CS5234 Combinatorial and Graph Algorithms

Network Flows and Cuts

Types of Graph Problems

- 1. Distances: *How to get from here to there?*
 - Single-source shortest paths
 - All-pairs shortest paths
- 2. Spanning trees: *How do I design a network?*
 - Minimum/maximum spanning tree
 - Steiner tree
 - Travelling salesman
- 3. Network flows: *How is my network connected?*

Roadmap

Network Flows

- a. Network flows defined
- b. Ford-Fulkerson algorithm
- c. Max-Flow / Min-Cut Theorem

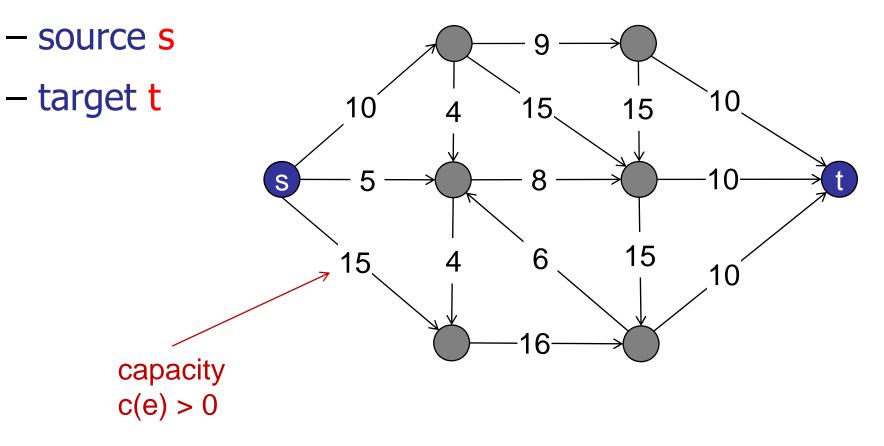
Network Flow Problems

Examples:

- Transportation problems
- Distributed network reliability
- Network attacks
- Project selection
- Matching and assignment problems
- Image segmentation
- Sport's teams prospects

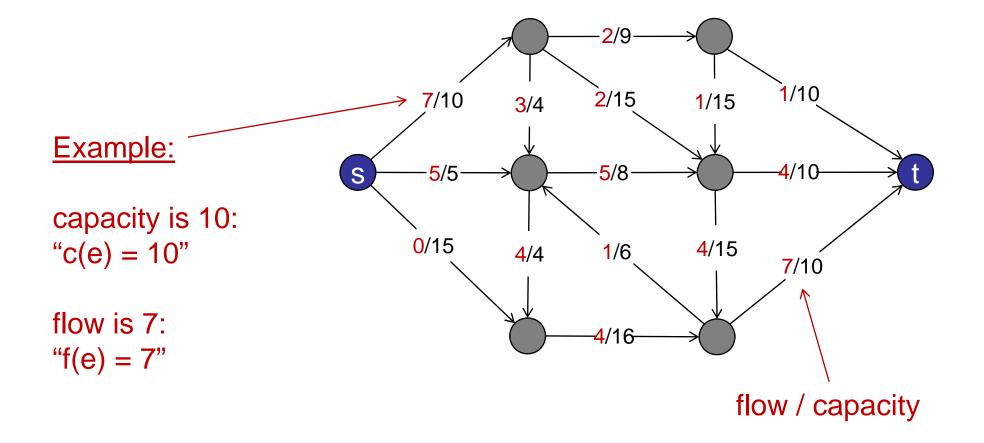
Input:

- directed graph G = (V,E)
- edge capacities c(e)



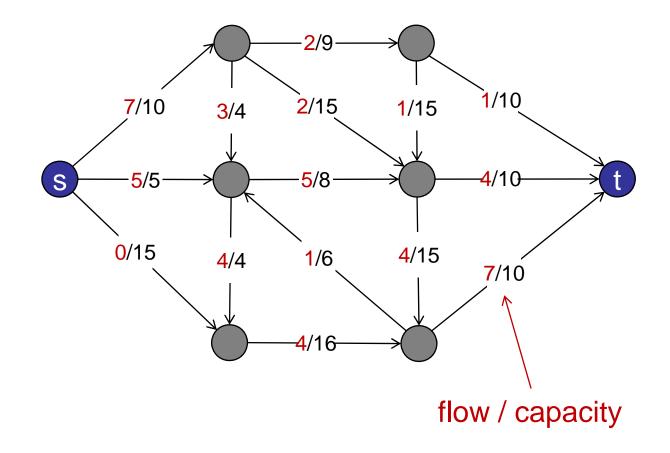
Output: Flow

- Assignment of flow f to each edge



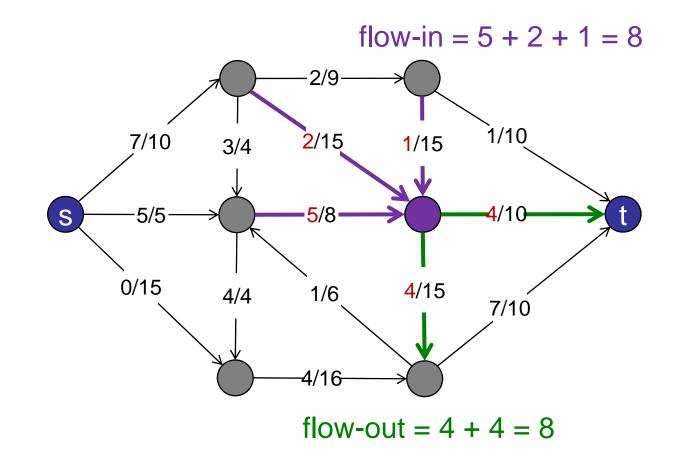
Output: Flow

- Flow is not negative: for every edge e, $0 \le f(e)$
- Flow \leq capacity: for every edge e, f(e) \leq c(e)



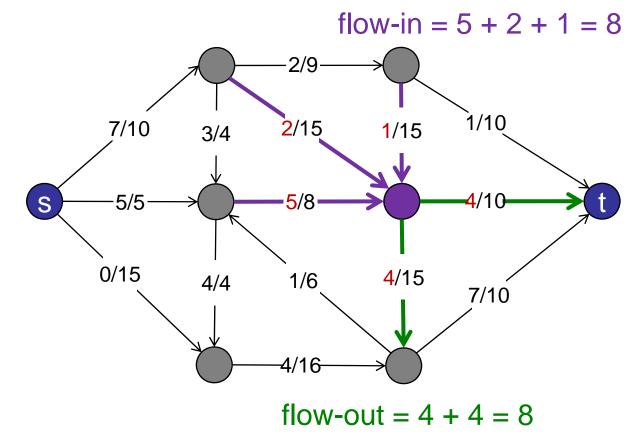
Equilibrium constraint:

- For every node: flow-in = flow-out



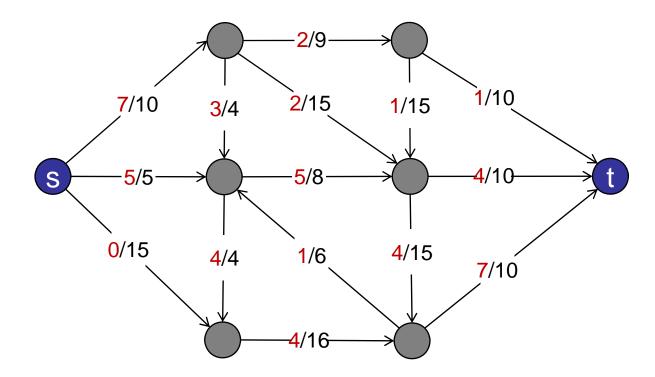
Equilibrium constraint:

- For every node: flow-in = flow-out
- Except s and t



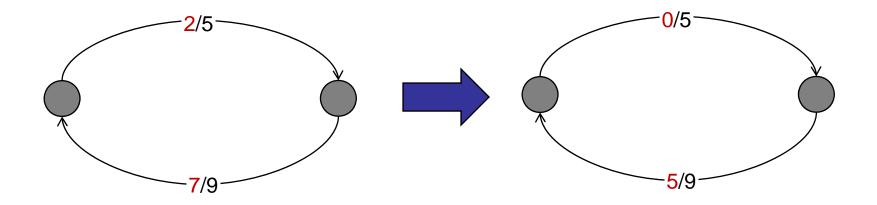
Output: st-flow

- Capacity constraint (never exceed capacity)
- Equilibrium constraint (flow-in = flow-out)

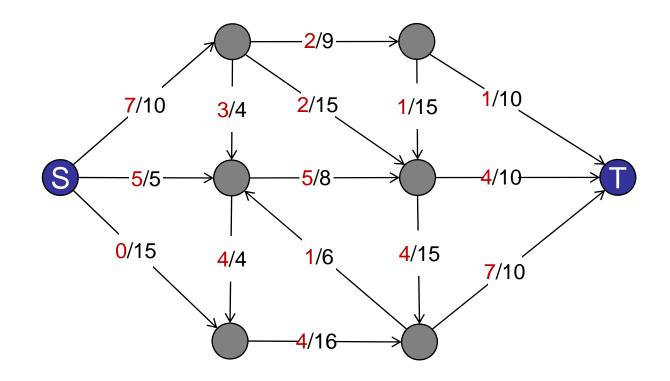


Uni-directional flow: st-flow

If f(u,v)>0 and f(v,u)>0, then they cancel out. Flows only go in one direction.



