
CS4234: Optimization Algorithms Lecture 3

Steiner Trees
Lecturer: Seth Gilbert August 25, 2015

Abstract

Today we consider a new network construction problem where we are given a set of nodes in a graph to connect.
A Steiner Tree is a subgraph that connects a set of required terminals, and we want to find the Steiner Tree with
minimum cost. We see three variants: the Euclidean Steiner Tree, the Metric Steiner Tree, and the General Steiner
Tree Problem, and show how to approximate each of these.

1 Steiner Trees

In this section, we will define the Steiner Tree problem. We begin with a well-known problem, i.e., that of a minimum
spanning tree, and then generalize from there.

1.1 Minimum Spanning Trees

Imagine you were given a map containing a set of cities, and were asked to develop a plan for connecting these cities
with roads. Building a road costs SGD1,000,000 per kilometer, and you want to minimize the length of the highways.
Perhaps the map looks like this:

������ ������

������

������

������

Figure 1: How do you connect the cities with a road network as cheaply as possible?

This is a standard network design question, and the solution is typically to find the minimum cost spanning tree. Recall
that the problem of finding a minimum spanning tree is defined as follows:

Definition 1 Given a graph G = (V,E) and edge weights w : E → R, find a subset of the edges E′ ⊆ E such that:
(i) the subgraph (V,E′) is a spanning tree, and (ii) the sum of edge weights

∑
e∈E′ w(e) is minimized.

We can then solve the road network problem described above using the following general approach:

• For every pair of location (u, v) calculate the distance d(u, v).

• Build a graph G = (V,E) where V is the set of locations, and for every pair of nodes u, v ∈ V , define edge
e = (u, v) with weight d(u, v). This results in a complete graph.

1

������ ������

������

������

������

Figure 2: On the left is the graph that results from finding a minimum spanning tree. On the right is an alternate method of
connecting the cities with a road network, by creating a new intersection in the middle.

• Find a minimum spanning tree of G using Kruskal’s Algorithm (or Prim’s Algorithm). (Recall, Kruskal’s
Algorithm iterates through the edges from lightest to heaviest, adding an edge if it does not create a cycle.)

• Return the spanning tree.

In this case, you will get a road network that looks something like on the left side of Figure 2.

1.2 Euclidean Steiner Trees

Is this, however, really the best solution to the problem? What about the road network on the right side of Figure 2?
Notice that this road network is not actually connected in the original graph! The two edges (B,E) and (C,D) do not
share an endpoint. Instead, they intersect at some new point in the middle of nowhere. Thus the minimum spanning
tree approach will never find this solution.

The goal, then, of the Euclidean Steiner Tree is to find the best way to connect the cities, even when you are allowed
to add new nodes to the graph (e.g., the new intersection above). Formally, we define it as follows:

Definition 2 Assume you are given a set R of n distinct points in the Euclidean (2-dimensional) plane. Find a set of
points S and a spanning tree T = (R∪S,E) such that that the weight of the tree is minimized. The weight of the tree
is defined as: ∑

(u,v)∈E

|u− v| ,

where |u − v| refers to the Euclidean distance from u to v. The resulting tree is called a Euclidean Steiner tree and
the points in S are called Steiner points.

As you can see above, adding new points to the graph results in a spanning tree of lower cost! The goal of the Euclidean
Steiner Tree problem is to determine how much we can reduce the cost.

Unlike the problem of finding a minimum spanning tree, finding a minimum Euclidean Steiner tree is NP-hard. We
do, however, know some facts about the structure of any optimal Euclidean Steiner tree:

• Each Steiner point in an optimal soultion has degree 3.

• The three lines entering a Steiner point form 120 degree angles, in an optimal solution.

• An optimal solution has at most n− 2 Steiner points.

2

As an exercise, prove these facts to be true. (Hint: given a Steiner tree that does not satisfy these properties, show how
to replace the Steiner points with a version that does satisfy these requirements.)

1.3 Metric Steiner Trees

It is natural, at this point, to generalize beyond the Euclidean plane. Assume you are given n points, as before. In
addition you are given a distance function d : V × V → R which gives the pairwise distance between any two nodes
(u, v). If the points are in the Euclidean plane, we can simply define d(u, v) to be the Euclidean distance between u
and v. However, the distance function d can be any metric function. Recall the definition of a metric:

Definition 3 We say that function d : V × V → R is a metric if it satisfies the following properties:

• Non-negativity: for all u, v ∈ V , d(u, v) ≥ 0.

