
NATIONAL UNIVERSITY OF SINGAPORE

CS 4232 – Theory of Computation

(Semester 1: AY 2015/2016)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Please write your Student Number. Do not write your name.

2. This assessment paper consists of TEN (10) questions and comprises TWELVE
(12) printed pages.

3. Students are required to answer ALL questions.

4. Students should answer the questions in the space provided.

5. This is a CLOSED BOOK assessment.

6. It is permitted to use calculators, provided that all memory and programs are
erased prior to the assessment; no other material or devices are permitted.

7. Every question is worth FIVE (5) marks. The maximum possible marks are 50.

STUDENT NO:

This portion is for examiner’s use only

Question Marks Remarks Question Marks Remarks
Q01: Q06:
Q02: Q07:
Q03: Q08:
Q04: Q09:
Q05: Q10:

Total:

Question 1 [5 marks] CS 4232 – Solutions

For this question, it is permitted that a non-deterministic finite automaton has mul-
tiple start states. Construct for the alphabet {0, 1, 2} a non-deterministic finite au-
tomaton which recognises

L = {w ∈ {0, 1, 2}∗ : digitsum(w) ≤ 4} ∪ ({0, 1, 2}∗ · {11})

with up to eight states. Here digitsum(w) is the sum of the digits occurring in w, so
digitsum(00112211) is 8.

Solution. The finite automaton is given by the following table.

state succ at 0 succ at 1 succ at 2 type
s s t u start, acc
t t u v acc
u u v w acc
v v w – acc
w w – – acc
x x x, y x start, rej
y – z – rej
z – z – acc

2

Question 2 [5 marks] CS 4232 – Solutions

Let Σ = {0, 1, 2} and consider the language L of all words w ∈ Σ∗ which contain one
symbol from Σ at least three times. So L is given by the regular expression

(Σ∗ · 0 · Σ∗ · 0 · Σ∗ · 0 · Σ∗) ∪ (Σ∗ · 1 · Σ∗ · 1 · Σ∗ · 1 · Σ∗) ∪ (Σ∗ · 2 · Σ∗ · 2 · Σ∗ · 2 · Σ∗)

and L can be recognised by a deterministic finite automaton. Determine the number
of states which the minimal deterministic finite automaton for L has.

Solution. The number of states is 28. One accepting state. Furthermore, for each
i, j, k ∈ {0, 1, 2}, the values i, j, k can be recovered from L0i1j2k . The reason is that
L0i1j2k ∩ 0∗ = 03−i0∗, L0i1j2k ∩ 1∗ = 13−j1∗, L0i1j2k ∩ 2∗ = 23−k2∗. Thus there are
27 different derivatives which each correspond to a different rejecting state in the
deterministic finite automaton. So a deterministic finite automaton needs at least 28
states.

One can also see that when the number of zeroes seen so far i, the number of
ones seen so far is j and the number of twos seen so far is k and i, j, k < 3 then the
derivative is L0i1j2k . Furthermore, if one symbol is seen at least three times then the
derivative is {0, 1, 2}∗. Thus the overall number of derivatives is 28 and the bound
28 from above is exact.

3

Question 3 [5 marks] CS 4232 – Solutions

Construct a context-free grammar for the language

L = {0n1n2m3m : n,m ≥ 1}

and give the grammar in Greibach Normal form. In Greibach Normal Form, each
left side of a rule is a single non-terminal and each right side of a rule is a terminal
followed by some (possibly none) non-terminals. Some special regulations apply for
grammars for languages which contain ε.

Solution. The grammar is ({S, T, U, V,W}, {0, 1, 2, 3}, P, S) where P contains the
rules S → 0TV U |0V U , T → 0TV |0V , U → 2UW |2W , V → 1, W → 3. V and
W are placeholders for 1 and 3, respectively, occurring at positions in the right side
of a rule where non-terminals have to be. The first rule for S is splitting the two
parts which produce {0n1n : n ≥ 1} and {2m3m : m ≥ 1} which are generated from
the non-terminals T and U ; as the first 0 of the part for {0n1n : n ≥ 1} has to be
processed by this rule, the rule is not S → TU but rather S → 0TV U |0V U . The
rules for T and U are standard.

4

Question 4 [5 marks] CS 4232 – Solutions

Prove that the language

L = {0n1m2k : n = 0 or m = k}

is not regular. For the proof, use one of the the following versions of pumping lemma:
(a) Traditional Pumping Lemma, (b) Block Pumping Lemma, (c) Jaffe’s Matching
Pumping Lemma. Say which of (a), (b) and (c) is used, explain what this version of
the pumping lemma says and use this pumping lemma to prove that L is not regular.

Solution. The Traditional Pumping Lemma does not prove that L is not regular,
as L satisfies this pumping lemma. Therefore the choice must be (b) or (c). Both
choices can be used to disprove that L is regular. Here the proof is given for choice
(b).