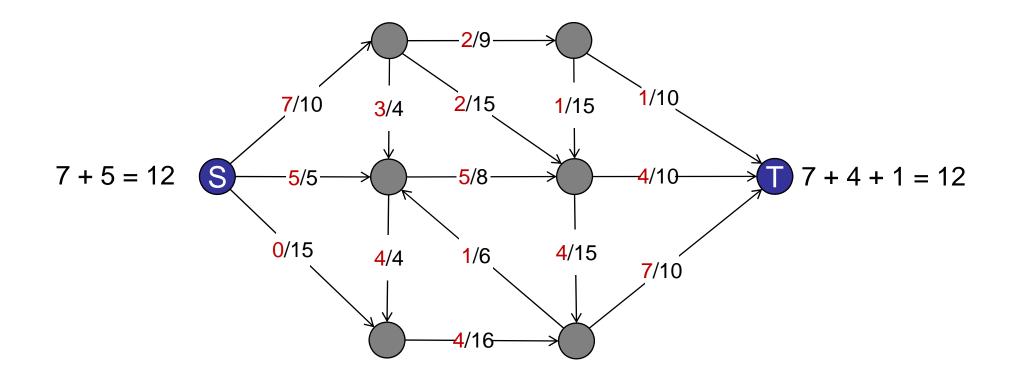
How much stuff gets from s to t?



Value of a Flow

How much stuff gets from s to t?

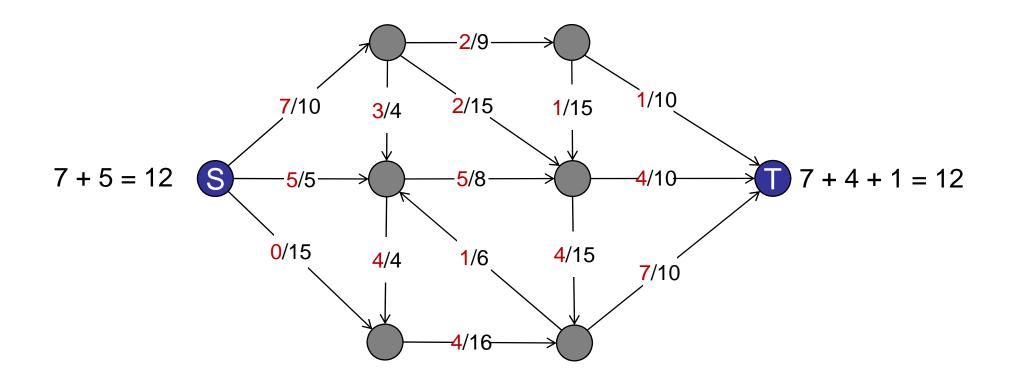
- How much leaves source?
- How much gets to target?



Value of a Flow

Definition:

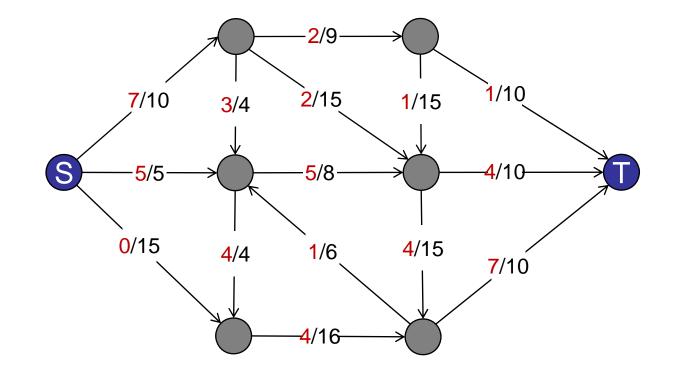
For a flow f: value(f) = $\sum_{v:(s,v)\in E} f(s,v)$



Max Flow

Goal:

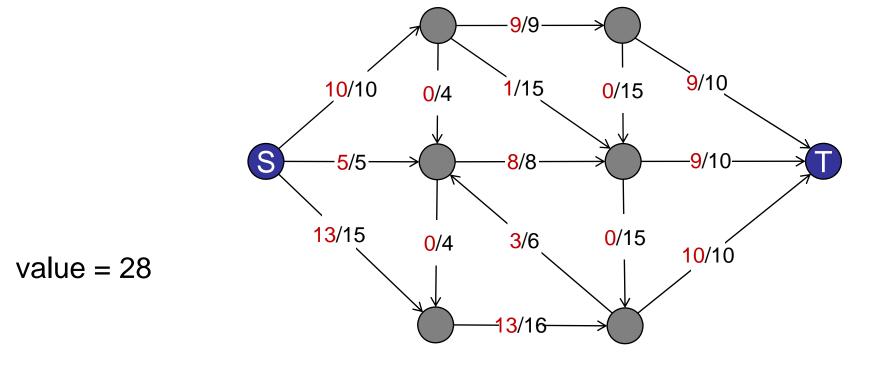
Find an st-flow with maximum value.



Max Flow

Goal:

Find an st-flow with maximum value.



Roadmap

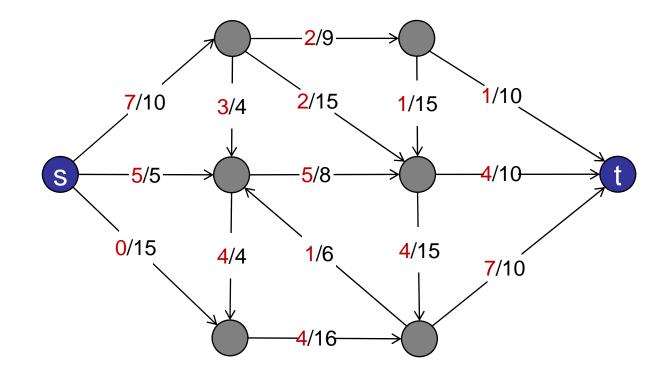
Network Flows

- a. Network flows defined
- b. Ford-Fulkerson algorithm
- c. Max-Flow / Min-Cut Theorem

Max Flow

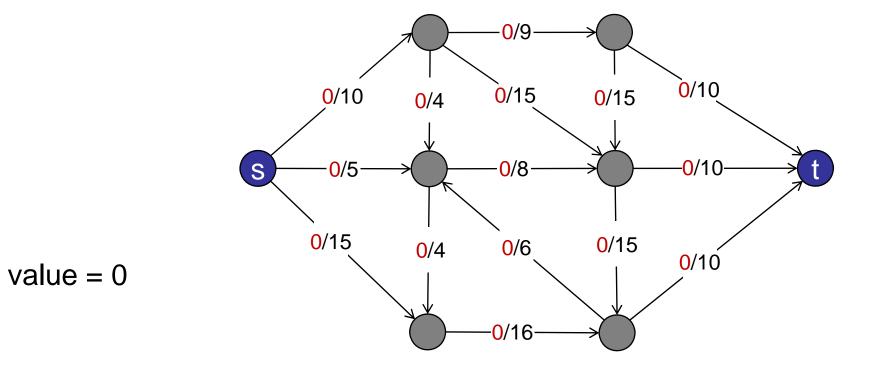
Goal:

Find an st-flow with maximum value.

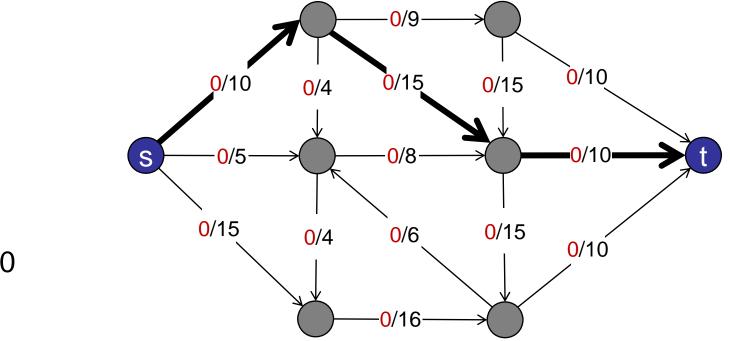


Initially:

All flows are 0.

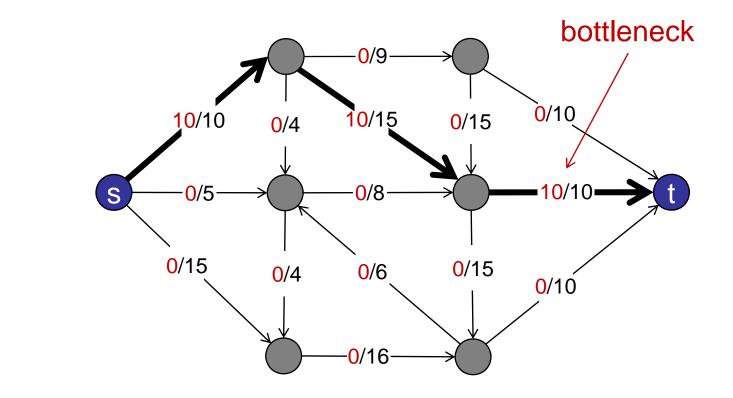


Idea: find an augmenting path along which we can increase the flow.



Augmenting path: directed path from s \rightarrow t

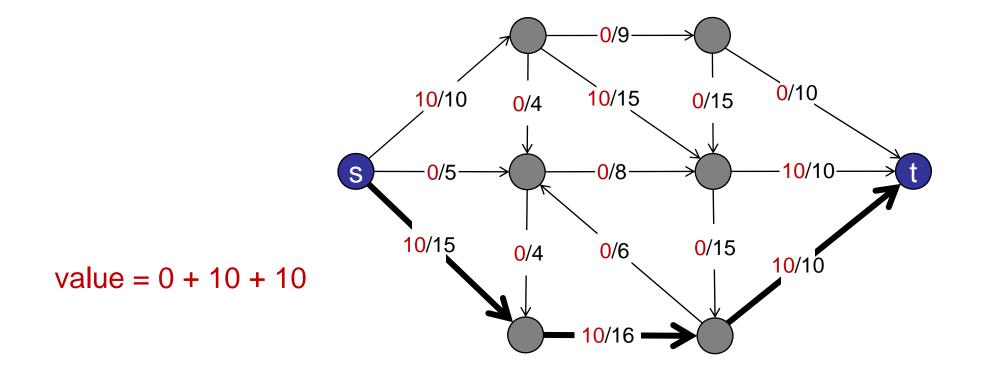
- Can increase flow on all forward edges.



