
Algorithms at Scale
(Week 1)

Puzzle of the Day:

5 x 4: Use 7 lines.

7 x 7: Use 12 lines

Connect the dots.
Use ?? straight lines.
Don’t lift your pen from the paper.

Can you end at the same
place you began?



Sublinear Time / Sampling Algorithms

Basic question: 

What can we do when we look at only a small part 
of our input data? 

Examples:

• Given a graph... only look at a constant number of nodes/edges.

• Is the graph connected?

• How many connected components does it have?

• What is the weight of the MST?

• What is the average degree of the graph?

• What is the diameter of the graph?

• What is the best matching on the graph?



Comparison

Weight of 
MST? 

Classical Sublinear Approximation

Is the graph 
connected? 

# connected 
components? 

n : number of nodes
m : number of edges
d : degree of graph

W : weight of MST
∊ : error / approximation parameter



Comparison

Weight of 
MST? 

Classical Sublinear Approximation

Is the graph 
connected? 

# connected 
components? 

n : number of nodes
m : number of edges
d : degree of graph

W : weight of MST
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Comparison

Weight of 
MST? 

Classical Sublinear Approximation

Is the graph 
connected? 

# connected 
components? 

n : number of nodes
m : number of edges
d : degree of graph
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Comparison

Weight of 
MST? 

Classical Sublinear Approximation

Is the graph 
connected? 

# connected 
components? 

n : number of nodes
m : number of edges
d : degree of graph

W : weight of MST
∊ : error / approximation parameter

does not matter 
how big the graph is!



Comparison

Maximum 
matching?

Classical Sublinear Approximation

Average 
degree? 

Diameter?

n : number of nodes
m : number of edges
d : degree of graph

W : weight of MST
∊ : error / approximation parameter



Algorithms

Next week:

Number of connected components in 
a graph.

• Additive approximation 
algorithm.

Weight of MST

• Multiplicative approximation 
algorithm.

Today

Toy example 1: array all 0’s?

• Gap-style question:              
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3.



Trade-off: speed vs. accuracy

Approximate solutions:

Example: relative error

Example: absolute error

Example: gap error

• If G is connected, then return TRUE.

• If G is ∊-far from connected, then return FALSE.

• Otherwise, don’t care.

MST(G) = weight of MST

ALG(G) = weight of spanning tree 
returned by algorithm



Warm-Up Problem: All Zeros

Assumptions:

Given n element array
• Each element is 0 or 1.
• 0 = good test.
• 1 = failed test.

Output: Is the array all 0?

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0



Warm-Up Problem: All Zeros

Algorithm: Check every cell.

Running time: 

Can we do any better?

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0



Warm-Up Problem: All Zeros

Algorithm: Check every cell.

Running time:

Can we do any better?  No!

Lower bound: 

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Challenge #1:

Prove it.



Warm-Up Problem: All Zeros

Relaxed (approximate) version:

Output: Is the array mostly 0?

0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0



Warm-Up Problem: All Zeros

Relaxed (approximate) version:

Output: Is the array mostly 0?

0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0

n = 16
∊ = 1/4

FALSE



Warm-Up Problem: All Zeros

Relaxed (approximate) version:

Output: Is the array mostly 0?

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n = 16
∊ = 1/4

TRUE



Warm-Up Problem: All Zeros

Relaxed (approximate) version:

Output: Is the array mostly 0?

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

n = 16
∊ = 1/4

TRUE OR FALSE



Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

Fix 



Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

Fix 

Claim 1: If array is all 0’s, then always returns TRUE.



Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

Fix 

Claim 2: If array has ≥ 𝜀𝜀n 1’s, then returns FALSE with 
probability at least 2/3.



Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0

Fix 

Claim 2: If array has ≥ 𝜀𝜀n 1’s, then returns FALSE with 
probability at least 2/3.

Proof: 
Assume ≥ 𝜀𝜀n 1’s.
For sample i : Pr[A[i] = 1] ≥ 𝜀𝜀n/n ≥ 𝜀𝜀.



Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0

Fix 

Claim 2: If array has ≥ 𝜀𝜀n 1’s, then returns FALSE with 
probability at least 2/3.

Proof: 
Assume ≥ 𝜀𝜀n 1’s.
For sample i : Pr[A[i] = 1] ≥ 𝜀𝜀n/n ≥ 𝜀𝜀.

Death Bed Fact:       (0 < x < 1)



Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

Fix 

Claim 2: If array has ≥ 𝜀𝜀n 1’s, then returns FALSE with 
probability at least 2/3.

Claim 1: If array is all 0’s, then always returns TRUE.



Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

What if we want the algorithm to be correct with 
probability ≥ 1 – δ? 



