
Introduction Machine Code Programming Languages Conclusion

3. Programming

Frank Stephan

January 23, 2014

Introduction Machine Code Programming Languages Conclusion

Introduction

Carrot Cake Recipe (adapted from allrecipes.com)

1 Preheat the oven to 175 degrees Celsius.

2 Grease and flour a 9 inches by 13 inches pan.

3 Beat four eggs.

4 Mix the eggs, one fourth of a cup of vegetable oil, two cups of sugar, two
cups of flour, two tea spoons of backing soda, and three cups of grated
carrots in a large bowl.

5 Add two tea spoons of vanilla extract if you have some.

6 Pour the mixture into the pan.

7 Bake until a knife inserted into the center comes out clean.

8 Let cool for ten minutes.

9 Put in a plate.

10 Prepare the frosting.

11 Pour the frosting onto the cake.

Introduction Machine Code Programming Languages Conclusion

Machine Code

Von Neumann Architecture

The Von Neumann architecture was proposed in 1945 by the
mathematician and computer scientist John von Neumann.

Von Neumann Architecture

The Von Neumann Architecture describes a computer as consisting
of a processing unit with an arithmetic logic unit and registers, a
control unit containing an instruction register and program
counter, a memory to store both data and instructions, external
mass storage, and input and output mechanisms.

Introduction Machine Code Programming Languages Conclusion

Machine Code

Central Processing Unit

The central processing unit (CPU) is composed of the arithmetic
logic unit (ALU), registers, an interface to main memory and an
instruction fetcher and decoder.

Introduction Machine Code Programming Languages Conclusion

Machine Code

Central Processing Unit

The Central Processing Unit repeatedly fetches, decodes and
executes program instructions, and writebacks results.
The program is in memory. It is a series of instructions each
represented by one binary word.

1 The CPU fetches the next instruction at a location in memory
determined by the program counter.

2 The CPU decodes the instruction and determines what it has
to do as defined by the CPU’s instruction set architecture
(ISA).

3 The ALU performs the arithmetic and logical operation
required on the inputs (in the registers or main memory).

4 The CPU writes the results to memory (register or main
memory).

Introduction Machine Code Programming Languages Conclusion

Machine Code

Instruction Set

Every processor or processor family has its own machine code
instruction set.

Instructions

move, add, substract, multiply, divide, increment, decrement,
exchange, compare, jump on condition, etc.

Introduction Machine Code Programming Languages Conclusion

Machine Code

x86 Instruction Format

x86 instructions are represented as binary numbers and require
between 1 and 6 bytes. Most instruction are coded on 2 bytes (16
bits) as follows.

6 bits for the code of the operation

1 bit for the direction of data movement (1 for movement
from second to first operand, 0 otherwise)

1 bit for the size of the operands (1 for word - 16 bits or 32
bits machine - and 0 for byte)

2 bits for the interpretation of the second operand

3 bits for the code of the first operand (a register)

3 bits for the code or address of the second operand (a
register or memory)

Introduction Machine Code Programming Languages Conclusion

Machine Code

Example

The instruction 100010 1 1 00 000 111 (8B 07 in hexadecimal)
) moves the value at the address in the register bx into the register
ax.

Assembly Language

The machine is programmed in assembly language. An assembler
generates the machine code.

1 mov ax , [bx]

Introduction Machine Code Programming Languages Conclusion

Machine Code

1 . d a t a
2 Sum DW ? ; non− i n i t i a l i s e d 2−b y t e v a l u e .
3 Length DW 6 ; i n i t i a l i s e d 2−b y t e v a l u e .
4 Table DB 89 , 53 , 5 , 61 , 127 , 5
5 ; Table i s an a r r a y o f Length 1−b y t e e l e m e n t s .
6
7 . c o d e
8 l e a bx , Table ; bx r e c e i v e s Table ’ s a d d r e s s .
9 mov ax , 0 ; l e t ax t a k e t h e v a l u e 0 .