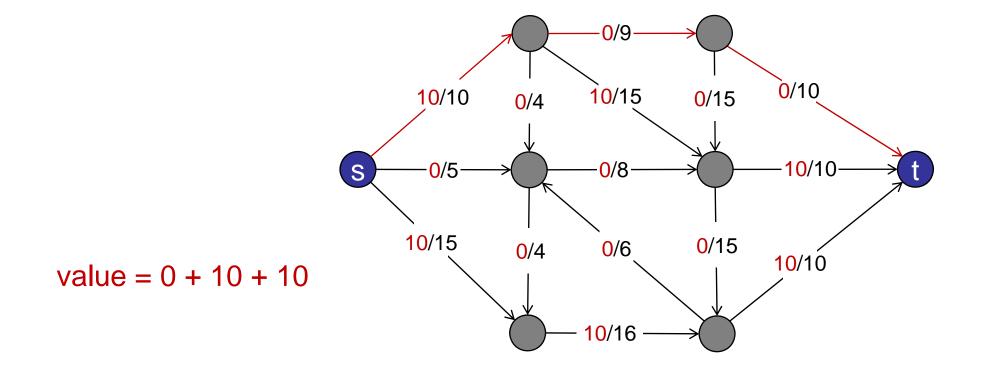
value = 0 + 10

Augmenting path: directed path from s \rightarrow t

- Can increase flow on all forward edges.



- Can increase flow on all forward edges.
- No more augmenting paths?

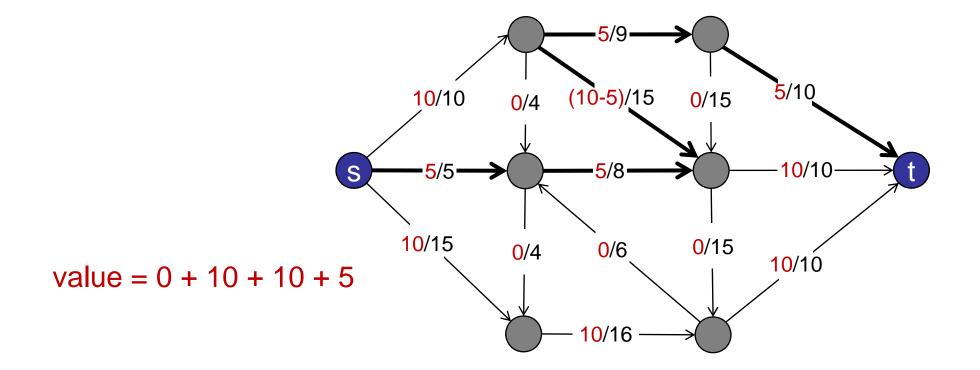


Augmenting path: directed path from s \rightarrow t

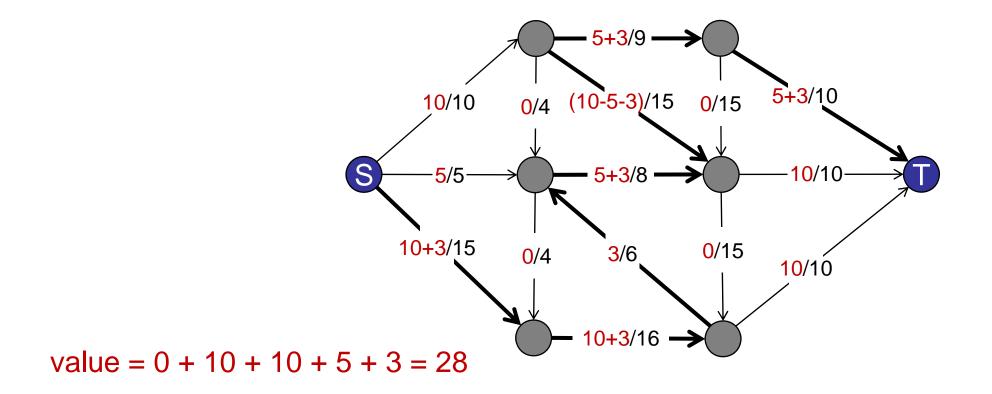
- Can increase flow on all forward edges.



- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

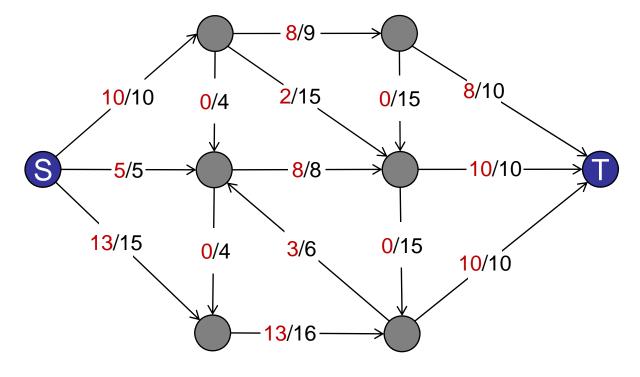


- Can increase flow on all forward edges OR
- Can decrease flow on backward edges



Augmenting path: Undirected path from $s \rightarrow t$

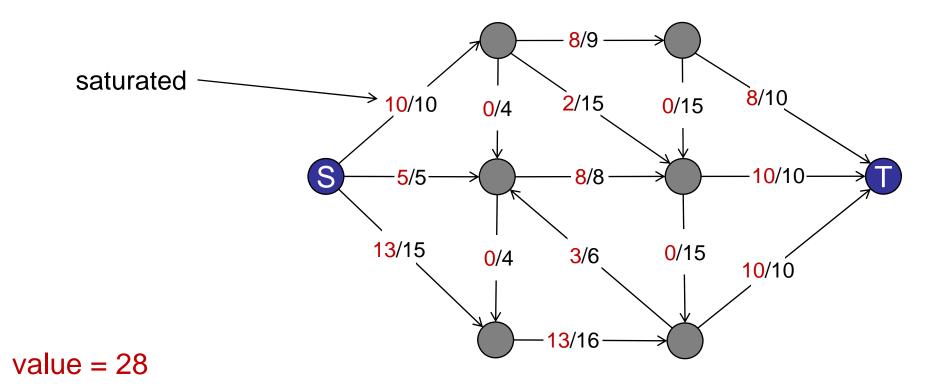
- Can increase flow on all forward edges OR
- Can decrease flow on backward edges



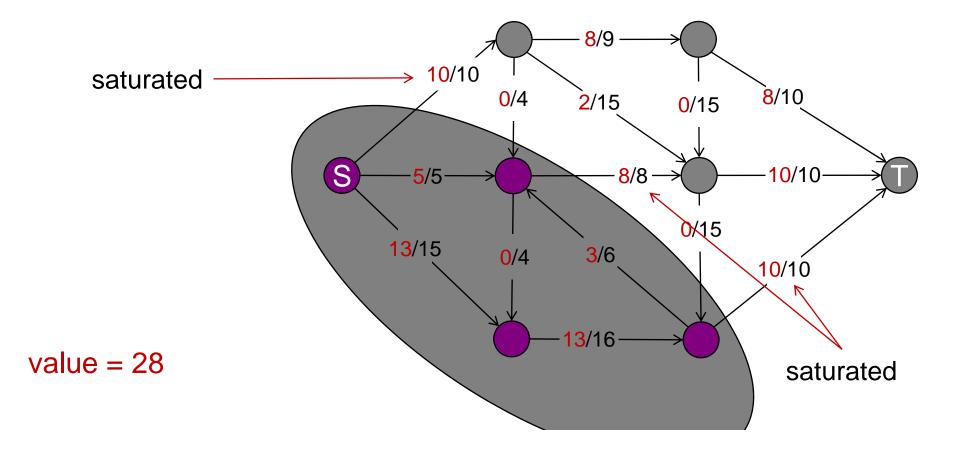
value = 28

No more augmenting paths.

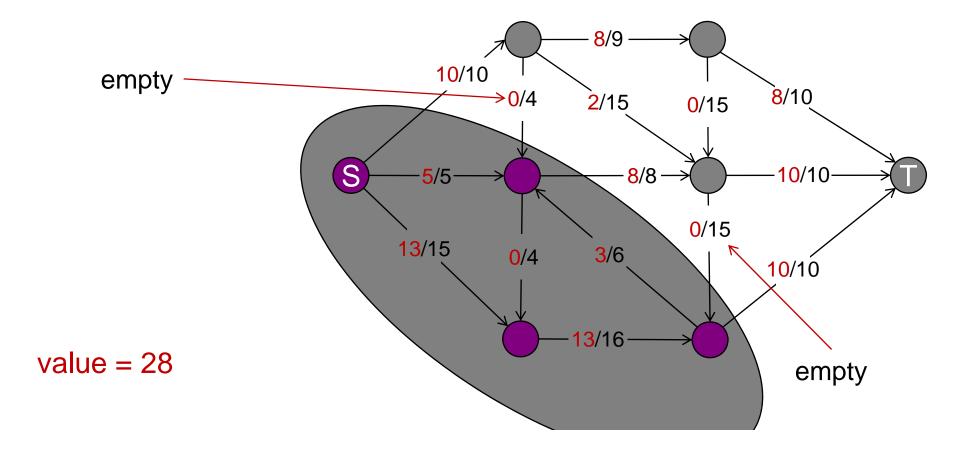
- Can increase flow on all forward edges OR
- Can decrease flow on backward edges



- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

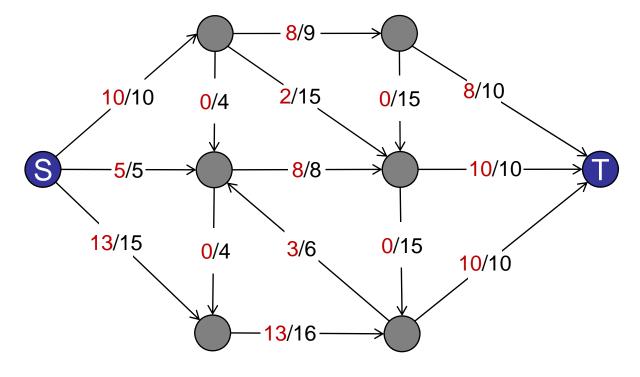


- Can increase flow on all forward edges OR
- Can decrease flow on backward edges



Augmenting path: Undirected path from $s \rightarrow t$

- Can increase flow on all forward edges OR
- Can decrease flow on backward edges



value = 28

No more augmenting paths.