• Identity: for all u ∈ V , d(u, u) = 0.

• Symmetric: for all u, v ∈ V , d(u, v) = d(v, u).

• Triangle inequality: for all u, v, w ∈ V , d(u, v) + d(v, w) ≥ d(u,w).

(Technically, this is often referred to as a pseudometric, since we allow distances d(u, v) for u 6= v to equal 0.) The
key aspect of the distance function d is that it must satisfy the triangle inequality.

If we want to think of the input as a graph, we can define G = (V,E) where V is the set of points, and E is the set of
all
(
n
2

)
pairs of edges, where the weight of edge (u, v) is equal to d(u, v).

As in the Euclidean case, we can readily find a minimum spanning tree of G. However, the Steiner Tree problem is to
find if there is any better network, if we are allowed to add additional points. Unlike in the Euclidean case, however,
it is not immediately clear which points can be added. Therefore, we are also given a set S of possible Steiner points
to add. The goal is to choose some subset of S to minimize the cost of the spanning tree. The Metric Steiner Tree
problem is defined more precisely as follows:

Definition 4 Assume we are given:

• a set of required nodes R,

• a set of Steiner nodes S,

• a distance function d : (R ∪ S)× (R ∪ S)→ R that is a distance metric on the points in R and S.

The Metric Steiner Tree problem is to find a subset S′ ⊂ S of the Steiner points and a spanning tree T = (R∪S′, E)
of minimum weight. The weight of the tree T = (R ∪ S′, E) is defined to be:∑

(u,v)∈E

d(u, v) .

1.4 General Steiner Tree

At this point, we can generalize even further to the case where d is not a distance metric. Instead, assume that we are
simply given an arbitrary graph with edge weights, where some of the nodes are required and some of the nodes are
Steiner points.

Definition 5 Assume we are given:

3

• a graph G = (V,E),

• edge weights w : E → R,

• a set of required nodes R ⊆ V ,

• a set of Steiner nodes S ⊆ V .

Assume that V = R ∪ S. The General Steiner Tree problem is to find a subset S′ ⊂ S of the Steiner points and a
spanning tree T = (R ∪ S′, E) of minimum weight. The weight of the tree T = (R ∪ S′, E) is defined to be:∑

(u,v)∈E

d(u, v) .

1.5 Summarizing the different variants

So far, we have defined three variants of the Steiner Tree problem:

• Euclidean: The first variant assumes that we are considering points in the Euclidean plane.

• Metric: The second variant assumes that we have a distance metric.

• General: The third variant allows for an arbitrary graph.

Notice that the General Steiner Tree problem is clearly a generalization of the Metric Steiner Tree problem. On the
other hand, if the set of Steiner points is retricted to be finite (or countable), then the Metric Steiner Tree problem is
not simply a generalization of the Euclidean Steiner Tree problem—the Euclidean Steiner Tree problem allows any
points in the plane to be a Steiner point!

All the variants of the problem are relatively important in practice. In almost any network design problem, we are
really interested in Steiner Trees, not simply minimum spanning trees. (One common example is VLSI layout, where
we need to route wires between components on the chip.)

All three variants of the problem are NP-hard. As an exercise, prove that the General Steiner Tree problem is NP-hard
by reduction from Set Cover. (Hint: think of the underlying elements as the required nodes and the sets as Steiner
nodes.)

2 Steiner Tree Approximation: Bad Examples

There is a simple and natural heuristic for solving the Steiner Tree problem: ignore all the Steiner nodes and simply
find a minimum spanning tree for the required nodes R. Does this find a good approximation? We will see that for the
Euclidean Steiner Tree problem and the Metric Steiner Tree problem, an MST is a good approximation of the optimal
Steiner Tree. However, for the General Steiner Tree problem, an MST is not a good approximation.

First, consider this example of the Euclidean Steiner Tree problem:

4

On the left, we are given an equilateral triangle with side-length 1. The minimum spanning tree for this triangle
includes any two of the edges, and hence has length 2 (as in the middle). However, the minimum Steiner Tree for the
triangle adds one Steiner point: the point in the middle of the triangle (as on the right). With this extra Steiner point,
now the total cost is

√
(3). (You can calculate this based on the fact that the angle in the middle is 120 degrees.) Thus,

a minimum spanning tree is, at best, a 2/
√

(3)-approximation of the optimal Euclidean Steiner tree. Is it always at
least a 2/

√
(3)-approximation of optimal? That remains an open conjecture. No one knows of any example that is

worse than the triangle.