10 mov s i , 0 ; l e t s i t a k e t h e v a l u e 0 .
11 n e x t :
12 cmp s i , Length ; compare s i w i t h Length (6) .
13 j e f i n i s h ; i f equa l , go to ” f i n i s h ” .
14 add ax , b y t e p t r [bx+s i]
15 ; add to ax th e 1−b y t e v a l u e p o i n t e d by bx+ s i .
16 i n c s i ; add to s i t h e v a l u e 1 .
17 jmp n e x t ; go to ” n e x t ” .
18 f i n i s h :
19 mov Sum , ax ; s t o r e th e r e s u l t i n t o Sum.

Introduction Machine Code Programming Languages Conclusion

Machine Code

Application Software

Operating System Software

Hardware

The Operating System

The operating system software (e.g. Android, iOS, GNU/Linux,
Mac OS X, Unix BSD, Microsoft Windows) provides the interface
to the computer hardware (central processing unit and main
memory) and devices (e.g. keyboard, screen, printer, hard drive,
DVD, network cards etc. by means of drivers) and generic services
and abstractions (such as memory management, multitasking,
multiprocessing and file and directory management) for the
application software. It often includes a user interface.

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Program
Source

Compiler or
Interpreter

Machine
Code

Computer

Programming Languages

The application is written in a higher level programming language.

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Compilers and Interpreters

The program source written in a programming language is
compiled or interpreted by a compiler or interpreter,
respectively, and executed on the hardware with the mediation
of the operating system.

Some Programming and other Languages

ABAP ACSL Ada Algol Ant APL Assembler Awk bash Basic C C++ Caml

Clean Cobol Comal csh Delphi Eiffel Elan erlang Euphoria Fortran GCL

Gnuplot Haskell HTML IDL inform Java JVMIS ksh Lisp Logo make

Mathematica Matlab Mercury MetaPost Miranda Mizar ML Modelica

Modula-2 MuPAD NASTRAN Oberon-2 OCL Octave Oz Pascal Perl PHP

PL/I Plasm POV Prolog Promela Python R Reduce Rexx RSL Ruby S SAS

Scheme Scilab sh SHELXL Simula SmallTalk SQL tcl TeX VBScript Verilog

VHDL VRML XML XSLT

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Data

A programming language provides variables, data structures and
other objects to record, organize and access values of various data
types.

Numbers (integer, floating point real),

Strings,

Boolean,

etc.

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Operations

A programming language provides constructs, operations and
functions to create and manipulate the data, data structures,
objects and to access resources.

Assignment,

Arithmetic operations,

Boolean operations and conditions,

Input/Output operations,

etc.

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Control Structures

A programming language provides control structures to define the
execution flow at runtime.

Direct sequencing,

Jump,

Conditional branching,

Bounded iteration,

Conditional iteration,

Subroutines,

Recursion.

Introduction Machine Code Programming Languages Conclusion

Programming Languages

FORTRAN

Fortran is an imperative programming language designed for
scientific computing by IBM in the 1950s.

1 PROGRAM MAIN
2 INTEGER N, I
3 N=0
4 DO I = 0 , 100 , 1
5 N=N+I
6 END DO
7 PRINT ∗ , N
8 END

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Cobol

Fortran is an imperative programming language designed for
business computing by a committe of computer scientist from
academia and industry in the 1960s. It was inspired by earlier
languages designed by Grace Hopper.

1 i d e n t i f i c a t i o n d i v i s i o n .
2 program− id . Gauss .
3 data d i v i s i o n .
4 w o r k i n g− s t o r a g e s e c t i o n .
5 01 n p i c 9999 v a l u e z e r o s .
6 01 i p i c 9999 v a l u e z e r o s .
7 p r o c e d u r e d i v i s i o n .
8 p e r f o r m v a r y i n g i from 0 by 1 u n t i l i > 100
9 add i to n

10 end−perform
11 d i s p l a y n .
12 s t o p run .

