
Introduction FSA TM PDA and LBA Regular Expressions Conclusion

10. Finite Automata and Turing Machines

Frank Stephan

March 20, 2014

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Introduction

Alan Turing’s 100th Birthday

“Alan Turing was a completely
original thinker who shaped the
modern world, but many people
have never heard of him.
Before computers existed, he
invented a type of theoretical
machine now called a Turing
Machine, which formalized what
it means to compute a number.”
Posted on Google by Jered
Wierzbicki and Corrie Scalisi,
Software Engineers, and Sophia
Foster-Dimino, Doodler

23 June 1912 – 7 June 1954

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Introduction

Google Doodle and Alan Turing’s 100th Birthday

“Our doodle for his 100th birthday shows a live action Turing
Machine with twelve interactive programming puzzles.”

Alan Turing’s 100th Birthday

http://www.google.com/doodles/alan-turings-100th-birthday

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Introduction

The Quest for the Universal Machine

In order to study and understand what computer can and cannot
do we need a mathematical model of computers, algorithms and
computation.

The Quest only Begins

The λ-calculus was introduced by Alonzo Church in the 1932. The
Turing machine was invented in 1936 by Alan Turing. Emil Post
proposed Post canonical systems. Many other systems have been
proposed since. More and more refined ones are being studied.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Introduction

Church-Turing Thesis

The Church-Turing Thesis is a conjecture that the functions that
can be computed (mechanically) by an algorithm are exactly those
functions that can be computed by a Turing Machine (or by
λ-calculus or by Post systems, or as counter programs, or as
recursive functions as proved by Rosser in 1939, or · · ·).

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Introduction

Recursive Functions

Stephen Kleene and logician John Rosser (students of Church)
defined, following up some ideas by Gödel, a class of mathematical
functions on natural numbers whose values can be calculated by
recursion.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

Non Deterministic Finite State Automaton (NDFA)

A finite state automaton is a quintuple (Q,Σ, δ, q0,F) where Q is
set of states, Σ is a finite alphabet or set of symbols, δ is a
transition relation (Q × Σ× Q), q0 is the initial state and F is a
set of accepting states.

q0start q1 q2 q3

0,1

0 1 1

Language

A language on the alphabet Σ is a set of strings of symbols of Σ.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q1 q2 q3

0,1

0 1 1

Q = {q0, q1, q2, q3}
Σ = {0, 1}
δ = {(q0, 0, q1), (q1, 1, q2), (q2, 1, q3), (q3, 0, q3), (q3, 1, q3)}
q0
F = {q3}
Load the dfa into a browser (additional input slide07)

http://www.comp.nus.edu.sg/~gem1501/code/dfa.html

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

Lockedstart Unlocked

push
swipe card

swipe card

push

Turnstile

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

Recognizers

An automaton recognizes a language. It accepts (or generates)
strings of symbols of that language.

q0start q2

q1

q3

0

1

0

1

1

0

1

This non-deterministic
automaton accepts strings such
as 0, 01, 011, 01111, 11, 111111,
10 and 101111.

It recognizes the language
L = (01∗) | (111∗) | (01∗) |
(101∗)

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start

This automaton accepts the empty string ε. It recognizes the
language L = {ε}

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

Deterministic Finite State Automaton (DFA)

A finite state automaton is a quintuple (Q,Σ, δ, q0,F) where Q is
set of states, Σ is a finite alphabet or set of symbols, δ is a
transition function (Q × Σ→ Q), q0 is the initial state and F is a
set of accepting states.

q0start q1 q2 q3

0

0

1

0 1

This DFA accepts all words consiting of arbitrary many 01 followed
by 00 followed by arbitrary many 0 followed by up to one 1.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

This automaton accepts strings
such as 0, 11, 10, 1000,
1011111100 and 101111111.

It recognizes the language
L = (101∗0)∗((01∗) | (111∗) |
(101∗))

Load the dfa into a browser
(additional input slide13)

http://www.comp.nus.edu.sg/~gem1501/code/dfa.html
http://www.comp.nus.edu.sg/~gem1501/code/dfa.html

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

Equivalence (Büchi’s Theorem)

For every non deterministic finite state automaton there exists a
deterministic finite state automaton that recognizes the same
language.

Converting an NFA to a DFA

Each state in the DFA corresponds to a set of NFA states.

Merge the initial states into one.

For each transition create a state that merges all the
reachable states.

Repeat the procedure for the newly created states.