The Block Pumping Lemma says that if L is regular then there is a constant k such
that given a splitting u0u1 . . . ukuk+1 of a word in L, there are i, j with 1 ≤ i ≤ j ≤ k
such that

u0 . . . ui−1(ui . . . uj)
∗uj+1 . . . uk+1 ⊆ L.

The proof method is to show that L does not satisfy this Block Pumping Lemma for
any constant k.

So assume by way of contradiction that k is the constant of the Block Pump-
ing Lemma. Then one considers the word 0k1k2k split into a way that u0 = 0k,
u1, u2, . . . , uk are 1 each and uk+1 = 2k. If one now considers the word

u0 . . . ui−1uj+1 . . . uk+1

which is created by omitting the pump then it is of the form 0k1h2k for some h < k.
This word is not in L, as the number of 0 is greater than 0 and the number of 1 and
number of 2 are not equal. Thus L does not satisfy the Block Pumping Lemma for
any given constant and so L cannot be regular.

5

Question 5 [5 marks] CS 4232 – Solutions

Show that the deterministic context-free language {0n1m : m ≤ n} can be recog-
nised by a deterministic pushdown automaton which accepts by state but not by a
deterministic pushdown automaton which accepts by empty stack.

Solution. A pushdown automaton which accepts by state can get stuck in the case
that the word to be checked is not in the given language. This permits to make a
smaller pushdown automaton. It has the states s, t which are both accepting and the
stack symbols S, T and the following transition function δ: δ(s, 0, S) = {(s, ST)},
δ(s, 0, T) = {(s, TT)}, δ(s, 1, T) = {(t, ε)}, δ(t, 1, T) = {(t, ε)}. In summary, the
pushdown automaton in state s reads 0 and pushes symbols T ; in state t it reads 1
and pulls the symbols T . Once the T are exhausted, the automaton gets stuck; this
enforces that only words of the form 0n1m with m ≤ n are accepted.

If the pushdown automaton would be deterministic and accept by empty stack,
then during the whole phase of reading the 0 the stack has to be empty as 0n is in the
language; then the information on how many 0 are there is not recorded or only visible
from the state which has only finitely many choices; thus it cannot be compared with
how many 1 follow. Therefore the pushdown automaton cannot accept by empty
stack.

6

Question 6 [5 marks] CS 4232 – Solutions

A linear language is a context-free language where on the right side of each rule
A → r, the word r contains at most one non-terminal. Linear grammars have a
normal form where the rules A→ r are either of the form A→ c, A→ Bc, A→ cB
or S → ε for non-terminals A,B and terminals c; if the rule S → ε is in the grammar,
then the start symbol S does not occur on any right side of a rule.

(a) Explain the special case of the algorithm of Cocke, Kasami and Younger for linear
languages in normal form and why the runtime is in O(n2) which is better than the
usual O(n3) case.

(b) Assume that L is linear and let Lmi = {wmi : w ∈ L}, where wmi is the mirror
image of w, so (0012)mi = 2100. Construct a O(n2) deterministic membership test
for L · Lmi and explain the algorithm, using the one from case (a) as a subroutine.

7

Additional Space for Question 6 CS 4232 – Solutions

Solution. (a) The algorithm of Cocke, Kasami and Younger constructs on an input
word a1a2 . . . an for each pair i, j the set Ei,j of non-terminals A such that A ⇒∗

aiai+1 . . . aj. Here Ek,k are for given k all the A which have the rule A → ak in the
grammar; for Ei,j with j > i one can search search over a parameter k on how to split
aiai+1 . . . aj into two parts and then to let Ei,j to be all A for which there is a rule
A→ BC with B ∈ Ei,k and C ∈ Ek+1,j. This causes the algorithm to compute O(n2)
values in O(n) times each from those below. This gives an overall time complexity of
O(n3).

In the case of a linear grammar, however, the local search can be reduced to
checking out whether, in the normal form of linear grammars, to let Ei,j to be the
set of all A such that there is a non-terminal B and either a rule A → aiB with
B ∈ Ei+1,j or a rule A → Baj with B ∈ Ei,j−1. So one has only a constant amount
of search for computing each Ei,j and the overall algorithm is O(n2).

(b) If L is linear then also Lmi is linear; the linear grammar for Lmi is obtained
from the one for L by replacing each rule A→ u by A→ umi; also this new grammar
satisfies that each u on the right side has at most one non-terminal and therefore
Lmi is a linear language. The algorithm of Cocke, Kasami and Younger for L and
Lmi permits (for grammars in the corresponding normal form) to compute in O(n2)
for a given word a1a2 . . . an, which parts aiai+1 . . . aj of the word are in L and which
are in Lmi. Now a1a2 . . . an is in L · Lmi iff either ε ∈ L and a1a2 . . . an ∈ Lmi or
a1a2 . . . an ∈ L and ε ∈ Lmi or there is a k ∈ {1, 2, . . . , n−1} such that a1a2 . . . ak ∈ L
and ak+1ak+2 . . . an ∈ Lmi. This test can be done in linear time, given the tables for
L and Lmi and thus the overall complexity is O(n2).