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Pascal

Pascal is an imperative programming language designed for
structured programming by Niklaus Wirth in the 1970s. It was
widely used for teaching computing in the 1980s.

1 program g a u s s (output) ;
2 v a r
3 n : i n t e g e r ;
4 i : i n t e g e r ;
5 b e g i n
6 n :=0;
7 f o r i := 0 to 100 do
8 n:= n + i ;
9 w r i t e (n) ;

10 end .

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Ada

Ada is an imperative and object oriented programming language
designed for object oriented and structured programming by CII
Honeywell Bull in the 1970s. It was named after Ada Lovelace.

1 w i t h T e x t I o ;
2 p r o c e d u r e Sum100 i s
3 N : N a t u r a l := 0 ;
4 b e g i n
5 f o r I i n 1 . . 100 l o o p
6 N := N + I ;
7 end l o o p ;
8 T e x t I o . P u t l i n e (N a t ur a l ’ Image (N)) ;
9 end Sum100 ;

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Perl

Perl is a scripting language designed for shell programming by
Unisys in the 1980s.

1 my $n = 0 ;
2 f o r (my $ i = 1 ; $ i <= 1 0 0 ; $ i++) { $n = $n + $ i ; }
3 p r i n t $n ;

Introduction Machine Code Programming Languages Conclusion

Programming Languages

SmallTalk

SmallTalk is an object oriented programming language designed for
education by Xerox PARC in the 1970s.

1 m := 0 .
2 0 to : 100 do : [: i | m := m + i .]
3 m p r i n t N 1 .

Introduction Machine Code Programming Languages Conclusion

Programming Languages

Prolog

Prolog is logic programming language designed for computational
linguistic by Alain Colmerauer and Philippe Roussel in the 1970s.
It was widely used for artificial intelligence in the 1980s and 1990s.

1 :− sum (1 00 , R) , w r i t e l n (R)
2 sum (0 , 0) .
3 sum (I , J) :− I I i s I − 1 , sum (I I , JJ) , J i s I + JJ .

Introduction Machine Code Programming Languages Conclusion

Bugs

Computers Err

Compile-time error: Some errors are caught by the compiler.

Runtime error: Some errors are caught by the operating
system or interpreter or cause the application or system to
crash at runtime.

Some errors simply result in unwanted (and sometimes
undetected) behaviours.

Introduction Machine Code Programming Languages Conclusion

Bugs

Harvard University Mark II Computer
group’s 1947 log book, entry
attributed to
Grace Hopper (December 9, 1906 -
January 1, 1992).

Introduction Machine Code Programming Languages Conclusion

Bugs

Where could the Bug Be?

Errors in hardware, operating systems, compilers, interpreters and
commercial application software occur. They are well publicized
when discovered and fixed in the following versions (in particular
when they can be security threats: see “Top 25 Most Dangerous
Software Errors” http://cwe.mitre.org/top25).

Hardware errors are the rarest but occur: The Pentium FDIV bug
discovered by Professor Thomas R. Nicely in October 1994 - ”An
error in a lookup table created the infamous bug in Intel’s latest
processor”, by Tom R. Halfhill, BYTE (March 1995).

Errors can be due to interactions between components, for
instance in operating systems, the interaction between drivers and
applications.

Introduction Machine Code Programming Languages Conclusion

Attribution

Attribution

The images and media files used in this presentation are either in
the public domain or are licensed under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published
by the Free Software Foundation, the Creative Commons
Attribution-Share Alike 3.0 Unported license or the Creative
Commons Attribution-Share Alike 2.5 Generic, 2.0 Generic and 1.0
Generic license.

	Introduction
	Introduction

	Machine Code
	Machine Code

	Programming Languages
	Programming Languages

	Conclusion
	Bugs
	Attribution