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

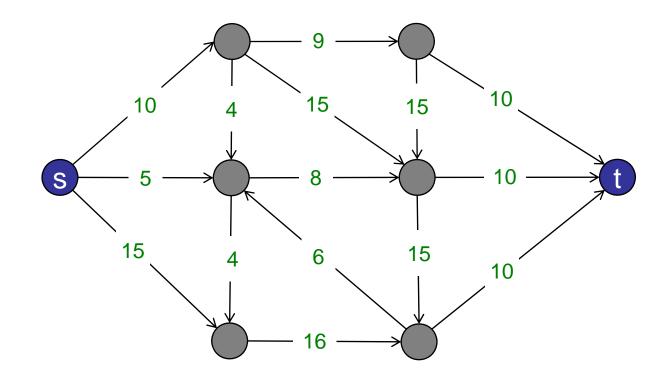
- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Details:

- How to find an augmenting path?
- Does Ford-Fulkerson always terminate? How fast?
- If it terminates, does it always find a max-flow?

Residual Graph: amount that flow can be increased

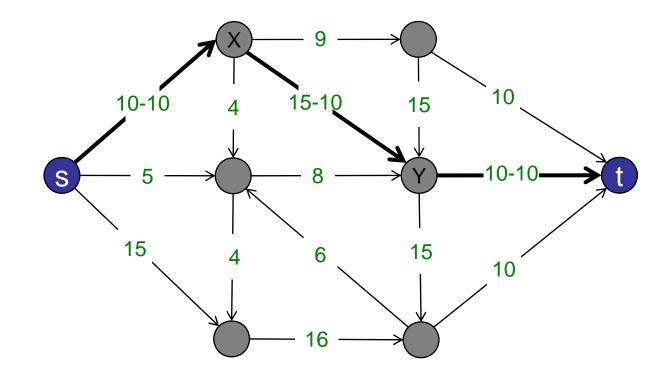
residual(e) = capacity(e) - flow(e)



Initial graph: flow = $0 \rightarrow$ residual = capacity.

Residual Graph: amount that flow can be increased

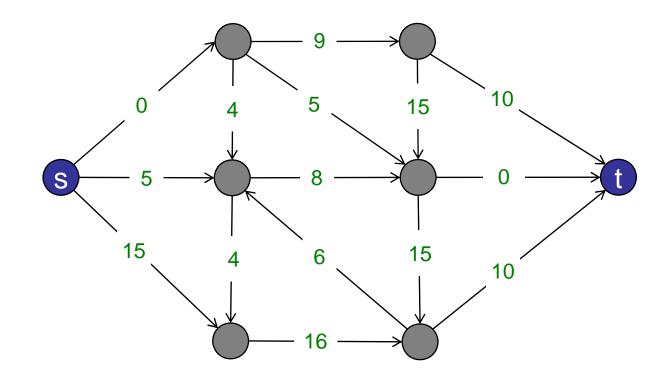
residual(e) = capacity(e) - flow(e)



Step 1: augmenting path of flow 10.

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



After augmenting path of flow 10.

How best to find an augmenting path in the residual graph?

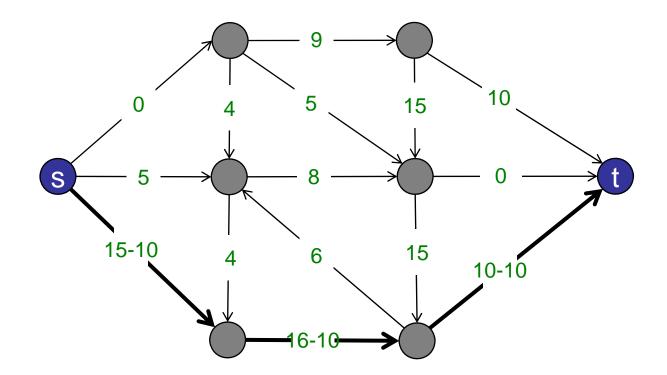
How best to find an augmenting path in the residual graph?

For now: Any graph search will do (BFS, DFS, etc.)

Any path from $s \rightarrow t$ in the residual graph is an augmenting path.

Residual Graph: amount that flow can be increased

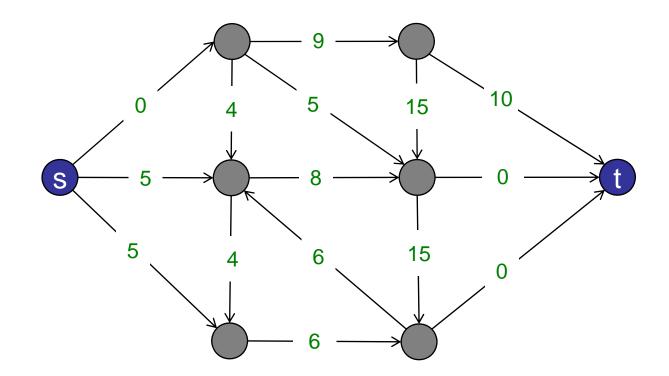
residual(e) = capacity(e) - flow(e)



Step 2: augmenting path of flow 10.

Residual Graph: amount that flow can be increased

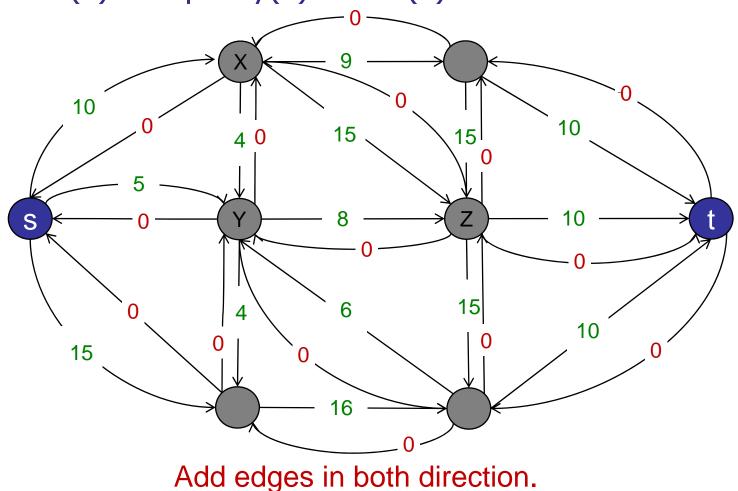
residual(e) = capacity(e) - flow(e)



After step 2: augmenting path of flow 10.

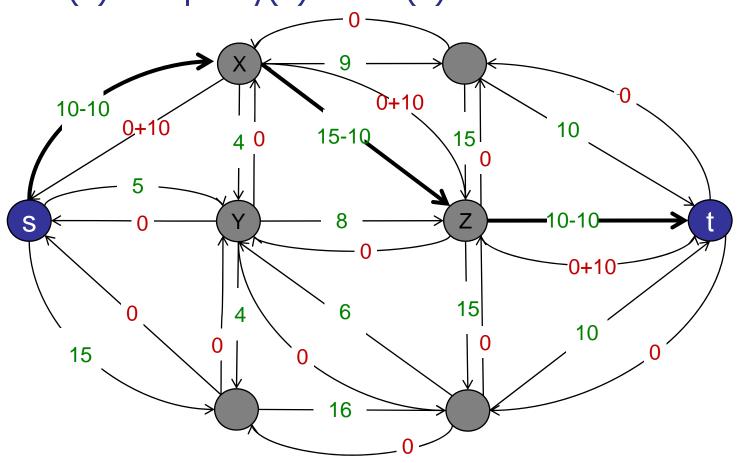
Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



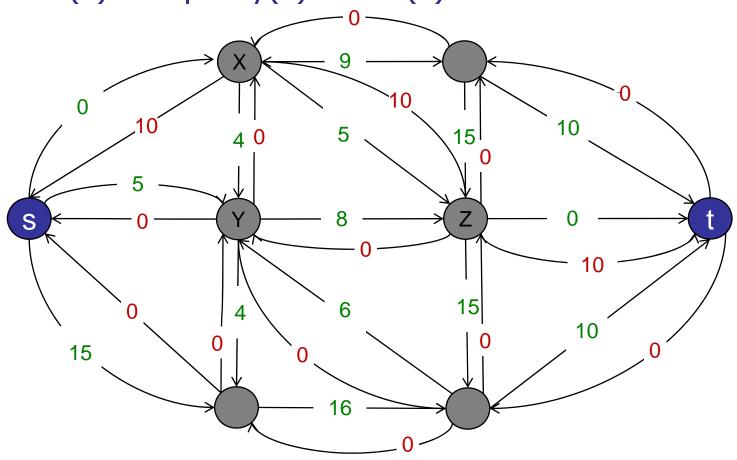
Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



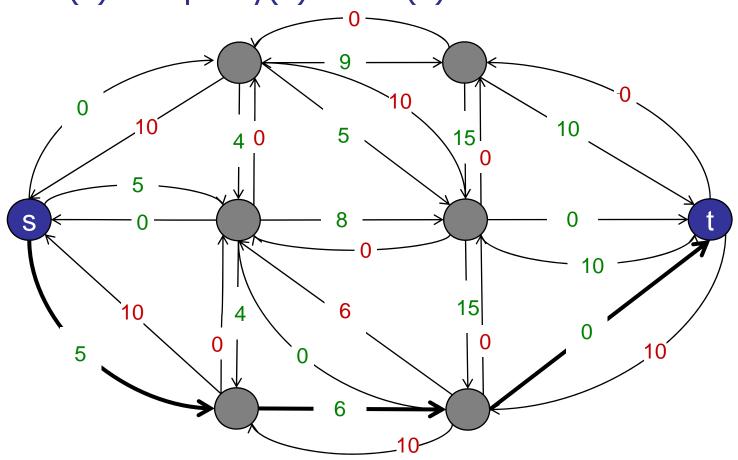
Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