States that contain an accepting state are accepting.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→

q0

q1, q3 q2
} q1, q3 none q1, q3

q2 q3 q1
} q3 none q3
} q1 none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→ q0 q1, q3 q2

} q1, q3 none q1, q3
q2 q3 q1

} q3 none q3
} q1 none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→ q0 q1, q3 q2

}

q1, q3

none q1, q3
q2 q3 q1

} q3 none q3
} q1 none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→ q0 q1, q3 q2
} q1, q3 none q1, q3

q2 q3 q1
} q3 none q3
} q1 none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→ q0 q1, q3 q2
} q1, q3 none q1, q3

q2

q3 q1
} q3 none q3
} q1 none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→ q0 q1, q3 q2
} q1, q3 none q1, q3

q2 q3 q1

} q3 none q3
} q1 none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→ q0 q1, q3 q2
} q1, q3 none q1, q3

q2 q3 q1

}

q3

none q3
} q1 none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→ q0 q1, q3 q2
} q1, q3 none q1, q3

q2 q3 q1
} q3 none q3

} q1 none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→ q0 q1, q3 q2
} q1, q3 none q1, q3

q2 q3 q1
} q3 none q3

}

q1

none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1

q3

0

1

0

1

1

0

1

Type New State 0 1

→ q0 q1, q3 q2
} q1, q3 none q1, q3

q2 q3 q1
} q3 none q3
} q1 none q1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1, q3

q1

q3

1 1

00

1

1

1

q0start q2

q1, q3

1

10
0

1

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

q0start q2

q1, q3

1

10
0

1

This automaton accepts strings
such as 0, 01, 011, 01111, 11,
111111, 10 and 101111.

It recognizes the language
L = (01∗) | (111∗) | (101∗)

Exponential

The DFA can have exponentially
many more states than the NFA.

Load the dfa into a browser
(additional input: slide26)

http://www.comp.nus.edu.sg/~gem1501/code/dfa.html
http://www.comp.nus.edu.sg/~gem1501/code/dfa.html

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

Regular Languages – Further Examples

Set of strings extending a fixed word;

Set of strings lexicographic before a fixed word;

Set of decimal numbers being a multiple of a fixed number p;

Set of decimal numbers where the digit sum is at least 5;

Set of decimal numbers where the digit sum is a multiple of a
fixed number p;

Set of decimal numbers containing exactly 8 times a 1 and
three times a 2 in their representation;

Any union or intersection or concatenation of some sets of the
above form.

Here “decimal number” means natural number written with digits
from “0” to “9”.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Finite State Automata

Regular Languages

The languages recognized by finite state automata are regular
languages.

Regular Languages

Regular languages over an alphabet Σ is the smallest set of
languages that contains the empty (∅) and the singleton languages,
and is closed under union, concatenation and Kleene star.

Singleton: a

Union: a | b

Concatenation: ab

Kleene star: a*

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

Turing Machine

A Turing machine is a sextuple (Q,Σ, b, δ, q0,F) where Q is set of
states, Σ is a finite alphabet or set of symbols, b is a blank symbol,
δ is a transition function (Q × Σ→ Q × Σ× {Right, Left}), q0 is
the initial state and F is a set of accepting states.

q0start q1

q2 q3

(t;1;R)

(t;0;R)

(0;0;R)

(t;0;R)

(t;1;L)

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

B

Input Tape

t t t t t t . . . t t . . .

(q0,t)→ (q1, 1, right)
(q1,t)→ (q2, 0, right)
(q1, 0)→ (q2, 0, right)
(q2,t)→ (q3, 0, right)
(q3,t)→ (q1, 1, left)

Finite Control

q0 Head

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

B

Input Tape

1 t t t t t . . . t t . . .

(q0,t)→ (q1, 1, right)
(q1,t)→ (q2, 0, right)
(q1, 0)→ (q2, 0, right)
(q2,t)→ (q3, 0, right)
(q3,t)→ (q1, 1, left)

Finite Control

q1 Head

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

B

Input Tape

1 0 t t t t . . . t t . . .

(q0,t)→ (q1, 1, right)
(q1,t)→ (q2, 0, right)
(q1, 0)→ (q2, 0, right)
(q2,t)→ (q3, 0, right)
(q3,t)→ (q1, 1, left)

Finite Control

q2 Head

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

B

Input Tape

1 0 0 t t t . . . t t . . .

(q0,t)→ (q1, 1, right)
(q1,t)→ (q2, 0, right)
(q1, 0)→ (q2, 0, right)
(q2,t)→ (q3, 0, right)
(q3,t)→ (q1, 1, left)

Finite Control

q3 Head

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

B

Input Tape

1 0 0 1 t t . . . t t . . .

(q0,t)→ (q1, 1, right)
(q1,t)→ (q2, 0, right)
(q1, 0)→ (q2, 0, right)
(q2,t)→ (q3, 0, right)
(q3,t)→ (q1, 1, left)

Finite Control

q1 Head

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

q0start q1

q2 q3

(t;1;R)

(t;0;R)

(0;0;R)

(t;0;R)

(t;1;L)

Let us try it with JFLAP

http://www.comp.nus.edu.sg/~gem1501/code/e3.jff

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

Recursively Enumerable Languages

The languages recognized by Turing machine are recursively
enumerable languages.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

Universal Turing Machine

A Turing machine can simulate another Turing machine.
Both the program and the input are input of this universal Turing
machine.

Turing Machine = Algorithm?

There is much more to algorithms than to Turing machines.
For instance we can consider two different algorithms for Euclidean
algorithm (GCD by subtraction versus division).

