 13 Undecidability in Formal Languages – p. 19



Conditional Branching

Line i: If Rk = 0 then Goto Line j;
In this case, the configuration update must either be of the
form

{3i} · {4}x · {0,1,2, ε} · {3j} · {4}x

with x not being a multiple of pk or it must be of the form

{3i} · {4}x · {0,1,2, ε} · {3i+1} · {4}x

with x being a multiple of pk. Being a multiple of pk can be
checked by using the state and can be done in parallel with
counting; the preservation of the value is done accordingly.

Theory of Computation 13 Undecidability in Formal Languages – p. 20



Processing Input

Line i: If input symbol is 0 then goto Line j0; If input symbol
is 1 then goto Line j1; If input is exhausted then goto Line j2;
Now the configuration update must be of one of the form

u · {3i} · {4}x · {0,1,2, ε} · {3ju} · {4}x

for some u ∈ {0,1,2} and the deterministic pushdown
automaton can use the state to memorise u, i and the stack
to compare the two occurrences of 4x. Again, if the format
is not adherred to, the pushdown automaton goes into an
always rejecting state and ignores all future input.

Theory of Computation 13 Undecidability in Formal Languages – p. 21



General Remarks

The pushdown automaton maintains a stack of the form S

or ST or STU+ where the T and U are used to count the 4

and the T is a symbol signalling that it is just above S (in
order to manage the state correctly). The automaton can
easily be adjusted to handle J∗ in place of J: After each
checking of J, it has in the case of success again to have
the stack S and the last 4 processed from the entry in J will
follow up with a digit from 0,1,2,3 for the next entry from
the next configuration.

The language I · J∗ is also recognisable by a deterministic
pushdown automaton, as the entry from I consists of digits
from 0,1,2,3 followed by at least one 4 with the next entry
from J again be starting with one of 0,1,2,3.

For the regular languages {ε} ∪ I and R, it holds that
L = J∗ · (I ∪ {ε}) and H = (I · J∗ · (I ∪ {ε})) ∩R are also
deterministic context-free.

Theory of Computation 13 Undecidability in Formal Languages – p. 22



Choosing R and Conclusion

The permitted runs are from

L ∩H = (J∗ · (I ∪ {ε})) ∩ (I · J∗ · (I ∪ {ε})) ∩R

and R codes that the last line number is that of a line
having the command ACCEPT and that the first line
number is 1 and the initial value of all registers is 0 and that
once a 2 is read from the input (for exhausted input) then all
further attempts to read an input are answered with 2. For
example, if the lines 5 and 8 carry the command ACCEPT
then

R = ({34} · I∗ · {35,38} · {4}+) ∩ ({0,1,3,4}∗ · {2,3,4}∗).

Furthermore, h(0) = 0, h(1) = 1, h(2) = ε, h(3) = ε,
h(4) = ε. As the 0,1 are only from the input read,
K = h(L ∩H).

Theory of Computation 13 Undecidability in Formal Languages – p. 23



Exercises

Exercise 13.8
In the format of the proof before and with respect to the
sample multi counter machine from the beginning of today’s
lecture, give the encoded version (as word from

{0,1,2,3,4}+) of the run of the machine on the input 001.

Exercise 13.9
In the format of the proof before and with respect to the
sample multi counter machine from the beginning of today’s
lecture give the encoded version (as word from

{0,1,2,3,4}+) of the run of the machine on the input
001111000.

Theory of Computation 13 Undecidability in Formal Languages – p. 24



Generated by Grammar = R.E.

Theorem 13.10
A set K ⊆ Σ∗ is recursively enumerable iff it is generated by
some grammar. In particular, there are grammars for which
it is undecidable which words they generate.

Proof.
If K is generated by some grammar, then every word w has
a derivation S ⇒ v1 ⇒ v2 ⇒ . . .⇒ vn in this grammar. An
algorithm can check, by all possible substitutions, whether
vm ⇒ vm+1. Thus there is a partial recursive f which on
input S ⇒ v1 ⇒ v2 ⇒ . . .⇒ vn checks whether all steps of
the derivation are correct and whether vn ∈ Σ∗; if so, then f

outputs vn else f is undefined. K is the range of f .

For the converse direction, if K is recursively enumerable
then K is recognised by a Turing machine and then K is
recognised by a counter automaton and then K is
generated by some grammar.

Theory of Computation 13 Undecidability in Formal Languages – p. 25



Undecidable Questions

Corollary 13.11
The following questions are undecidable:

(a) Given a grammar and a word, does this grammar
generate the word?

(b) Given two deterministic context-free languages by
deterministic push down automata, does their
intersection contain a word?

(c) Given a context-free language given by a grammar,
does this grammar generate {0,1,2,3,4}∗?

(d) Given a context-sensitive grammar, does its language
contain any word?

Let K be the halting problem with inputs from {0,1}∗ and
L,H simulating the computations of a fixed counter
machine which recognises K. Choosing a grammar for K
answers item (a).

Theory of Computation 13 Undecidability in Formal Languages – p. 26



Items (b), (c), (d)

One can compute for w ∈ {0,1}∗ a deterministic pushdown
automaton which recognises

Hw = H∩({3,4}∗·{b1}·{3,4}
∗·{b2}·. . .·{3,4}

∗·{bn}·{2,3,4}
∗)

so that L ∩Hw contains all accepting computations which
read b1b2 . . .bn = w. This gives item (b).

Item (c) follows from studying {0,1,2,3,4}∗ − (L ∩Hw)
which has a context-free grammar which can be computed
from the deterministic pushdown automata for
{0,1,2,3,4}∗ − L and {0,1,2,3,4}∗ −Hw, the language
sought for is the union of these two languages.