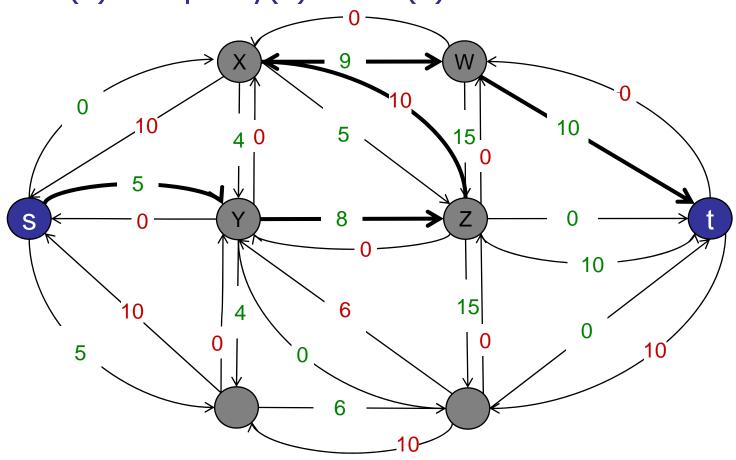
Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



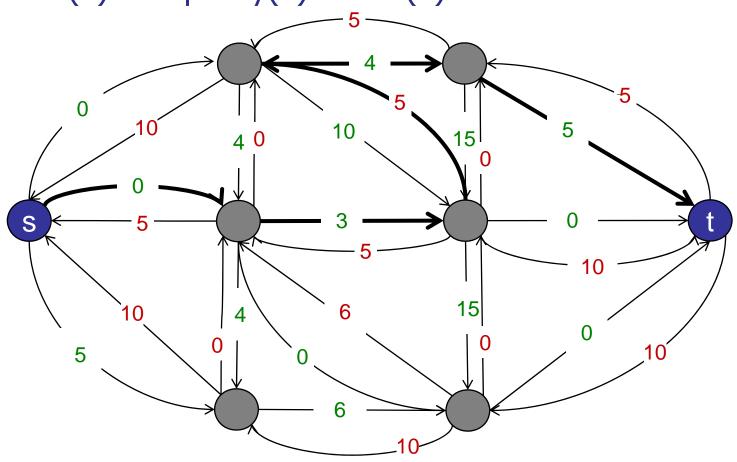
Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



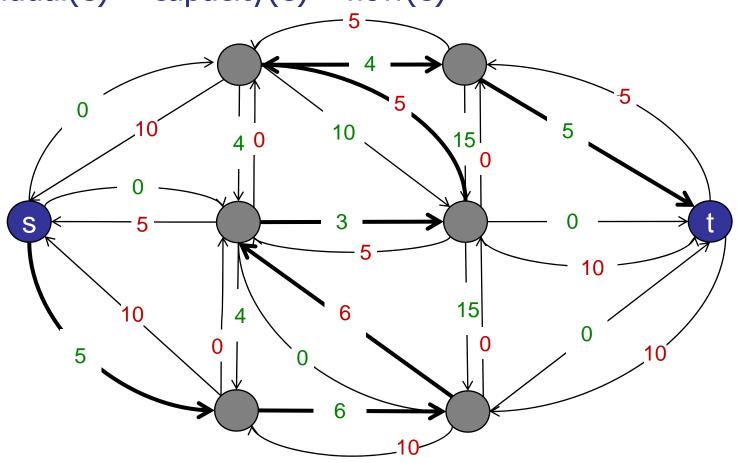
Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



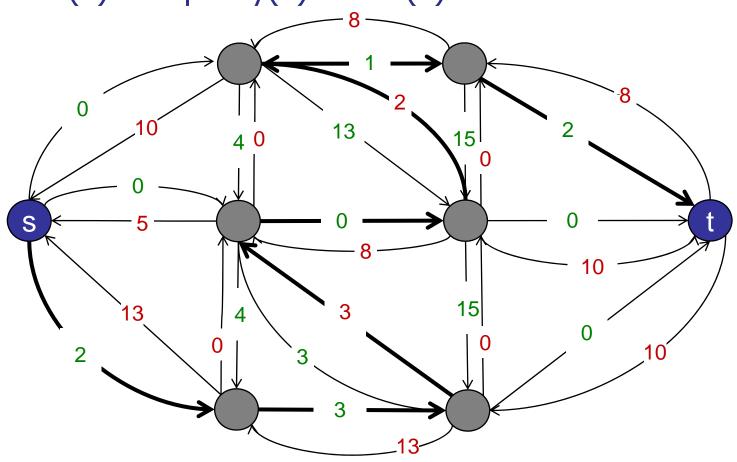
Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



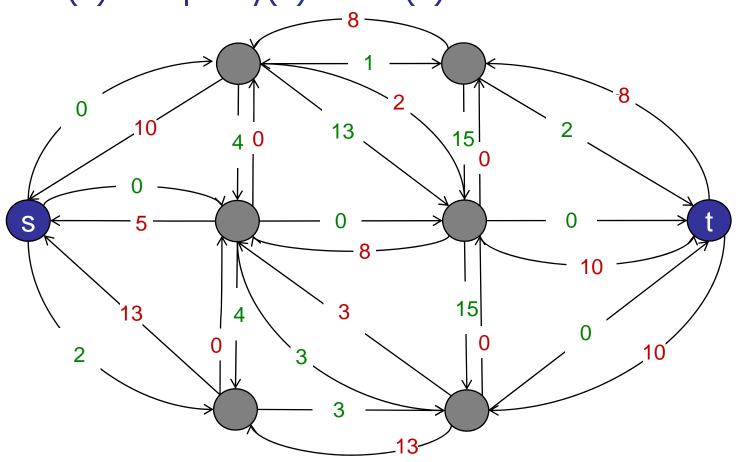
Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



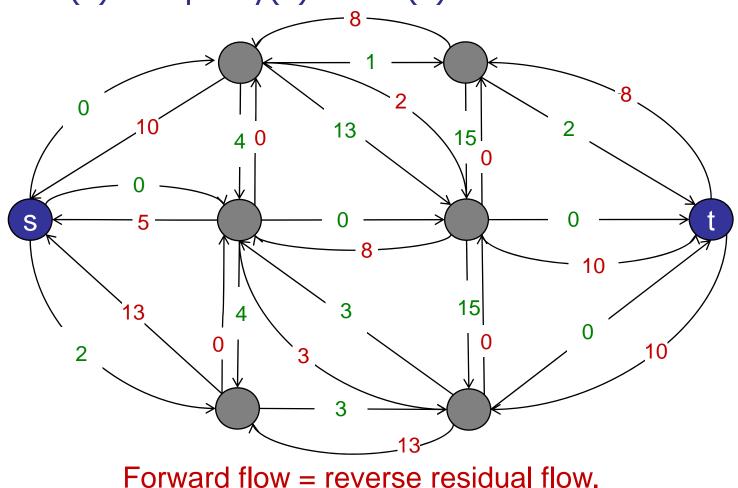
Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)



Ford-Fulkerson

Ford-Fulkerson Algorithm

Start with 0 flow.

Build residual graph:

- For every edge (u,v) add edge (u,v) with w(u,v) = capacity.
- For every edge (u,v) add edge (v,u) with w(v,u) = 0.

While there exists an augmenting path:

- Find an augmenting path via DFS in residual graph.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity:
 - For every edge (u,v) on the path, subtract the flow from w(u,v).
 - For every edge (u,v) on the path, add the flow to w(v,u).

Compute final flow by inverting residual flows.

Ford-Fulkerson

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Details:

- ✓ How to find an augmenting path?
- Does Ford-Fulkerson always terminate? How fast?
- If it terminates, does it always find a max-flow?

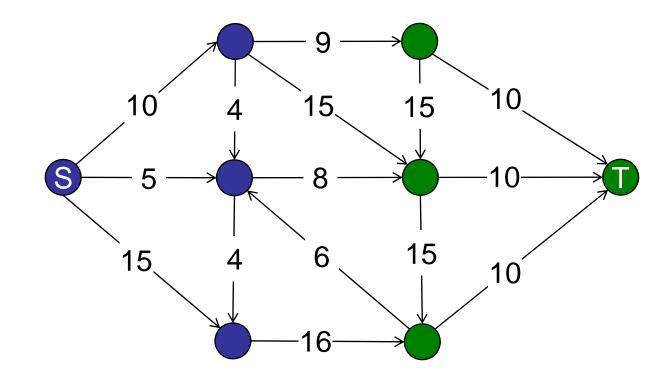
Roadmap

Network Flows

- a. Network flows defined
- b. Ford-Fulkerson algorithm
- c. Max-Flow / Min-Cut Theorem

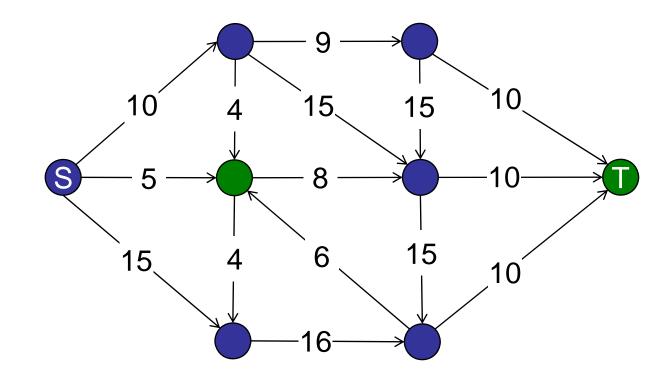
Definition:

An <u>st-cut</u> partitions the vertices of a graph into two disjoint sets S and T where $s \in S$ and $t \in T$.