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Turing Machines

Non Deterministic Turing Machine

A Turing machine is non deterministic if, instead of a transition
function, it uses a transition relation.

q0start q1

q2 q3

(t;1;R)

(t;0;R)
(t;0;R)

(0;0;R)

(t;0;R)

(t;1;L)

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Push-down Automata

Push-down Automaton

A push-down automaton uses a stack.

Context Free Languages

The languages recognized by push-down automata are context free
languages.

Typical Example

{0n1n | n ∈ N ∧ n > 1}

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Linear Bounded Automata

Linear Bounded Automaton

A linear bounded automaton is a Turing machine restricted to work
between two bounds.

Context Sensitive Languages

The languages recognized by Turing machine are context sensitive
languages.

Typical Example

{0n1n2n | n ∈ N ∧ n > 1}

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Linear Bounded Automata

Chomsky Hierarchy

Grammar Language Machine

Type-0 Recursively enumerable Turing machine
Type-1 Context-sensitive Linear-bounded

Turing machine
Type-2 Context-free Pushdown automaton
Type-3 Regular Finite state automaton

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Java Regular Expressions

Regular Expressions

We describe here the regular expressions of
java.util.regex.Pattern. They are used in JavaScript and in
JEdit (for search and replace), for instance.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Java Regular Expressions

Character Classes

a character matches itself.

[abc] matches any character in the set of a, b and c.

[^abc] matches any character not in the set of a, b and c.

[a-z] matches any character in the range a to z, inclusive.

Concatenation and Branching

Let R and S be regular expressions.

RS matches whatever the expression R concatenated with S

matches; for example [a-z][aeiou] matches a letter
followed by a vowel.

R|S matches whatever the expression R or the expression S

matches; for example aa|ee|ii|oo|uu matches all identical
double vowels.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Java Regular Expressions

Repetitions

* matches the empty string or any number of repetitions of
the preceding expression.

+ matches one or more repetitions of the preceding expression.

? matches the preceding expression or the null string.

{m} matches exactly m repetitions of the one-character
expression.

Stingy (Minimal) Matching

If a repeating operator (above) is immediately followed by a ?, the
repeating operator will stop at the smallest number of repetitions
that can complete the rest of the match.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Java Regular Expressions

One-Character Operators

. matches any single character.

\d matches any decimal digit.

\D matches any non-digit.

\n matches the newline character.

\s matches any whitespace character.

\S matches any non-whitespace character.

\t matches a horizontal tab character.

\w matches any word (alphanumeric) character.

\W matches any non-word (alphanumeric) character.

\\ matches the backslash (“\”) character.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Java Regular Expressions

Positional Operators

^ matches at the beginning of a line.

$ matches at the end of a line.

\B matches at a non-word break.

\b matches at a word boundary.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Java Regular Expressions

Irregular Subexpressions

(abc) and (?:...) are used for grouping.

(abc) matches whatever the expression abc would match,
and saves it as a subexpression.

$n where 0 < n < 10, substituted with the text matched by
the nth subexpression.

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Java Regular Expressions

Examples

“Gaul” The substring “Gaul”

“a | b” “a” or “b”

“e+” One or more “e”

“(\s[a-z]{3}\s)” Three lowercase letters between spaces

“a[a-z]*e” An “a” followed by letters followed by an “e”

“a[z-z]*?e” An “a” followed by letters followed by an “e”

1 va r pa t t=new RegExp (” (a | b) b∗” , ”mg”) ;
2 va r pa t t=/” (a | b) b∗”/”mg” ;
3 . . .
4 r e s u l t 1=pa t t . t e s t (t e x t) ;
5 r e s u l t 2=t e x t . r e p l a c e (patt , ”$1”) ;

Load this HTML file into a browser

http://www.comp.nus.edu.sg/~gem1501/code/regex.html

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Alan Turing’s Legacy

“ Turing’s importance extends far beyond Turing Machines. His
work deciphering secret codes drastically shortened World War II
and pioneered early computer technology. He was also an early
innovator in the field of artificial intelligence, and came up with a
way to test if computers could think – now known as the Turing
Test. Besides this abstract work, he was down to earth; he
designed and built real machines, even making his own relays and
wiring up circuits. This combination of pure math and computing
machines was the foundation of computer science.
As a human being, Turing was also extraordinary and original. He
was eccentric, witty, charming and loyal. He was a marathon
runner with world class time. He was also openly gay in a time and
place where this was not accepted. While in many ways the world
was not ready for Alan Turing, and lost him too soon, his legacy
lives on in modern computing.”

Introduction FSA TM PDA and LBA Regular Expressions Conclusion

Attribution

Attribution

The images and media files used in this presentation are either in
the public domain or are licensed under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published
by the Free Software Foundation, the Creative Commons
Attribution-Share Alike 3.0 Unported license or the Creative
Commons Attribution-Share Alike 2.5 Generic, 2.0 Generic and 1.0
Generic license.

	Introduction
	Introduction

	FSA
	Finite State Automata

	TM
	Turing Machines

	PDA and LBA
	Push-down Automata
	Linear Bounded Automata

	Regular Expressions
	Java Regular Expressions

	Conclusion
	Attribution

