
Algorithms at Scale
(Week 1)

Puzzle of the Day:

5 x 4: Use 7 lines.

7 x 7: Use 12 lines

Connect the dots.
Use ?? straight lines.
Don’t lift your pen from the paper.

Can you end at the same
place you began?

Sublinear Time / Sampling Algorithms

Basic question:

What can we do when we look at only a small part
of our input data?

Examples:

• Given a graph... only look at a constant number of nodes/edges.

• Is the graph connected?

• How many connected components does it have?

• What is the weight of the MST?

• What is the average degree of the graph?

• What is the diameter of the graph?

• What is the best matching on the graph?

Comparison

Weight of
MST?

Classical Sublinear Approximation

Is the graph
connected?

connected
components?

n : number of nodes
m : number of edges
d : degree of graph

W : weight of MST
∊ : error / approximation parameter

Comparison

Weight of
MST?

Classical Sublinear Approximation

Is the graph
connected?

connected
components?

n : number of nodes
m : number of edges
d : degree of graph

W : weight of MST
∊ : error / approximation parameter

Comparison

Weight of
MST?

Classical Sublinear Approximation

Is the graph
connected?

connected
components?

n : number of nodes
m : number of edges
d : degree of graph

W : weight of MST
∊ : error / approximation parameter

Comparison

Weight of
MST?

Classical Sublinear Approximation

Is the graph
connected?

connected
components?

n : number of nodes
m : number of edges
d : degree of graph

W : weight of MST
∊ : error / approximation parameter

does not matter
how big the graph is!

Comparison

Maximum
matching?

Classical Sublinear Approximation

Average
degree?

Diameter?

n : number of nodes
m : number of edges
d : degree of graph

W : weight of MST
∊ : error / approximation parameter

Algorithms

Next week:

Number of connected components in
a graph.

• Additive approximation
algorithm.

Weight of MST

• Multiplicative approximation
algorithm.

Today

Toy example 1: array all 0’s?

• Gap-style question:
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3.

Trade-off: speed vs. accuracy

Approximate solutions:

Example: relative error

Example: absolute error

Example: gap error

• If G is connected, then return TRUE.

• If G is ∊-far from connected, then return FALSE.

• Otherwise, don’t care.

MST(G) = weight of MST

ALG(G) = weight of spanning tree
returned by algorithm

Warm-Up Problem: All Zeros

Assumptions:

Given n element array
• Each element is 0 or 1.
• 0 = good test.
• 1 = failed test.

Output: Is the array all 0?

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Warm-Up Problem: All Zeros

Algorithm: Check every cell.

Running time:

Can we do any better?

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Warm-Up Problem: All Zeros

Algorithm: Check every cell.

Running time:

Can we do any better? No!

Lower bound:

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Challenge #1:

Prove it.

Warm-Up Problem: All Zeros

Relaxed (approximate) version:

Output: Is the array mostly 0?

0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0

Warm-Up Problem: All Zeros

Relaxed (approximate) version:

Output: Is the array mostly 0?

0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0

n = 16
∊ = 1/4

FALSE

Warm-Up Problem: All Zeros

Relaxed (approximate) version:

Output: Is the array mostly 0?

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n = 16
∊ = 1/4

TRUE

Warm-Up Problem: All Zeros

Relaxed (approximate) version:

Output: Is the array mostly 0?

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

n = 16
∊ = 1/4

TRUE OR FALSE

Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

Fix

Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

Fix

Claim 1: If array is all 0’s, then always returns TRUE.

Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

Fix

Claim 2: If array has ≥ 𝜀𝜀n 1’s, then returns FALSE with
probability at least 2/3.

Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0

Fix

Claim 2: If array has ≥ 𝜀𝜀n 1’s, then returns FALSE with
probability at least 2/3.

Proof:
Assume ≥ 𝜀𝜀n 1’s.
For sample i : Pr[A[i] = 1] ≥ 𝜀𝜀n/n ≥ 𝜀𝜀.

Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0

Fix

Claim 2: If array has ≥ 𝜀𝜀n 1’s, then returns FALSE with
probability at least 2/3.

Proof:
Assume ≥ 𝜀𝜀n 1’s.
For sample i : Pr[A[i] = 1] ≥ 𝜀𝜀n/n ≥ 𝜀𝜀.

Death Bed Fact: (0 < x < 1)

Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

Fix

Claim 2: If array has ≥ 𝜀𝜀n 1’s, then returns FALSE with
probability at least 2/3.

Claim 1: If array is all 0’s, then always returns TRUE.

Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

What if we want the algorithm to be correct with
probability ≥ 1 – δ?

Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

What if we want the algorithm to be correct with
probability ≥ 1 – δ?

Fix

Test:

Find s.

Warm-Up Problem: How Many Zeros

Input: n element array
• Each element is 0 or 1.
• 0 = good test, 1 = failed test.

Output: What fraction of the array is 1’s?

Approximation: ± 𝜀𝜀

Probability correct: 2/3

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

answer: [0.1775, 0.1975]n = 16
∊ = 1/100

answer = 3/16n = 16
∊ = 0

answer: [1/8, 1/4]n = 16
∊ = 1/16

Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Fraction-Zeros(A, 𝜀𝜀)
sum = 0
Repeat s times:

Choose random i in [1, n]
sum = sum + A[i]

Return sum/s

Key tool: Hoeffding Bound

Requirements:

1) Random variables:
Y1, Y2, …, Ys are random variables.

2) Independent:
Y1, Y2, …, Ys are independent.

3) Bounded:
Each Yj is in the range [0,1].

Requirements:

1) Random variables:
Y1, Y2, …, Ys are random variables.

2) Independent:
Y1, Y2, …, Ys are independent.

3) Bounded:
Each Yj is in the range [0,1].

Key tool: Hoeffding Bound

Example:

1) Random variables:
Yj = value of array sampled in

jth iteration of the loop.

2) Independent:
Each sample is independent.

3) Bounded:
Each array entry is in [0,1].

If Y1, Y2, …, Ys are independent random variables in the

range [0,1] and if then:

Conclusion:
The value of Z is within δ of its expected value with “good” probability.

Key tool: Hoeffding Bound

Claim:

Imagine you flip a coin n times.

Then you will see:

• at least heads

• at most heads

with probability at least 2/3.

Example: Flipping Coins

Random variables:

1) Random variables:

2) Independent: YES
3) Bounded: YES

Claim:

Imagine you flip a coin n times.

Then you will see:

• at least heads

• at most heads

with probability at least 2/3.

Example: Flipping Coins

Example: Flipping Coins

Hoeffding Bound:

Claim:

Imagine you flip a coin n times.

Then you will see:

• at least heads

• at most heads

with probability at least 2/3.

Example: Flipping Coins

If Y1, Y2, …, Ys are independent random variables in the

range [0,1] and if then:

Conclusion:
The value of Z is within δ of its expected value with “good” probability.

Key tool: Hoeffding Bound

Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Fraction-Zeros(A, 𝜀𝜀)
sum = 0
Repeat s times:

Choose random i in [1, n]
sum = sum + A[i]

Return sum/s

Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Let f = fraction of 1’s in the array.

(The ”right” answer for the algorithm is f.)

Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Let f = fraction of 1’s in the array.

(The ”right” answer for the algorithm is f.)

Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Fraction-Zeros(A, 𝜀𝜀)
sum = 0
Repeat s times:

Choose random i in [1, n]
sum = sum + A[i]

Return sum/s

Unbiased estimator! That’s good…

Use a Hoeffding Bound!

Can we use a Hoeffding Bound here?

Use a Hoeffding Bound!

Can we use a Hoeffding Bound here?

No, not yet.
V is not a sum of random variables.

Use a Hoeffding Bound!

Multiple everything by s.

Use a Hoeffding Bound!

Can we use a Hoeffding Bound here?

Yes.
The random variable sum is the sum of
independent 0/1 random variables.

Use a Hoeffding Bound!

Use a Hoeffding Bound!

Use a Hoeffding Bound!

Use a Hoeffding Bound!

Conclusion: value returned V is equal to f ± 𝜀𝜀 w.p. ≥ 2/3.

Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Fraction-Zeros(A, 𝜀𝜀)
sum = 0
Repeat s times:

Choose random i in [1, n]
sum = sum + A[i]

Return sum/s

Conclusion: sum/s is equal to f ± 𝜀𝜀 w.p. ≥ 2/3.

Algorithms

Next week:

Number of connected components in
a graph.

• Additive approximation
algorithm.

Weight of MST

• Multiplicative approximation
algorithm.

Today

Toy example 1: array all 0’s?

• Gap-style question:
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3.

Connectivity

Assumptions:

Graph G = (V,E)
• Undirected
• n nodes
• m edges
• maximum degree d

Output:
Is the graph connected?

