
Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

12. Cryptography

Thomas Kister and Frank Stephan

April 10, 2014

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Introduction

Secure Transmission

Bob sends a message to Alice. Nobody else should be able to read
the message.

Step 1: Bob translates the message into a coded version.

Step 2: Bob sends the coded version to Alice.

Step 3: Alice translates the coded version into the original
message.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Caesar Cypher

Caesar Cypher

Each letter is replaced by the bth letter following it in alphabetical
order. b is the key. The key must be kept secret.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Caesar Cypher

Cyphering

c = Encr(m) = m + b (mod 26)

Decyphering

m = Decr(Encr(m)) = Encr−1(c) = c − b (mod 26)

Random Numbers for Cryptography

The key, b, is chosen randomly.

Example

b = 2: “BUZZ” becomes “DWBB”

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Caesar Cypher

Code Breaking

“Doo Jdxo lv glylghg lqwr wkuhh sduwv, rqh ri zklfk wkh Ehojdh
lqkdelw, wkh Dtxlwdql dqrwkhu, wkrvh zkr lq wkhlu rzq odqjxdjh
duh fdoohg Fhowv, lq rxuv Jdxov, wkh wklug. Doo wkhvh gliihu
iurp hdfk rwkhu lq odqjxdjh, fxvwrpv dqg odzv. ”

What is the key?

The Most Frequent Letters in English

E: 13%, T: 9%, A: 8%, O: 8%, I: 7%, N: 7%, S: 7%, H: 6%, R: 6%

The Most Frequent Letters in the Text

H: 22%, D: 19%, W: 16%, L: 15%, K: 15%

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Caesar Cypher

Code Breaking

“All Gaul is divided into three parts, one of which the Belgae
inhabit, the Aquitani another, those who in their own language are
called Celts, in ours Gauls, the third. All these differ from each
other in language, customs and laws.”

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

XOR cypher

XOR Cypher

Alice and Bob exchange a code-string. The message is encoded
and decoded by flipping bits where the code string has 1s.

Random Numbers for Cryptography

The code-string is chosen randomly.

Cyphering

c = Encr(m) = m ⊕ k

Decyphering

m = Decr(Encr(m)) = c ⊕ k

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

XOR cypher

Example

Message: 11010010001000010000010000001

Code-String: 10101100110010110101101100111

Coded Message: 01111110111010100101111100110

Coded Message: 01111110111010100101111100110

Code-String: 10101100110010110101101100111

Message: 11010010001000010000010000001

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Affine Cypher

Affine Cypher

Alice and Bob exchange two numbers a and b. The message is
encoded and decoded by applying an affine function to it.

Cyphering

Encr(m) = a×m + b (mod 26)

Decyphering

Decr(c) = a× (c − b) (mod 26)

a is the modular multiplicative inverse of a (a× a = 1 (mod 26)).

Random Numbers for Cryptography

a and b are chosen randomly, but a must be coprime with the
length of the alphabet (to ensure the existence of a modular
multiplicative inverse).

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Affine Cypher

Example

“All Gaul is divided into three parts, one of which the Belgae
inhabit, the Aquitani another, those who in their own language are
called Celts, in ours Gauls, the third. All these differ from each
other in language, customs and laws.”

a = 5, b = 3, a = 21

“Dgg Hdzg rp srersxs rquv umkxx adkup, vqx vc jmrnm umx
Ixghdx rqmdiru, umx Dfzrudqr dqvumxk, umvpx jmv rq umxrk vjq
gdqhzdhx dkx ndggxs Nxgup, rq vzkp Hdzgp, umx umrks. Dgg
umxpx srccxk ckvl xdnm vumxk rq gdqhzdhx, nzpuvlp dqs gdjp.”

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

Public Key Cryptography

In 1976, Whitfield Diffie and Martin Hellman proposed a new key
exchange protocol.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

Public Key Cryptography

Encoding and decoding is done with different keys. Everyone can
encode a message with the public key of the receiver. But only the
private key of the receiver can decode a message. The encoding
key can be made publicly available.

Digital Signatures

A clear text message can be signed by the sender. A summary
(hash value) of the message is encoded with the sender’s private
key. Everyone can decode the summary with the sender’s public
key, and verify it against the summary of the received message.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

Pretty Good Privacy

Some people have a public key for the PGP cryptography program
on their web page.

PGP

E582 94F2 E9A2 2748 6E8B 061B 31CC 528F D7FA 3F19

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

RSA Cryptosystem

RSA was invented by Ellis, Cocks and Williamson for the British
Government Communications Headquarters and by Rivest, Shamir
and Adleman (RSA) in public open research.

Main Idea

RSA is based on easy primality testing and hard factoring: it is
easy to generate a public key and hard to compute the private key
from the public key.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

Cyphering

Choose at random two distinct large (circa the square of a googol)
prime numbers p and q. Compute n = p × q. Compute
f = (p − 1) × (q − 1). Choose at random a number e less than f
and coprime to f . Compute the modular multiplicative inverse d of
e for f .

c = Encr(m) = me (mod n)

Decyphering

m = Decr(c) = cd (mod n)

Random Numbers for Cryptography

p and q and e are chosen randomly but p and q are large primes
and e is less than and coprime to p × q.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

RSA

Choose prime numbers p and q: p = 11 and q = 13

Compute giving n = p × q: n = 143

Compute f = (p − 1) × (q − 1): f = 120

Choose e less than f , and coprime to f : e = 7

Compute the modular multiplicative inverse d of e for f :
d = 103

The public key is (n, e) = (143, 7)

The encryption function is Encr(m) = c = me (mod n).