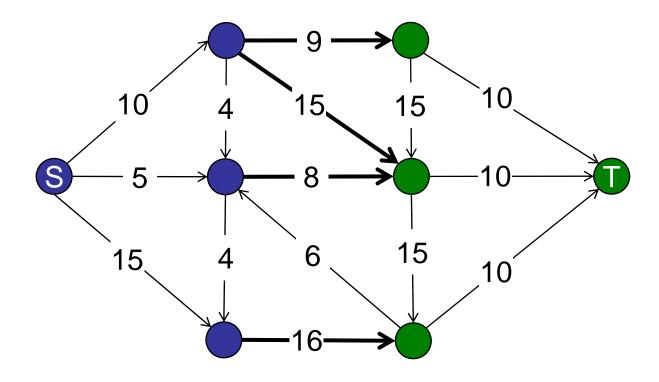
Definition:

An <u>st-cut</u> partitions the vertices of a graph into two disjoint sets S and T where $s \in S$ and $t \in T$.



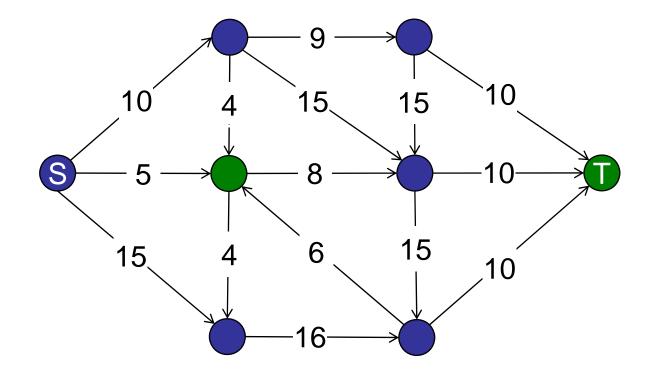
Definition:

The <u>capacity</u> of an st-cut is the sum of the capacities of the edges that cross the cut from S to T.

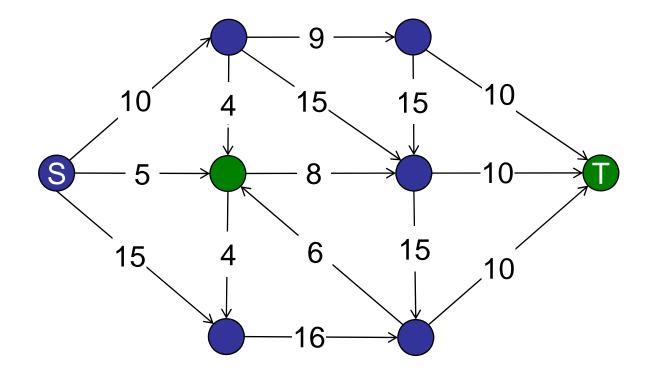


Capacity = 48

What is the capacity of this st-cut?



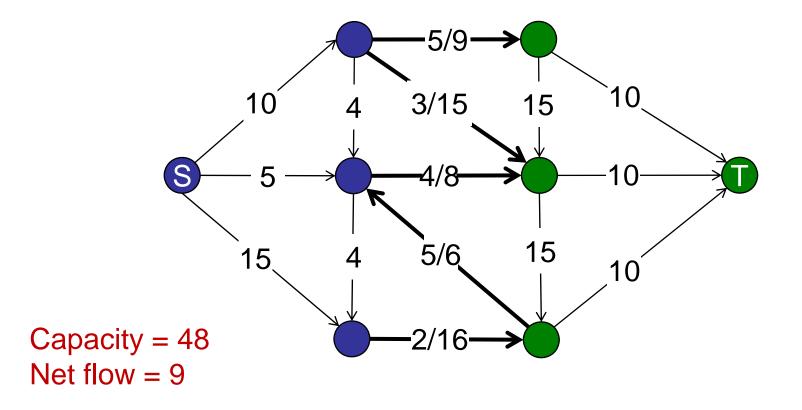
What is the capacity of this st-cut?



Capacity = 45

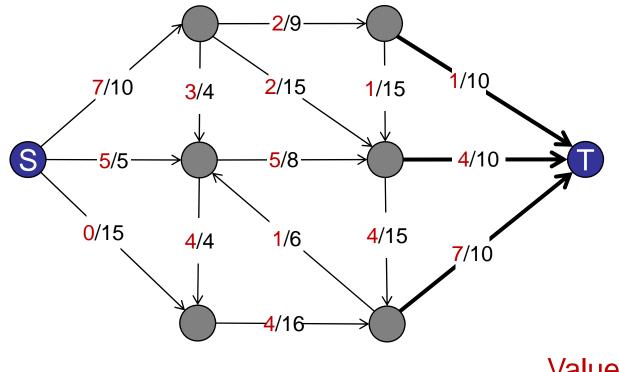
Definition:

The <u>net flow</u> across an st-cut is the sum of the flows on edges from $S \rightarrow T$ minus the flows from $T \rightarrow S$.



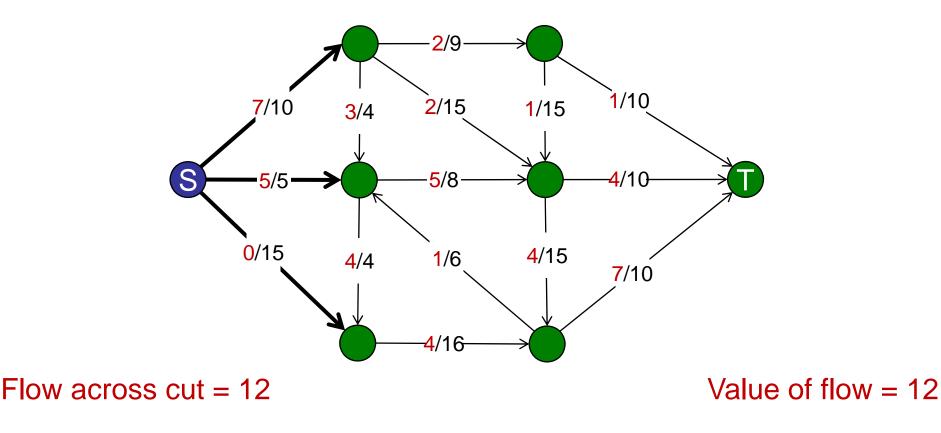
Proposition:

- Let f be a flow, and let (S,T) be an st-cut.
- Then the net flow across (S,T) equals the value of f.

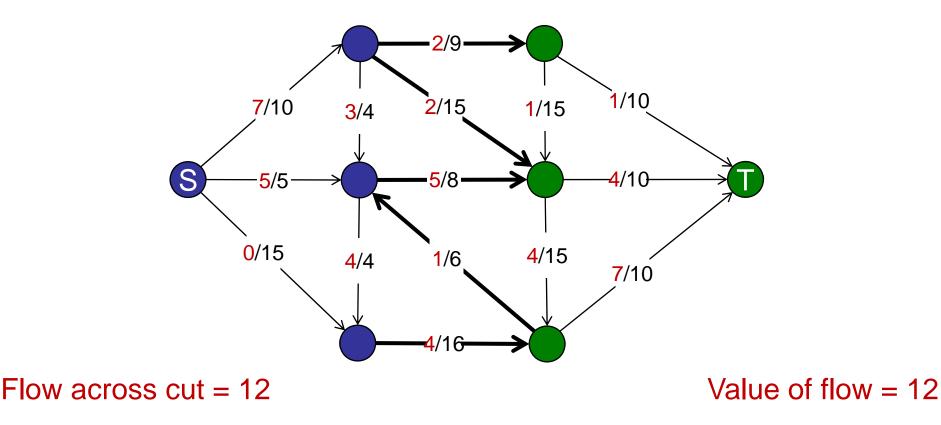


Value of flow = 12

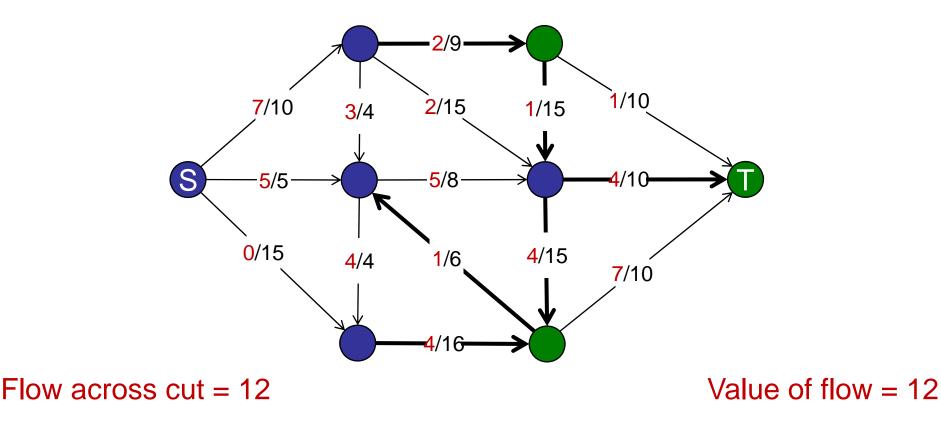
- Let f be a flow, and let (S,T) be an st-cut.
- Then the net flow across (S,T) equals the value of f.



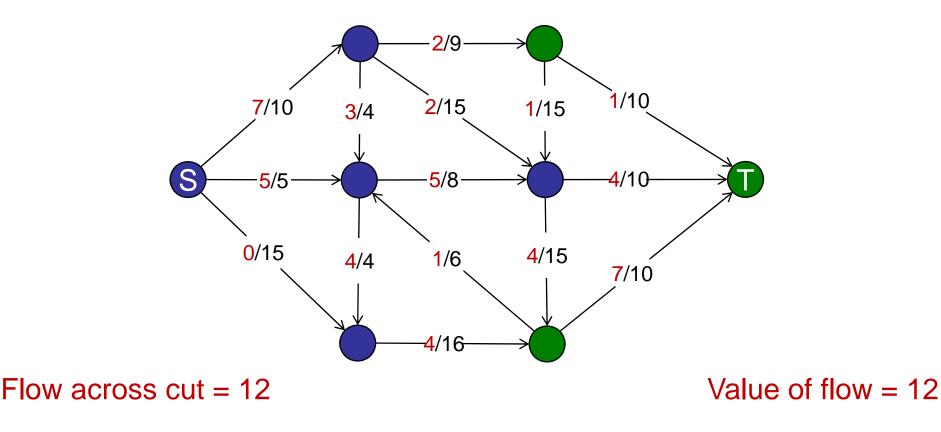
- Let f be a flow, and let (S,T) be an st-cut.
- Then the net flow across (S,T) equals the value of f.