Now consider the Metric Steiner Tree problem. Obviously, a minimum spanning tree still cannot be better than a
2/
√
(3)-approximation, since again we could consider the triangle with a single Steiner point in the middle. Now,

however, we can construct a better example.

Assume in this example that the distance between every pair of required nodes is 10. (I only drew the edges between
adjacent nodes, but the distance metric must define the distance between every pair of nodes.)

Here, we have three cases: a triangle, a square, and a pentagon. Each n-gon has n required nodes, where each pair
of nodes is connected by edges of length 10. (In the picture, I have only drawn the outer edges.) Each has a single
Steiner node in the middle. There is an edge from each required node to the Steiner node in the middle, and each of
these edges has length 5. Notice that this is not Euclidean: for example, the diagonal of a square would have length
10
√
(2), but here has only length 10. However, all the distance satisfy the triangle inequality. (Verify that this is true!)

For an n-gon where all distances are 10, a minimum spanning tree has exactly n − 1 edges, and hence has cost
10(n − 1). On the other hand, the minimum Steiner tree uses the Steiner node in the middle and has n edges, one
connecting the Steiner node to each required node. The total cost of the Steiner tree is 5n. Thus, the minimum spanning
tree is no better than a 2(n − 1)/n-approximation of the optimal spanning tree. As n gets large, this approaches a
2-approximation. We will later show that a minimum spanning tree is (at least) a 2-approximation of optimal.

Finally, it should now be clear that the minimum spanning tree is not a good approximation in general. Consider this
example:

5

In this case, just considering the three outer nodes as required, the minimum spanning tree has cost 6000. However,
the minimum Steiner tree, including the Steiner node in the middle, has cost 3. Moreover, this ratio can be made as
large as desired. Notice that this depends critically on the fact that the triangle inequality does not hold. That is, the
distances here are not a metric.

3 Metric Steiner Tree Approximation Algorithm

We are now going to show that, in a metric space, a minimum spanning tree is a good approximation of a Steiner tree.
This yields a simple algorithm for finding an approximately optimal Steiner tree, in the metric case: simply ignore the
Steiner points and return the minimum spanning tree!

Theorem 6 For a set of required nodes R, a set of Steiner nodes S, and a metric distance function d, the minimum
spanning tree of (R, d) is a 2-approximation of the optimal Steiner Tree for (R,S, d).

Proof Throughout the proof, we will use as an example the graph in Figure 3. Here we have a graph with six
required nodes (i.e., the blue ones) and two Steiner nodes (i.e., the red ones). All the edges drawn have distance 1; all
the other edges (undrawn) have distance 2.

Let T = (V,E) be the optimal Steiner tree, for some V ⊆ R ∪ S. For our example, we have drawn this optimal
Steiner tree in Figure 4.

The first step of the proof is to transform the tree T into a cycle C of at most twice the cost. We accomplish this by
performing a DFS of the tree T , adding each edge to the cycle as it is traversed (both down and up). Notice that the
cycle begins and ends at the root of the tree, and each edge appears in the cycle exactly twice: once traversing down
from a parent to a child, and once traversing up from a child to a parent. (Also notice that this cycle visits some nodes
multiple times: a node with x children in the tree will appear 2(x + 1) times, twice for each of the x + 1 adjacent
edges.)

In our example, the cycle C is as follows:

(a, g)→ (g, d)→ (d, g)→ (g, f)→ (f, g)→ (g, a)→ (a, h)→ (h, c)→ (c, h)→ (h, b)→ (b, h)→ (h, a)→ (a, e)→ (e, a)

Notice that this cycle has 14 edges, whereas the original tree has 7 edges and 8 nodes.

We have already defined the cost(T) =
∑

e∈E d(e). Similarly, the cost of cycle C is defined as cost(C) =∑
e∈C d(e). Since every edge in the tree T appears exactly twice in the cycle C, we know that cost(C) = 2cost(T).

In our example, we see that the cost of the original tree T is 8 and the cost of the cycle C is 16.