The private key is (n, d) = (143, 103)

The decryption function is Decr(m) = m = cd (mod n).

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

RSA

Public Key: (n, e) = (143, 7).

Message (between 0 and n − 1):
m = 1010base2 = 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 = 8

Encryption: Encr(m) = c = me

(mod n) = 87mod(143) = 57.

Private Key: is (n, d) = (143, 103).

Decryption: Decr(m) = m = cd (mod n) = 57103

(mod 143) = 8.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

Example

Message Encr(m) Decr(m)

0 0 0

1 1 1

2 128 63

3 42 16

28 63 128

63 2 28

128 28 2

142 142 142

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

How to Compute e Efficiently

The modular inverse can be computed in O(log(n)2).

How to Encrypt and Decrypt Efficiently?

me (mod n) can be done in O(log(e)).

How to Find (n, d) if we Know (n, e)?

Intractable (hopefully!).

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

Factorization of a 768-bit RSA modulus

“On December 12, 2009, we factored the 768-bit, 232-digit
number RSA-768 by the number field sieve. [...] This result is a
record for factoring general integers. Factoring a 1024-bit RSA
modulus would be about a thousand times harder, and a 768-bit
RSA modulus is several thousands times harder to factor than a
512-bit one. Because the first factorization of a 512-bit RSA
modulus was reported only a decade ago it is not unreasonable to
expect that 1024-bit RSA moduli can be factored well within-the
next decade [...]. Thus, it would be prudent to phase out usage of
1024-bit RSA within the next three to four years.”
Kleinjung et al.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

RSA

Communication Protocol

Bob sends message m to Alice.

Bob codes m with his decryption algorithm and then with
Alice’s encryption algorithm:

c = EncrA(DecrB(m)).

Bob transmits c to Alice.

Alice decodes c with her decryption algorithm and then
encrypts it with Bob’s public encryption algorithm in order to
make it readable:

m = EncrB(DecrA(c)).

Why does Bob apply DecrB to his message?

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Generating Random Numbers

Generating Random Numbers

Ancient Egyptians, Indians and Chinese gambled with dice
5000 years ago.

In 1927 L. Tippett, a British statistician, published a table of
41,600 random numbers.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Generating Random Numbers

Generating Random Numbers

Hardware random number generators use physical phenomena
such as thermal electronic noise (built-in Intel Pentium) and
radioactive decay.

Software Random numbers generators generate
pseudo-random numbers: sequences of numbers as a function
of seed.

George Marsaglia, an American mathematician, made 4.8
billion random bits available.

Kolmogorov, a Russian mathematician, defined random data
as data that cannot be generated by a program shorter than
the data itself.

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Generating Random Numbers

The Middle Square Method

The method was invented by J. Von Neumann, a German
mathematician, in 1948.

Take a number of k digits, the seed, square it and take the
middle k digits.

1 f u n c t i o n m i d d l e s q u a r e 4 d i g i t s (seed , n) {
2 f o r (i = 0 ; i < n ; i++) {
3 seed = seed ∗ seed ;
4 seed = Math . f l o o r (seed / 100) ;
5 seed = seed % 10000 ;
6 document . w r i t e (”Random number between 0 and 9999 : ”

+ seed + ”
”) ;
7 }
8 }

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Generating Random Numbers

1 seed = 1234
2 Random number between 0 and 9999 : 5227
3 Random number between 0 and 9999 : 3215
4 Random number between 0 and 9999 : 3362
5 Random number between 0 and 9999 : 3030
6 Random number between 0 and 9999 : 1808
7 Random number between 0 and 9999 : 2688
8 Random number between 0 and 9999 : 2253
9 Random number between 0 and 9999 : 760

10 Random number between 0 and 9999 : 5776

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Generating Random Numbers

1 seed = 2041
2 Random number between 0 and 9999 : 1656
3 Random number between 0 and 9999 : 7423
4 Random number between 0 and 9999 : 1009
5 Random number between 0 and 9999 : 180
6 Random number between 0 and 9999 : 324
7 Random number between 0 and 9999 : 1049
8 Random number between 0 and 9999 : 1004
9 Random number between 0 and 9999 : 80

10 Random number between 0 and 9999 : 64
11 Random number between 0 and 9999 : 40
12 Random number between 0 and 9999 : 16
13 Random number between 0 and 9999 : 2
14 Random number between 0 and 9999 : 0

Introduction Private Key Cryptography Public Key Cryptography Generating Random Numbers Conclusion

Attribution

Attribution

The images and media files used in this presentation are either in
the public domain or are licensed under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published
by the Free Software Foundation, the Creative Commons
Attribution-Share Alike 3.0 Unported license or the Creative
Commons Attribution-Share Alike 2.5 Generic, 2.0 Generic and 1.0
Generic license.

	Introduction
	Introduction

	Private Key Cryptography
	Caesar Cypher
	XOR cypher
	Affine Cypher

	Public Key Cryptography
	RSA

	Generating Random Numbers
	Generating Random Numbers

	Conclusion
	Attribution