8

Question 7 [5 marks] CS 4232 – Solutions

Which of the following three questions about context-free grammars is decidable:

(a) For a language L given by a grammar in Chomsky Normal Form, is L = {0, 1, 2}∗?

(b) For a language L given by a grammar in Chomsky Normal Form, is {0}∗ ⊆ L?

(c) For a language L given by a grammar in Chomsky Normal Form, is {0, 1, 2}∗−L
infinite?

Choose among the questions (a), (b), (c) the one which can be answered and explain
the algorithm to answer the question.

Solution. The right choice is (b). From the Chomsky Normal Form, one can compute
the pumping constant k. Now for each word 0h with h ≥ k, the pumps together have
at most length k and when 0h is in L so is 0h+k!. Thus it is sufficient to check whether
ε, 0, 02, 03, . . . , 0k+k! are in L. These tests can be done, as one can apply the algorithm
of Cocke, Kasami and Younger to check the membership in the given grammar. If
now all of ε, 0, 02, 03, . . . , 0k+k! are in L then {0}∗ ⊆ L else {0}∗ 6⊆ L.

9

Question 8 [5 marks] CS 4232 – Solutions

Recall that a homomorphism h : {0, 1, 2}∗ → {3, 4, 5}∗ is a mapping from words to
words satisfying h(v · w) = h(v) · h(w) for all v, w; thus h is known when one knows
h(0), h(1), h(2). What is the number of homomorphisms h : {0, 1, 2}∗ → {3, 4, 5}∗
satisfying h(012) = 333343333 and h(0112) = 3333433343333?

Solution. h(1) must contain one 4, because h(0112) has two 4 and h(012) has one
4. Thus h(1) = 3i43j for some i, j. As h(11) has the subword 43334, one knows that
i+ j = 3. Now choosing h(0) = 34−i and h(2) = 34−j gives that h(012) = 333343333
and h(0112) = 3333433343333. Choosing i to be any value from 0, 1, 2, 3 and j = 3−i
gives the following four solutions:

(i = 0, j = 3) h(0) = 3333, h(1) = 4333, h(2) = 3;

(i = 1, j = 2) h(0) = 333, h(1) = 3433, h(2) = 33;

(i = 2, j = 1) h(0) = 33, h(1) = 3343, h(2) = 333;

(i = 3, j = 0) h(0) = 3, h(1) = 3334, h(2) = 3333.

There are no other solutions, so there are four homomorphisms h.

10

Question 9 [5 marks] CS 4232 – Solutions

Assume that ϕe is the partial recursive function computed by the e-th register machine
and that We is the range of ϕe. Consider the index set

E = {e : We has at least 5 elements}.

Is this set (a) recursive, (b) recursively enumerable but not recursive, (c) not recur-
sively enumerable? Choose the right answer and prove why this choice applies.

Solution. The right answer is (b). By the Theorem of Rice, the index set cannot be
recursive, as the only recursive index sets are ∅ and N. Let F = {(x1, y1, x2, y2, x3, y3,
x4, y4, x5, y5) : y1 < y2 < y3 < y4 < y5}; this set of tuples is recursively enumerable,
indeed even recursive. Note that if ϕe satisfies one of these conditions iff there are
x1, x2, x3, x4, x5 such that ϕe is defined on these five inputs and ϕe(x1) < ϕe(x2) <
ϕe(x3) < ϕe(x4) < ϕe(x5). Whenever a function ϕe takes five or more different values
then one can bring the inputs into an order such that the values are strictly increasing.
Thus E is the set of all e such that ϕe matches some list of conditions layed out in
F . So, by the Theorem of Rice, E is recursively enumerable. Alternatively, one can
see this by considering the function

f(e, x1, x2, x3, x4, x5) =


e if ϕe is defined on x1, x2, x3, x4, x5

and ϕe(x1) < ϕe(x2) < ϕe(x3) <
ϕe(x4) < ϕe(x5);

undefined otherwise.

The range of this function f is E.

11

Question 10 [5 marks] CS 4232 – Solutions

Let log(x) = min{y ∈ N : 2y ≥ x}, so log(0) = log(1) = 0, log(2) = 1, log(3) =
log(4) = 2, log(5) = log(8) = 3. Write a register machine program which computes
the logarithm of the input according to this definition. The registers and constants
can be added and subtracted and compared. The possible register values are natural
numbers (including 0). The program can have conditional and unconditional jump
instructions (“Goto”, “If condition Then Goto”). The Return-statement identifies
the value of the function.

Solution. For input R1 and initial value R3 = 1, the program counts how often
one has to double R3 until it is greater or equal R1. R2 is the register used for this
counting.

Line 1: Function Log(R1);

Line 2: R2 = 0;

Line 3: R3 = 1;

Line 4: If R3 ≥ R1 Then Goto Line 8;

Line 5: R3 = R3 +R3;

Line 6: R2 = R2 + 1;

Line 7: Goto Line 4;

Line 8: Return(R2).

END OF PAPER

12