The last item (d) follows from converting the two pushdown
automata for L and Hw into a context-sensitive grammar for
L ∩Hw which contains a member iff w ∈ K. Also this test is
undecidable. Theory of Computation 13 Undecidability in Formal Languages – p. 27



Post’s Correspondence Problem

An instance of Post’s Correspondence Problem is a list
(x1,y1), (x2,y2), . . . , (xn,yn) of pairs of words. Such an
instance has a solution iff there is a sequence k1,k2, . . . ,km

of numbers in {1, . . . ,n} such that m ≥ 1 and

xk1
xk2

. . .xkm
= yk1

yk2
. . .ykm

.

For example, the following pairs: (a,a), (a,amanap),
(canal,nam), (man,lanac), (o,oo), (panama,a), (plan,nalp).
This list has some trivial solutions like 1,1,1 giving aaa for
both words. It has also the famous solution 2,4,1,7,1,3,6
which gives the palindrome as a solution:

a man a plan a canal panama

amanap lanac a nalp a nam a

The instance (alpha,beta), (gamma,delta) has no solution.

Theory of Computation 13 Undecidability in Formal Languages – p. 28



Exercises

Exercise 13.13 and 13.14
For the following instances of Post’s Correspondence
Problem, determine whether it has a solution:
13.13: (23,45), (2289,2298), (123,1258), (777,775577),
(1,9999), (11111,9).
13.14: (1,9), (125,625), (25,125), (5,25), (625,3125), (89,8),
(998,9958).

Exercise 13.15
Use Post’s Correspondence Problem to prove that it is
undecidable whether the intersection of two deterministic
context-free languages is non-empty. See the lecture notes
for hints.

Theory of Computation 13 Undecidability in Formal Languages – p. 29



Non-deterministic machines

One way to implement non-determinism in counter and
register machines is to allow multiple targets for a Goto
command and the machine chooses just one of the line
numbers.

• A function f computes on input x a value y iff there is an
accepting run which produces the output y and every
further accepting run produces the same output;
rejected runs and non-terminating runs are irrelevant in
this context.

• A set L is recognised by a non-deterministic machine iff
for every x it holds that x ∈ L iff there is an accepting
run of the machine for this input x.

One can use non-determinism to characterise the regular
and context-sensitive languages via Turing machines or
register machines.

Theory of Computation 13 Undecidability in Formal Languages – p. 30



Characterisations

Theorem 13.17
A language L is context-senstive iff there is a Turing
machine which recognises L and which modifies only those
cells on the Turing tape which are occupied by the input iff
there is a non-deterministic register machine recognising
the language and a constant c such that the register
machine on any run for an input consisting of n symbols
never takes in its registers values larger than cn.

Theorem 13.18
A language L is regular iff there is a non-deterministic
Turing machine recognising L and numbers a,b such that
the Turing machine makes for each input consisting of n
symbols in each run at most a · n+ b steps.

Note that a linear time Turing machines can modify the tape
on which the input is written while a finite automaton does
not have this possibility.

Theory of Computation 13 Undecidability in Formal Languages – p. 31



Example 13.19

Assume that a Turing machine has as input alphabet
{0,1, . . . ,9} and additional tape symbol ⊔. This Turing
machine does the following: For an input word , it goes four
times over the word from left to right and each time it
replaces the current word w by v with 3v = w; if the division
by 3 has a remainder, the Turing machine rejects. It accepts
iff the final word is from {0}∗ · {110} · {0}∗ · {110} · {0}∗.

The language recognised by this Turing machine is

{0}∗ · {891} · {0}∗ · {891} · {0}+ and thus regular.

Theory of Computation 13 Undecidability in Formal Languages – p. 32



Exercises

Exercise 13.20
Assume that a Turing machine does the following: It has 5

passes over the input word w and at each pass, it replaces
the current word v by v/3. In the case that during this
process of dividing by 3 a remainder different from 0 occurs
for the division of the full word, then computation is aborted
as rejecting. If all divisions go through and the resulting

word v is w/35 then the Turing machine adds up the digits
and accepts iff the sum of digits is exactly 2.
Determine a regular expression for this language.

Exercise 13.21
A Turing machine does two passes over a word and divides
it the decimal number on the tape each time by 7. It then
accepts iff the remainders of the two divisions sum up to 10.
Construct a dfa for this language.

Theory of Computation 13 Undecidability in Formal Languages – p. 33



Exercise 13.22

Assume that a Turing machine works on an input word from
{0,1,2}∗ as below.

Initialise c = 0 and update c to 1− c whenever a 1 is read.
For each symbol do the following replacement:
If c = 0 then 1 → 0,2 → 1,0 → 0;
If c = 1 then 1 → 2,2 → 2,0 → 1.

Before pass 0100101221010210

After pass 0011200222001220

The Turing machine accepts if before the pass there are an
even number of 1 and afterwards there are an odd number
of 1.

Explain what the language recognised by this Turing
machine is and why it is regular. As a hint: interpret the
numbers as natural numbers in ternary representation and
analyse what the tests and the operations do.

Theory of Computation 13 Undecidability in Formal Languages – p. 34


	Repetition 1
	Repetition 2
	The Entscheidungsproblem
	Repetition 3
	Repetition 4
	Repetition 5
	Repetition 6
	Counter Automata
	Example
	Adding on Counter Machine
	Subtracting from Constant
	Quiz
	Exercises
	Main Result
	Coding Configurations
	Update Set
	Increment
	Decrement
	Conditional Branching
	Processing Input
	General Remarks
	Choosing R and Conclusion
	Exercises
	Generated by Grammar = R.E.
	Undecidable Questions
	Items (b),
(c), (d)
	Post's Correspondence Problem
	Exercises
	Non-deterministic machines
	Characterisations
	Example 13.19
	Exercises
	Exercise 13.22