The cycle C contains both required nodes in R and Steiner nodes in S. We now want to remove all the Steiner nodes
from C, without increasing the cost of the cycle C. Find any two consecutive edges in the cycle (u, v) and (v, w)
where the intermediate node v is a Steiner node. (At this point, it does not matter whether u and w are required or
Steiner). Replace the two edges (u, v) and (v, w with a single edge (u,w), thus deleting the Steiner node v. We refer

6

Figure 3: Example for showing that a minimum spanning tree is a 2-approximation of the optimal Steiner tree, if the distances are
a metric. Assume that all edges not drawn have distnace 2. Verify that these distances satisfy the triangle inquality.

Figure 4: Example for showing that a minimum spanning tree is a 2-approximation of the optimal Steiner tree, if the distances are
a metric. Here we have drawn the optimal Steiner tree T .

to this procedure as “short-cutting v.” Notice that this replacement does not increase the cost of the cycle C, since
d(u,w) ≤ d(u, v)+ d(v, w)—by the triangle inequality. (Hint: always pay attention to where we use the assumption;
here is where the proof depends on the triangle inequality.) Continue short-cutting Steiner nodes until all the Steiner
nodes have been deleted from C.

In our example, the Steiner nodes to be removed are g and h. Thus, we update the cycle C as follows:

(a, d)→ (d, f)→ (f, a)→ (a, c)→ (c, b)→ (b, a)→ (a, e)→ (e, a)

This revised cycle now has cost: 2 + 1+ 2+ 2+ 2+ 2+ 2+ 2 = 15, which is no greater than the original cost of the
cycle C (which was 16).

We now have a cycle C where cost(C) ≤ 2cost(T). (Notice that the cost may have decreased during the short-cutting
process, but it could not have increased.) Moreover, this cycle visits every required node in R at least twice (and there
are no Steiner nodes in the cycle). The next step is to remove duplicates. Beginning at the root, traverse the cycle
labeling each node: the first time a node is visited, mark it new; mark every other instance of that node in the cycle as
old. (Mark the root node visisted at the beginning and end as new, also.) As with Steiner nodes, we now short-cut all

7

Figure 5: Example for showing that a minimum spanning tree is a 2-approximation of the optimal Steiner tree, if the distances are
a metric. Here we have drawn the cycle C after the Steiner nodes have been short-cut and the repeated nodes have been deleted.

the old nodes: find two edges (u, v) and (v, w) where v is an old node and replace those two edges in the cycle with a
single edge (u,w). As before, this does not increase the cost of the cycle.

In our example, the cycle C visits the nodes in the following order:

a→ d→ f→ a→ c→ b→ a→ e→ a

I have bolded the new nodes and colored them blue, including node a at the beginning and the end. I have colored the
old nodes red. This leaves two instances of node a to be shortcut. Once we shortcut past the old nodes, we are left
with the following cycle C:

(a, d)→ (d, f)→ (f, c)→ (c, b)→ (b, e)→ (e, a)

This cycle has cost 2+ 1+ 2+ 2+ 2+ 2 = 11, which is no greater than the original cost of the cycle (which was 16).
This revised cycle C is depicted in Figure 5.

We now have a cycle C where cost(C) ≤ 2cost(T), and each required node in R appears exactly once. Finally,
remove any one arbitrary edge from C. (Again, this cannot increase the cost of C.) At this point, C is a path which
traverses each node in the graph exactly once. That is, C is a spanning tree with cost at most 2cost(T). In our example,
the spanning tree C (where one arbitrary edge of the cycle has been deleted is):

(a, d)→ (d, f)→ (f, c)→ (c, b)→ (b, e) .

This is a spanning tree with cost 9.

Let M be the minimum spanning tree of the required nodes R. Since M is the spanning tree of minimum cost, clearly
cost(M) ≤ cost(C) ≤ 2cost(T). From this we conclude that M is a 2-approximation for the minimum cost Steiner
tree of R ∪ S.

To summarize, the proof goes through the following steps:

1. Begin with the optimal Steiner Tree T .

8

2. Use a DFS traversal to generate a cycle of twice the cost.

3. Eliminate the Steiner nodes and repeated required nodes, without increasing the cost. (Use the assumption that
d satisfies the triangle inequality.)