Warm-Up Problem: All Zeros

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

All-Zeros(A, ∊)
Repeat s times:

Choose random i in [1, n] .
if A[i] = 1 then return FALSE.

Return TRUE.

What if we want the algorithm to be correct with 
probability ≥ 1 – δ? 

Fix 

Test:

Find s.



Warm-Up Problem: How Many Zeros

Input: n element array
• Each element is 0 or 1.
• 0 = good test, 1 = failed test.

Output: What fraction of the array is 1’s?

Approximation: ± 𝜀𝜀

Probability correct: 2/3

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0



Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

answer: [0.1775, 0.1975]n = 16
∊ = 1/100

answer = 3/16n = 16
∊ = 0

answer: [1/8, 1/4]n = 16
∊ = 1/16



Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Fraction-Zeros(A, 𝜀𝜀)
sum = 0
Repeat s times:

Choose random i in [1, n]
sum = sum + A[i]

Return sum/s



Key tool: Hoeffding Bound

Requirements:

1) Random variables:
Y1, Y2, …, Ys are random variables.

2) Independent:
Y1, Y2, …, Ys are independent.

3) Bounded:
Each Yj is in the range [0,1].



Requirements:

1) Random variables:
Y1, Y2, …, Ys are random variables.

2) Independent:
Y1, Y2, …, Ys are independent.

3) Bounded:
Each Yj is in the range [0,1].

Key tool: Hoeffding Bound

Example:

1) Random variables:
Yj = value of array sampled in

jth iteration of the loop.

2) Independent:
Each sample is independent.

3) Bounded:
Each array entry is in [0,1].



If Y1, Y2, …, Ys are independent random variables in the 

range [0,1] and if                      then:

Conclusion:
The value of Z is within δ of its expected value with “good” probability.

Key tool: Hoeffding Bound



Claim:

Imagine you flip a coin n times. 

Then you will see:

• at least                  heads

• at most                  heads

with probability at least  2/3.

Example: Flipping Coins



Random variables:

1) Random variables:

2) Independent: YES
3) Bounded: YES

Claim:

Imagine you flip a coin n times. 

Then you will see:

• at least                  heads

• at most                  heads

with probability at least  2/3.

Example: Flipping Coins



Example: Flipping Coins

Hoeffding Bound:



Claim:

Imagine you flip a coin n times. 

Then you will see:

• at least                  heads

• at most                  heads

with probability at least  2/3.

Example: Flipping Coins



If Y1, Y2, …, Ys are independent random variables in the 

range [0,1] and if                      then:

Conclusion:
The value of Z is within δ of its expected value with “good” probability.

Key tool: Hoeffding Bound



Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Fraction-Zeros(A, 𝜀𝜀)
sum = 0
Repeat s times:

Choose random i in [1, n]
sum = sum + A[i]

Return sum/s



Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Let f = fraction of 1’s in the array.

(The ”right” answer for the algorithm is f.)



Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Let f = fraction of 1’s in the array.

(The ”right” answer for the algorithm is f.)



Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Fraction-Zeros(A, 𝜀𝜀)
sum = 0
Repeat s times:

Choose random i in [1, n]
sum = sum + A[i]

Return sum/s

Unbiased estimator!  That’s good…



Use a Hoeffding Bound!

Can we use a Hoeffding Bound here?



Use a Hoeffding Bound!

Can we use a Hoeffding Bound here?

No, not yet.  
V is not a sum of random variables.



Use a Hoeffding Bound!

Multiple everything by s.



Use a Hoeffding Bound!

Can we use a Hoeffding Bound here?

Yes.  
The random variable sum is the sum of 
independent 0/1 random variables.



Use a Hoeffding Bound!



Use a Hoeffding Bound!



Use a Hoeffding Bound!



Use a Hoeffding Bound!

Conclusion: value returned V is equal to f ± 𝜀𝜀 w.p. ≥ 2/3.



Warm-Up Problem: How Many Zeros

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Fraction-Zeros(A, 𝜀𝜀)
sum = 0
Repeat s times:

Choose random i in [1, n]
sum = sum + A[i]

Return sum/s

Conclusion: sum/s is equal to f ± 𝜀𝜀 w.p. ≥ 2/3.



Algorithms

Next week:

Number of connected components in 
a graph.

• Additive approximation 
algorithm.

Weight of MST

• Multiplicative approximation 
algorithm.

Today

Toy example 1: array all 0’s?

• Gap-style question:              
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3.



Connectivity

Assumptions:

Graph G = (V,E)
• Undirected
• n nodes
• m edges
• maximum degree d

Output: 
Is the graph connected?