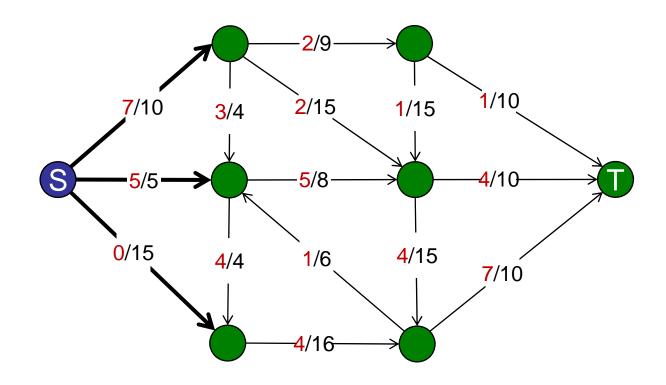
- Let f be a flow, and let (S,T) be an st-cut.
- Then the net flow across (S,T) equals the value of f.



- Let f be a flow, and let (S,T) be an st-cut.
- Then the net flow across (S,T) equals the value of f.



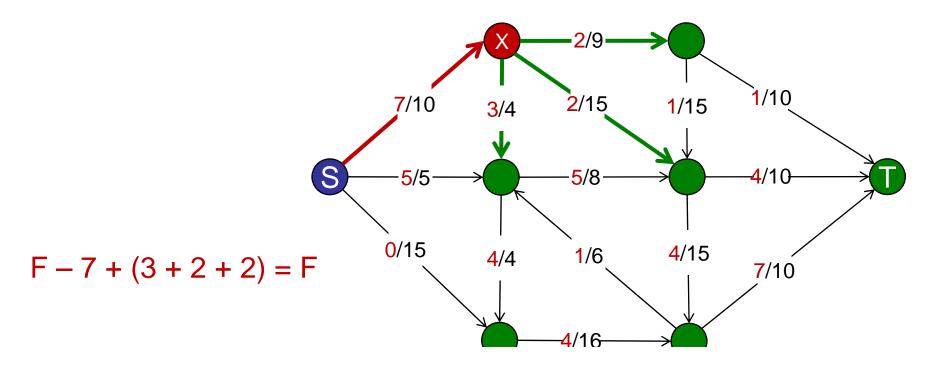
Proof: (by induction) Start with $S = \{s\}, T = V \setminus S$. Define F = flow across cut.



Inductive step:

Take one node X that is reachable from S and add it to S.

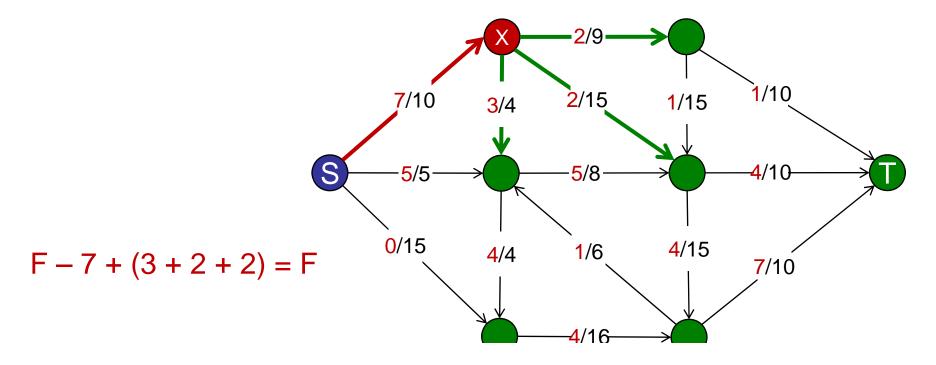
- Add new outgoing edges that cross new cut.
- Subtract new incoming edges that cross new cut.
- Subtract/add edges from **X** to S.

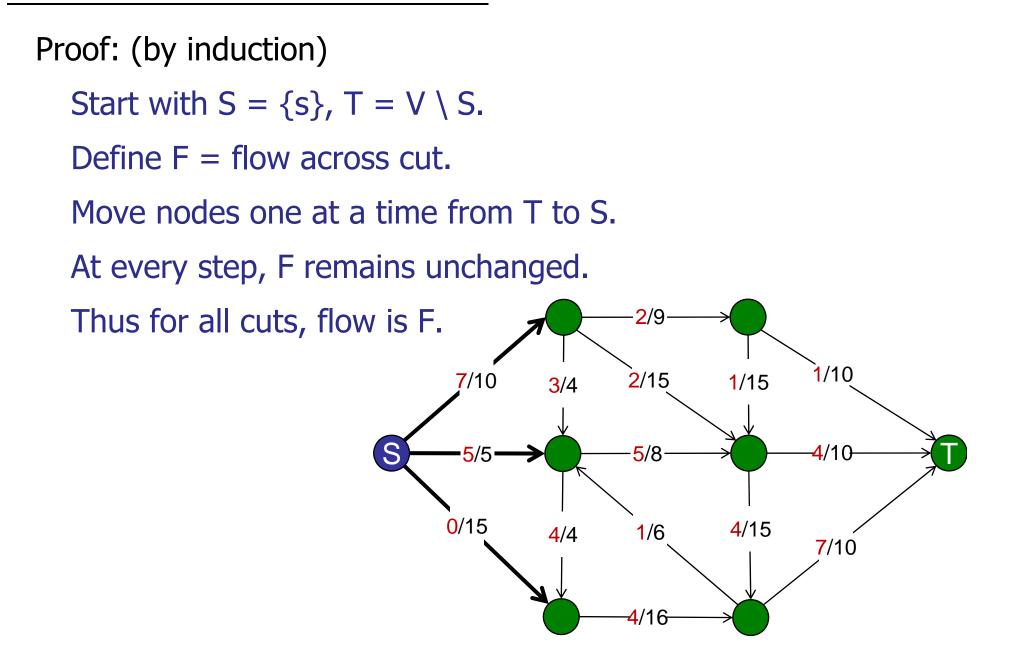


Inductive step:

Conservation of flow: (equilibrium constraint)

- Flow into X equals flow out of X.
- Flow that crossed (old S) \rightarrow X == X \rightarrow (old T)
- F remains unchanged

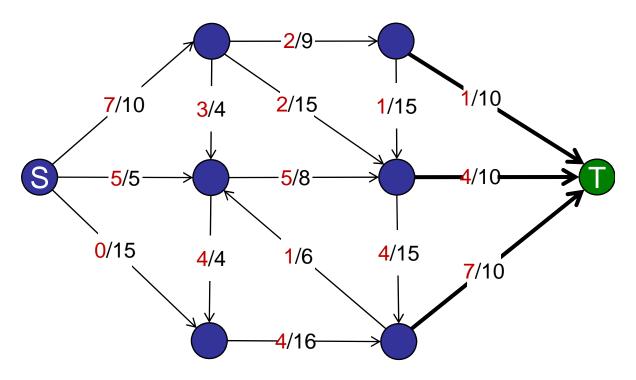




Proof: (by induction)

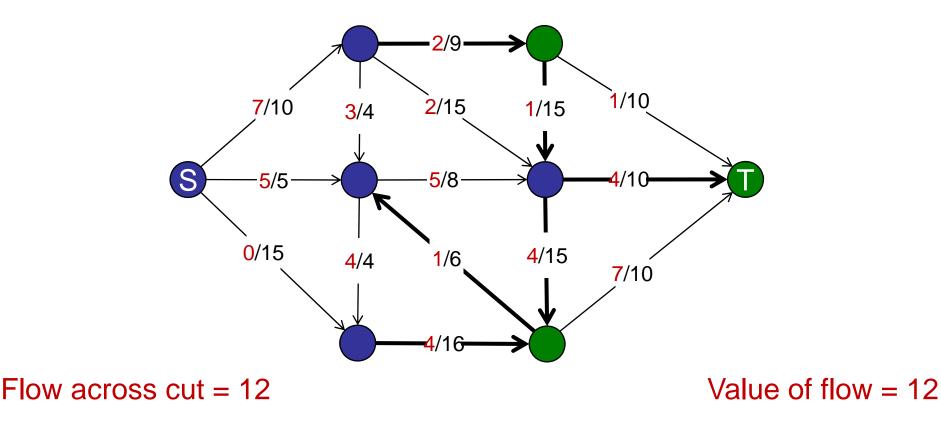
What is F?

- Consider cut $S = V \setminus \{t\}, T = \{t\}.$
- All edges crossing cut go to t.
- Value of flow = flow across cut = F.



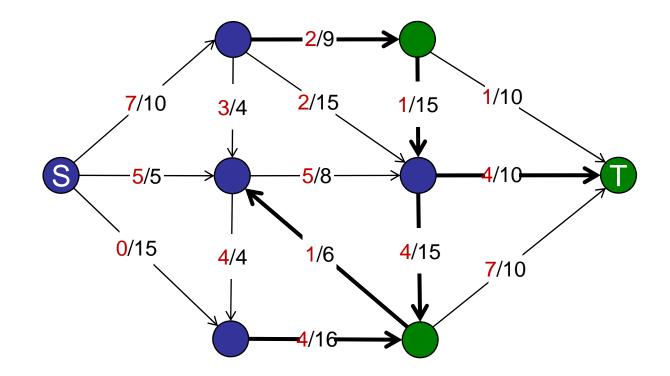
Proposition (Flow Value):

- Let f be a flow, and let (S,T) be an st-cut.
- Then the net flow across (S,T) equals the value of f.