4. Remove on edge from the cycle, yielding a spanning tree of cost at most twice the cost of T .

5. Observe that the minimum spanning tree can have cost no greater than the constructed spanning tree, and hence
no greater than twice the cost of T .

This implies that the minimum spanning tree has cost at most twice the cost of T , the optimal spanning tree.

One question is whether this bound is tight. We know that the minimum spanning tree is no better than a 2(1− 1/n)
approximation, and we have proved here that it is at least a 2-approximation. On the problem set this week, you will
find a matching bound.

4 General Steiner Tree Approximation Algorithm

In general, a minimum spanning tree is not a good approximation for the general Steiner Tree problem. Here we want
to show how to find a good approximation in this case. Instead of developing an algorithm from scratch, we are going
to use a reduction. Part of the goal is to demonstrate how to use reductions when we are talking about approximation
algorithms.

The typical process, with a reduction, is something like as follows:

• Begin with an instance of the general Steiner Tree problem.

• Via the reduction, construct a new instance of the Metric Steiner tree problem.

• Solve the Metric Steiner tree problem using our existing algorithm.

• Convert the solution to the Metric Steiner tree instance back to a solution for the general Steiner Tree problem.

The key to the analysis would typically be a lemma that says something like, “If we have an algorithm for finding
an optimal solution to the Metric Steiner tree problem, then our construction/conversion process yields an optimal
solution to the General Steiner tree problem.”

With approximation algorithms, however, you have to be a little more careful. Normally, it is sufficient to show that an
optimal solution to the translated problem yields an optimal solution to the original problem. However, we are looking
here at approximation algorithms. Hence we need to show that, even though we are only finding an approximate
solution to the Metric Steiner tree problem, that still yields an approximate solution to the General Steiner tree problem.
A reduction that preserves approximation ratios is known as a gap-preserving reduction.

Assume we are given a graph G = (V,E) and non-negative edge weights w : E → R
≥0. The nodes V are divided

into required nodes R and Steiner nodes S. Our goal is to find a minimum cost Steiner tree. There are no restrictions
on the weights w (i.e., they do not necessarily satisfy the triangle inequality).

Defining a metric. In order to perform the reduction, we need to construct an instance of the Metric Steiner tree
problem. In particular, we need to define a metric. The specific distance metric we are going to define is known as the
metric completion of G.

Definition 7 Given a graph G = (V,E) and non-negative edge weights w, we define the metric completion of G to
the be the distance function d : V × V → R constructed as follows: for every u, v ∈ V , define d(u, v) to be the
distance of the shortest path from u to v in G with respect to the weight function w.

9

Notice that the metric completion d provides distances between every pair of nodes, not just the edges in E. Also
notice that, computationally, d is relatively easy to calculate, e.g., via an All-Paris-Shortest-Paths algorithm (such as
Floyd-Warshall, which runs in O(n3) time). Critically, d is a metric:

Lemma 8 Given a graph G = (V,E), the metric completion d is a metric with respect to V .

Proof Since all the edge weights are non-negative, clearly d(u, v) ≥ 0 for all u, v ∈ V . Similarly, d(u, u) = 0, by
definition. Since the original graph is undirected, the shortest path from u to v is also the shortest path from v to u;
hence d(u, v) = d(v, u).

The most interesting property is the triangle inequality. We need to show that for all nodes u, v, w ∈ V , the distances
d(u, v) + d(v, w) ≥ d(u,w). Assume, for the sake of contradiction, that this inequality does not hold, i.e., d(u, v) +
d(v, w) < d(u,w). Let Pu,v be the shortest path from u to v in G (with respect to the weight function w), and let
Pv,w be the shortest path from v to w (with respect to the weight function w). Consider the path Pu,v + Pv,w, which
is a path from u to w of length d(u, v) + d(v, w). This path is of length less than d(u,w). But that is a contradiction,
since d(u,w) was defined to be the length of the shortest path from u to w.

From this, we conclude that d satisfies the triangle inequality, and hence is a metric.

In the following, we will sometimes be calculating the cost with respect to the metric completion d, and sometimes
with respect to the edge weights w. To be clear, we will use costd to refer to the former and costw to refer to the latter.
Similarly, we will refer to graph Gg when talking about the General Steiner tree problem, and Gm when talking about
the metric Steiner tree problem.