Example: output NO



Connectivity

Assumptions:

Graph G = (V,E)
• Undirected
• n nodes
• m edges
• maximum degree d

Format: 
• Graph is given as an adjacency list.
• Query: nbr(u, i) returns ith

neighbor of node u.
Example: output NO



Connectivity

Exact answer:

BFS solves in:

Cannot do faster than: 

Challenge #2:

Prove it.



Connectivity

Assumptions:

Graph G = (V,E)
• Undirected
• n nodes
• m edges
• maximum degree d

Output: 
Is the graph close to” connected or 
“far from” connected?

Example: output NO



Connectivity

Gap Approximation:

If G is connected:

Return TRUE

If G is 𝜀𝜀-far from connected:

Return FALSE

Otherwise:

Don’t care.



Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can 

add/modify at most 𝜀𝜀nd entries in 

the adjacency list to create a new 

graph G’ that is connected.

Note: adding an edge requires modifying two entries in the adjacency list.



Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can 

add/modify at most 𝜀𝜀nd entries in 

the adjacency list to create a new 

graph G’ that is connected.

Note: adding an edge requires modifying two entries in the adjacency list.



Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can 

add/modify at most 𝜀𝜀nd entries in 

the adjacency list to create a new 

graph G’ that is connected.

Example: n = 10, d = 3

Note: adding an edge requires modifying two entries in the adjacency list.



Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can 

add/modify at most 𝜀𝜀nd entries in 

the adjacency list to create a new 

graph G’ that is connected.

Note: adding an edge requires modifying two entries in the adjacency list.

Example: n = 10, d = 3
Add 3 edges to connect graph.
Modify 6 entries in adjacency list.



Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can 

add/modify at most 𝜀𝜀nd entries in 

the adjacency list to create a new 

graph G’ that is connected.

Note: adding an edge requires modifying two entries in the adjacency list.

Example: n = 10, d = 3
Add 3 edges to connect graph.
Modify 6 entries in adjacency list.
nd = 30
G is 1/5-close to connected.



Connectivity

Definition:

G is 𝜀𝜀-close to connected if you can 

add/modify at most 𝜀𝜀nd entries in 

the adjacency list to create a new 

graph G’ that is connected.

G is 𝜀𝜀-far from connected if it is not   

𝜀𝜀-close to connected.

Note: adding an edge requires modifying two entries in the adjacency list.



Connectivity

Assumptions:

Graph G = (V,E)
• Undirected
• n nodes
• m edges
• maximum degree d

Output: 
If G is connected: return TRUE.
If G is 𝜀𝜀-far from connected: return FALSE.
Else: don’t care.

Correct: with probability ≥ 2/3.
Example: output NO



Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, 
then it has 𝜀𝜀dn/4 connected 
components.



Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then 
it has ≥ 𝜀𝜀dn/4 connected 
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected 
components.

Then add 𝜀𝜀dn/4-1 edges to build 
connected graph G’.  That requires 
modifying ≤ 𝜀𝜀dn/2 entries in adjacency list.

G is 𝜀𝜀-close to connected.



Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then 
it has ≥ 𝜀𝜀dn/4 connected 
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected 
components.

Then add 𝜀𝜀dn/4-1 edges to build 
connected graph G’.  That requires 
modifying ≤ 𝜀𝜀dn/2 entries in adjacency list.

G is 𝜀𝜀-close to connected.

Oops!

Cannot always add an 
edge without increasing 
the degree of the graph.



Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then 
it has ≥ 𝜀𝜀dn/4 connected 
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected 
components.

For each connected component, if every 
node has degree d:



Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then 
it has ≥ 𝜀𝜀dn/4 connected 
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected 
components.

For each connected component, if every 
node has degree d:

If it has k nodes, find a spanning tree with 
k-1 edges.  Remove any one edge not in 
spanning tree.



Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then 
it has ≥ 𝜀𝜀dn/4 connected 
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected 
components.

For each connected component, if every 
node has degree d:

If it has k nodes, find a spanning tree with 
k-1 edges. Remove any one edge not in 
spanning tree.



Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then 
it has ≥ 𝜀𝜀dn/4 connected 
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected 
components. 

Delete ≤ 𝜀𝜀dn/4 edges so each connected 
component has at least one node with 
degree < d. 

Then add ≤ 𝜀𝜀dn/4-1 edges to build 
connected graph G’.  



Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, then 
it has ≥ 𝜀𝜀dn/4 connected 
components.

Proof:
Assume G has ≤ 𝜀𝜀dn/4 connected 
components. 

Delete ≤ 𝜀𝜀dn/4 edges so each connected 
component has at least one node with 
degree < d. 

Then add ≤ 𝜀𝜀dn/4-1 edges to build 
connected graph G’.  

Modifies ≤ 𝜀𝜀dn entries in adjacency 
list.