Weak duality:

Let f be a flow, and let (S,T) be an st-cut. Then value(f) \leq capacity(S,T).



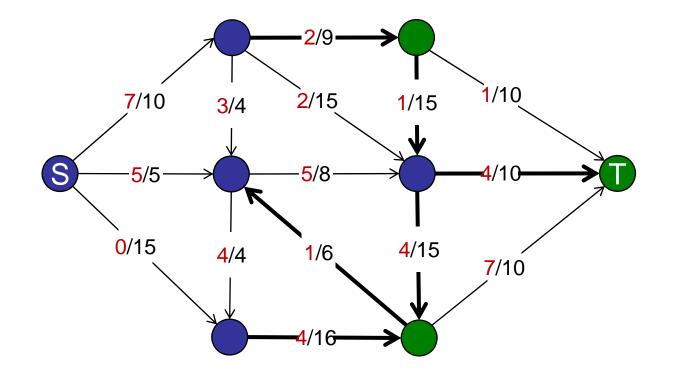
Weak duality:

Let f be a flow, and let (S,T) be an st-cut. Then value(f) \leq capacity(S,T).

Proof: $value(f) = flow across cut (S,T) \le capacity(S,T).$ flow value proposition flow is bounded by the capacity

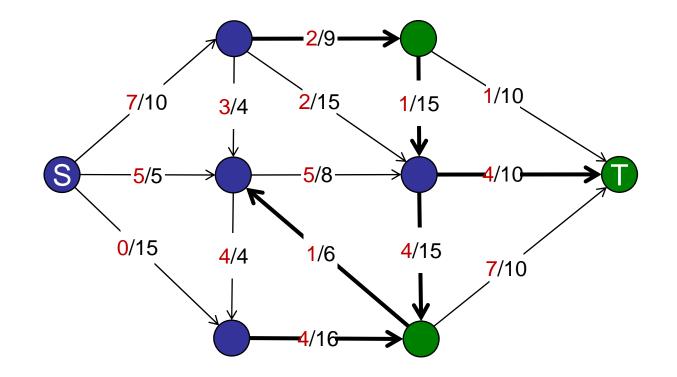
MaxFlow-MinCut Theorem:

- Let **f** be a maximum flow.
- Let (S,T) be an st-cut with minimum capacity.
- Then value(f) = capacity(S,T).



Augmenting Path Theorem:

Flow **f** is a maximum flow if and only if there are no augmenting paths in the residual graph.



Proof:

- 1. There exists a cut whose capacity equals the value of f.
- 2. f is a maximum flow
- 3. There is no augmenting path with respect to f.

1 → 2: There exists an f-capacity cut → f is maximum Assume (S,T) is a cut with capacity equal to f.

- For all flows g: value(g) ≤ capacity(S,T)
- For all flows g: value(g) \leq value(f)
- f is a maximum flow

weak duality

Proof:

- 1. There exists a cut whose capacity equals the value of f.
- 2. f is a maximum flow
- 3. There is no augmenting path with respect to f.

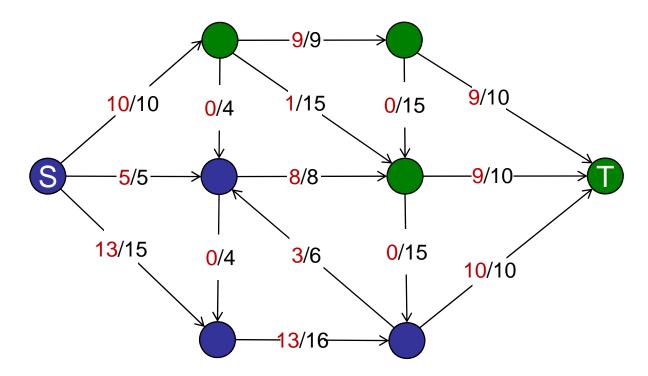
2 \rightarrow 3: f is maximum cut \rightarrow no augmenting paths Assume there IS at least 1 augmenting path:

- Improve flow by sending flow on augmenting path.
- Augmenting path has bottleneck capacity > 0.
- f was NOT a maximum flow
- Contradiction.

Proof:

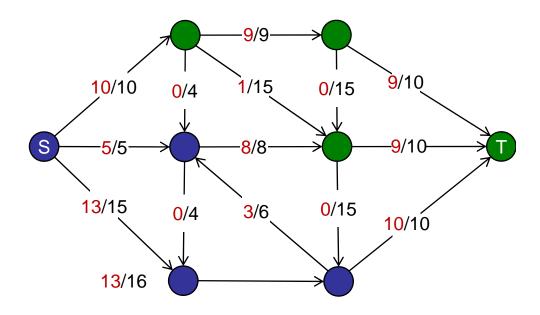
- 1. There exists a cut whose capacity equals the value of f.
- 2. f is a maximum flow
- 3. There is no augmenting path with respect to f.

- $3 \rightarrow 1$: no augmenting paths \rightarrow exists f-capacity cut Assume there is no augmenting path:
 - Let S be the nodes reachable from the source in the residual graph.
 - Let T be the remaining nodes.



- 3 → 1: no augmenting paths → exists f-capacity cut Assume there is no augmenting path:
 - Let S be the nodes reachable from the source in the residual graph.
 - Let T be the remaining nodes.
 - S contains the source s.
 - T contains the target t.

Otherwise, if t was reachable from s in the residual graph, there would be an augmenting path.

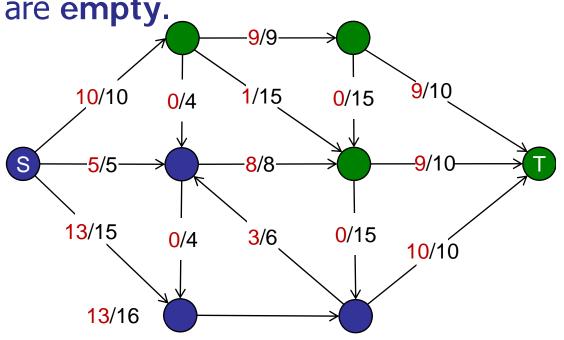


 $3 \rightarrow 1$: no augmenting paths \rightarrow exists f-capacity cut

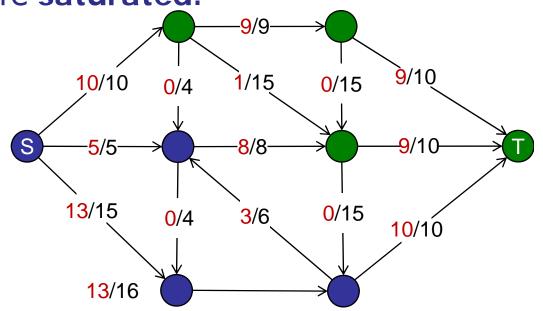
Assume there is no augmenting path:

- Let S be the nodes reachable from the source in the residual graph. T = remaining nodes.
- (S,T) is an st-cut.
- All edges from $T \rightarrow S$ are empty.

Otherwise, there would be an outgoing edge in the residual graph.



- $3 \rightarrow 1$: no augmenting paths \rightarrow exists f-capacity cut Assume there is no augmenting path:
 - Let S = reachable nodes. T = remaining nodes.
 - (S,T) is an st-cut.
 - All edges from $T \rightarrow S$ are empty.
 - All edges from $S \rightarrow T$ are saturated.



- $3 \rightarrow 1$: no augmenting paths \rightarrow exists f-capacity cut Assume there is no augmenting path:
 - Let S be the nodes reachable from the source in the residual graph. T = remaining nodes.(S,T) is an st-cut.
 - All edges from $T \rightarrow S$ are empty.
 - All edges from $S \rightarrow T$ are saturated.

Proof:

- 1. There exists a cut whose capacity equals the value of f.
- 2. f is a maximum flow
- 3. There is no augmenting path with respect to f.

Augmenting Path Theorem:

Flow **f** is a maximum flow if and only if there are no augmenting paths in the residual graph.

➔ If Ford-Fulkerson terminates, then there is no augmenting path. Thus, the resulting flow is maximum.

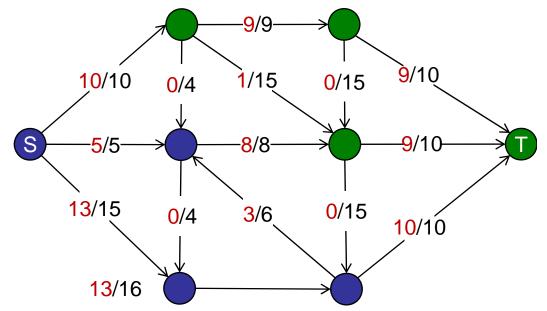
How to find a min-cut:

- 1. Run Ford-Fulkerson until termination.
- 2. Let S be the set of nodes reachable from the source s:
 - Run DFS in the residual graph.
 - All the nodes reach are in S.
- 3. For every edge in S, enumerate outgoing edges:
 - If edge exits S, add to min-cut.
 - If both ends of edge are in S, then continue.

Finding a minimum cut:

Assume there is no augmenting path:

- Let S be the nodes reachable from the source in the residual graph.
- T = remaining nodes
- Edges from $(S \rightarrow T)$ are minimum cut.



Ford-Fulkerson

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Termination: Ford-Fulkserson always terminates.

- ✓ How to find an augmenting path?
- ✓ If it terminates, does it always find a max-flow?
- Does Ford-Fulkerson always terminate? How fast?

Ford-Fulkerson

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Termination: FF terminates if capacities are integers.

- Every iteration finds a new augmenting path.
- Each augmenting path has bottleneck capacity at least 1.
- So each iteration increases the flow of at least one edge by at least 1.
- Finite number of edges, finite max capacity per edge => termination.

Ford-Fulkerson

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Termination: Ford-Fulkserson always terminates.

- ✓ How to find an augmenting path?
- ✓ If it terminates, does it always find a max-flow?
- How fast does Ford-Fulkerson terminate? Can we do better?