Converting from General to Metric. We can now reduce the original instance of the General Steiner tree problem
to an instance of the Metric Steiner tree problem. Assume we have an algorithm A that finds an α-approximate
minimum cost Metric Steiner tree.

• Given a graph Gg = (V,Eg) with requires nodes R, Steiner nodes S, and a non-negative edge weight func-
tion w:

• Let d be the metric completion of Gg .

• Consider the Metric Steiner tree problem: (R,S, d).

• Let Tm = A(R,S, d) be the α-approximate minimum cost Metric Steiner tree.

At this point, we have converted our General Steiner tree problem into a Metric Steiner tree problem, and solved it
using our existing approximation algorithm.

Converting from Metric back to General. We are not yet done, however, since Tm is defined in terms of edges
that may not exist in Gg , and in terms of a different set of costs. We need to convert the tree Tm back into a tree in
Gg .

For every edge e = (u, v) in the tree Tm, let pe be the shortest path in Gg from u to v. Let P =
⋃

e∈T pe, i.e., the set
of all paths that make up the tree Tm. Notice that some of these paths may overlap.

Define the cost of a path in Gg (with respect to w) to be the sum of the costs of the edge weights, i.e., costw(p) =∑
e∈p w(e). Notice that the cost of a path in Gg is with respect to edge weights, while the cost of the tree Tm is with

respect to the metric completion d. (This difference is because we are converting back from the metric to the general
problem.) If e = (u, v) is an edge in the tree Tm, then costw(pe) = d(u, v).

10

Consider all the paths pe ∈ P , i.e., for every edge e in the tree Tm: add every edge that appears in any path pe ∈ P to
a set E′. Notice that the graph G′ = (V,E′) is connected, since the original tree Tm was connected and if there was
an edge (u, v) in Tm then there is a path connecting u to v in E′. Also, notice that the cost of all the edges in E′ (with
respect to w) is no greater than the cost of all the edges in Tm (with respect to d), since each path pe costs the same
amount as the edge e in Tm.

Finally, we need to remove any cycles from the graph (V,E′) so that we have a spanning tree. Let T g be the minimum
spanning of (V,E′). The tree T g in the graph Gg = (V,Eg) with edge weights w has cost no greater than the tree Tm

with edge weights d.

Analysis. To analyze this, we need to prove two key lemmas (left as an exercise). Notice that you need to prove two
things: you need to relate the solution in the metric version to OPT in the general version, and you also need to relate
the final solution in the general version to the solution found in the metric version.

Lemma 9 Let OPT g be the optimal minimum cost Steiner tree for Gg . Then costd(Tm) ≤ α · costw(OPT g).

Lemma 10 Let T g be the Steiner tree calculated by converting Tm back to graphGg . Then costw(T g) ≤ costd(Tm)

Putting these lemmas together, we get our final result:

Theorem 11 Given an α-approximation algorithm for finding a Metric Steiner tree, we can find an α-approximation
for a General Steiner tree.

Proof Assume we have a graph Gg = (V,Eg) with required nodes R, Steiner nodes S, and a non-negative edge
weight functionw. Let Tm be an α-approximate Steiner tree for (R,S, d), where d is the metric completion ofGg . Let
T g be the spanning tree constructed above by converting the edges in Tm into paths in Gg = (V,Eg) and removing
cycles. We will argue that T g is an α-approximation of the minimum cost spanning tree for G.

First, we have shown that costd(Tm) ≤ α · costw(OPT g). Second, we have shown that costw(T g) ≤ costd(T
m).

Putting the two pieces together, we conclude that costw(T g) ≤ α·costw(OPT g), and hence T g is an α-approximation
for the minimum cost Steiner tree for G with respect to w.

5 Questions

1. Prove that the General Steiner Tree problem is NP-hard. (Hint: reduce from set cover.)

2. Prove Lemma 9 and Lemma 10.

3. Prove that a minimum spanning tree is also a 2-approximation for the Euclidean Steiner Tree problem. How do
the results extend to higher dimensional Euclidean spaces, e.g., 3-dimensional Euclidean Steiner Trees? What
about d-dimensional Euclidean Steiner Trees?

4. Give an integer linear program for solving the minimum spanning tree problem. It is okay if your ILP has an
exponential number of constraints.

5. Assume that edges are directed. How would you defined a directed version of the Steiner Tree problem? Do the
approximation algorithms presented today still work?

11