Example: output NO

Connectivity

Assumptions:

Graph G = (V,E)
• Undirected
• n nodes
• m edges
• maximum degree d

Format:
• Graph is given as an adjacency list.
• Query: nbr(u, i) returns ith

neighbor of node u.
Example: output NO

Connectivity

Exact answer:

BFS solves in:

Cannot do faster than:

Challenge #2:

Prove it.

Connectivity

Assumptions:

Graph G = (V,E)
• Undirected
• n nodes
• m edges
• maximum degree d

Output:
Is the graph close to” connected or
“far from” connected?

Example: output NO

Connectivity

Gap Approximation:

If G is connected:

Return TRUE

If G is 𝜀𝜀-far from connected:

Return FALSE

Otherwise:

Don’t care.

Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can

add/modify at most 𝜀𝜀nd entries in

the adjacency list to create a new

graph G’ that is connected.

Note: adding an edge requires modifying two entries in the adjacency list.

Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can

add/modify at most 𝜀𝜀nd entries in

the adjacency list to create a new

graph G’ that is connected.

Note: adding an edge requires modifying two entries in the adjacency list.

Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can

add/modify at most 𝜀𝜀nd entries in

the adjacency list to create a new

graph G’ that is connected.

Example: n = 10, d = 3

Note: adding an edge requires modifying two entries in the adjacency list.

Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can

add/modify at most 𝜀𝜀nd entries in

the adjacency list to create a new

graph G’ that is connected.

Note: adding an edge requires modifying two entries in the adjacency list.

Example: n = 10, d = 3
Add 3 edges to connect graph.
Modify 6 entries in adjacency list.

Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can

add/modify at most 𝜀𝜀nd entries in

the adjacency list to create a new

graph G’ that is connected.

Note: adding an edge requires modifying two entries in the adjacency list.

Example: n = 10, d = 3
Add 3 edges to connect graph.
Modify 6 entries in adjacency list.
nd = 30
G is 1/5-close to connected.

Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can

add/modify at most 𝜀𝜀nd entries in

the adjacency list to create a new

graph G’ that is connected.

G is 𝜀𝜀-far from connected if it is not

𝜀𝜀-close to connected.

Note: adding an edge requires modifying two entries in the adjacency list.

Connectivity

Assumptions:

Graph G = (V,E)
• Undirected
• n nodes
• m edges
• maximum degree d

Output:
If G is connected: return TRUE.
If G is 𝜀𝜀-far from connected: return FALSE.
Else: don’t care.

Correct: with probability ≥ 2/3.
Example: output NO

Key Claim

Lemma:
If G is 𝜀𝜀-far from connected,
then it has 𝜀𝜀dn/4 connected
components.

Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then
it has ≥ 𝜀𝜀dn/4 connected
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected
components.

Then add 𝜀𝜀dn/4-1 edges to build
connected graph G’. That requires
modifying ≤ 𝜀𝜀dn/2 entries in adjacency list.

G is 𝜀𝜀-close to connected.

Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then
it has ≥ 𝜀𝜀dn/4 connected
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected
components.

Then add 𝜀𝜀dn/4-1 edges to build
connected graph G’. That requires
modifying ≤ 𝜀𝜀dn/2 entries in adjacency list.

G is 𝜀𝜀-close to connected.

Oops!

Cannot always add an
edge without increasing
the degree of the graph.

Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then
it has ≥ 𝜀𝜀dn/4 connected
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected
components.

For each connected component, if every
node has degree d:

Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then
it has ≥ 𝜀𝜀dn/4 connected
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected
components.

For each connected component, if every
node has degree d:

If it has k nodes, find a spanning tree with
k-1 edges. Remove any one edge not in
spanning tree.

Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then
it has ≥ 𝜀𝜀dn/4 connected
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected
components.

For each connected component, if every
node has degree d:

If it has k nodes, find a spanning tree with
k-1 edges. Remove any one edge not in
spanning tree.

Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then
it has ≥ 𝜀𝜀dn/4 connected
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected
components.

Delete ≤ 𝜀𝜀dn/4 edges so each connected
component has at least one node with
degree < d.

Then add ≤ 𝜀𝜀dn/4-1 edges to build
connected graph G’.

Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then
it has ≥ 𝜀𝜀dn/4 connected
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected
components.

Delete ≤ 𝜀𝜀dn/4 edges so each connected
component has at least one node with
degree < d.

Then add ≤ 𝜀𝜀dn/4-1 edges to build
connected graph G’.

Modifies ≤ 𝜀𝜀dn entries in adjacency
list.

G is 𝜀𝜀-close to connected.

Key Claim

Lemma:
If G is 𝜀𝜀-far from connected,
then it has 𝜀𝜀dn/4 connected
components.

Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected,
then it has 𝜀𝜀dn/8 connected
components of size ≤ 8/𝜀𝜀d.

Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected,
then it has 𝜀𝜀dn/8 connected
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.

Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected,
then it has 𝜀𝜀dn/8 connected
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.
Assume not.
• There are at least 𝜀𝜀dn/4 connected

components.

At most half can be twice the average
size…

Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected,
then it has 𝜀𝜀dn/8 connected
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.
Assume not.
• There are at least 𝜀𝜀dn/4 connected

components.
• At most 𝜀𝜀dn/8 are of size ≤ 8/𝜀𝜀d.
• At least 𝜀𝜀dn/8 are of size > 8/𝜀𝜀d.

 CONTRADICTION

Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected,
then it has 𝜀𝜀dn/8 connected
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.
Assume not.
• There are at least 𝜀𝜀dn/4 connected

components.
• At most 𝜀𝜀dn/8 are of size ≤ 8/𝜀𝜀d.
• At least 𝜀𝜀dn/8 are of size > 8/𝜀𝜀d.

Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected,
then it has 𝜀𝜀dn/8 connected
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.

Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes,

return FALSE.
Return TRUE

Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes,

return FALSE.
Return TRUE

Claim: Each BFS takes time at most d(8/𝜀𝜀d).

Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes,

return FALSE.
Return TRUE

Claim: Each BFS takes time at most d(8/𝜀𝜀d) = 8/𝜀𝜀.

Proof: Explore at most (8/𝜀𝜀d) nodes of degree at most d.

Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes,

return FALSE.
Return TRUE

Claim: Total time is O(1/𝜀𝜀2d).

Proof:

Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes,

return FALSE.
Return TRUE

Claim: If G is connected, returns TRUE.

Proof: Immediate. No component has ≤ 8/𝜀𝜀d nodes.

Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes,

return FALSE.
Return TRUE

Claim: If G is 𝜀𝜀-far from connected, then
returns FALSE with probability ≥ 2/3.

Proof: …

Connectivity

Claim: If G is 𝜀𝜀-far from connected, then
returns FALSE with probability ≥ 2/3.

Proof:
If G is 𝜀𝜀-far from connected, then it has at
least 𝜀𝜀dn/8 connected components of size
≤ 8/𝜀𝜀d.

Connectivity

Claim: If G is 𝜀𝜀-far from connected, then
returns FALSE with probability ≥ 2/3.

Proof:
If G is 𝜀𝜀-far from connected, then it has at
least 𝜀𝜀dn/8 connected components of size
≥ 1 and ≤ 8/𝜀𝜀d.

Each iteration / sample has probability at

least of finding small

connected component and returning FALSE.

Connectivity

Claim: If G is 𝜀𝜀-far from connected, then
returns FALSE with probability ≥ 2/3.

Proof:
Each iteration / sample has probability at

least of finding small

connected component and returning FALSE.

Death Bed Fact: (0 < x < 1)

Connectivity

Claim: If G is 𝜀𝜀-far from connected, then
returns FALSE with probability ≥ 2/3.

Proof:
Each iteration / sample has probability at

least of finding small

connected component and returning false.

Death Bed Fact: (0 < x < 1)

 Some iteration finds a small CC and returns FALSE
with probability at least 2/3.

Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes,

return FALSE.
Return TRUE

Claim: If G is 𝜀𝜀-far from connected, then
returns FALSE with probability ≥ 2/3.

Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes,

return FALSE.
Return TRUE

Claim: Total time is O(1/𝜀𝜀2d).

Claim: If G is 𝜀𝜀-far from connected, then
returns FALSE with probability ≥ 2/3.

Claim: If G is connected, returns TRUE.

Connectivity

General idea:

• Use sampling and local approximation to understand global graph
properties.

• For what other interesting properties can you do this?

Questions to think about:

• Is gap approximation useful?

• Is there a better notion of “close to connected”?

• For what values of 𝜀𝜀 and d is this actually fast?

• What happens in dense graphs?

• Can you find a faster algorithm? In theory? In practice?

Announcements / Reminders

Problem sets:

Problem Set 1 will be released tomorrow.

Problem Set 1 will be due next week.

Summary

Today:

Number of connected components in
a graph.

• Approximation algorithm.

Weight of MST

• Approximation algorithm.

Last Week:

Toy example 1: array all 0’s?

• Gap-style question:
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91