G is 𝜀𝜀-close to connected.



Key Claim

Lemma:
If G is 𝜀𝜀-far from connected, 
then it has 𝜀𝜀dn/4 connected 
components.



Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected, 
then it has 𝜀𝜀dn/8 connected 
components of size ≤ 8/𝜀𝜀d.



Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected, 
then it has 𝜀𝜀dn/8 connected 
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.



Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected, 
then it has 𝜀𝜀dn/8 connected 
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.
Assume not.
• There are at least 𝜀𝜀dn/4 connected 

components.

At most half can be twice the average 
size…



Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected, 
then it has 𝜀𝜀dn/8 connected 
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.
Assume not.
• There are at least 𝜀𝜀dn/4 connected 

components.
• At most 𝜀𝜀dn/8 are of size ≤ 8/𝜀𝜀d.
• At least 𝜀𝜀dn/8 are of size > 8/𝜀𝜀d.



 CONTRADICTION

Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected, 
then it has 𝜀𝜀dn/8 connected 
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.
Assume not.
• There are at least 𝜀𝜀dn/4 connected 

components.
• At most 𝜀𝜀dn/8 are of size ≤ 8/𝜀𝜀d.
• At least 𝜀𝜀dn/8 are of size > 8/𝜀𝜀d.



Key Claim 2

Lemma:
If G is 𝜀𝜀-far from connected, 
then it has 𝜀𝜀dn/8 connected 
components of size ≤ 8/𝜀𝜀d.

Proof:
Counting argument.



Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping 

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes, 

return FALSE. 
Return TRUE



Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping 

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes, 

return FALSE. 
Return TRUE

Claim: Each BFS takes time at most d(8/𝜀𝜀d). 



Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping 

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes, 

return FALSE. 
Return TRUE

Claim: Each BFS takes time at most d(8/𝜀𝜀d) = 8/𝜀𝜀. 

Proof: Explore at most (8/𝜀𝜀d) nodes of degree at most d.



Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping 

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes, 

return FALSE. 
Return TRUE

Claim: Total time is O(1/𝜀𝜀2d). 

Proof:



Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping 

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes, 

return FALSE. 
Return TRUE

Claim: If G is connected, returns TRUE.

Proof: Immediate.  No component has ≤ 8/𝜀𝜀d nodes. 



Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping 

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes, 

return FALSE. 
Return TRUE

Claim: If G is 𝜀𝜀-far from connected, then 
returns FALSE with probability ≥ 2/3.

Proof: …



Connectivity

Claim: If G is 𝜀𝜀-far from connected, then 
returns FALSE with probability ≥ 2/3.

Proof:
If G is 𝜀𝜀-far from connected, then it has at 
least 𝜀𝜀dn/8 connected components of size
≤ 8/𝜀𝜀d.



Connectivity

Claim: If G is 𝜀𝜀-far from connected, then 
returns FALSE with probability ≥ 2/3.

Proof:
If G is 𝜀𝜀-far from connected, then it has at 
least 𝜀𝜀dn/8 connected components of size   
≥ 1 and ≤ 8/𝜀𝜀d.

Each iteration / sample has probability at 

least                             of finding small 

connected component and returning FALSE. 



Connectivity

Claim: If G is 𝜀𝜀-far from connected, then 
returns FALSE with probability ≥ 2/3.

Proof:
Each iteration / sample has probability at 

least                             of finding small 

connected component and returning FALSE. 

Death Bed Fact:       (0 < x < 1)



Connectivity

Claim: If G is 𝜀𝜀-far from connected, then 
returns FALSE with probability ≥ 2/3.

Proof:
Each iteration / sample has probability at 

least                             of finding small 

connected component and returning false. 

Death Bed Fact:       (0 < x < 1)

 Some iteration finds a small CC and returns FALSE
with probability at least 2/3.



Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping 

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes, 

return FALSE. 
Return TRUE

Claim: If G is 𝜀𝜀-far from connected, then 
returns FALSE with probability ≥ 2/3.



Connectivity

Connected(G, n, d, 𝜀𝜀)
Repeat 16/𝜀𝜀d times:

• Choose random node u.
• Do a BFS from u, stopping 

after 8/𝜀𝜀d nodes are found.
• If CC of u has ≤ 8/𝜀𝜀d nodes, 

return FALSE. 
Return TRUE

Claim: Total time is O(1/𝜀𝜀2d). 

Claim: If G is 𝜀𝜀-far from connected, then 
returns FALSE with probability ≥ 2/3.

Claim: If G is connected, returns TRUE.



Connectivity

General idea:

• Use sampling and local approximation to understand global graph 
properties.

• For what other interesting properties can you do this? 

Questions to think about:

• Is gap approximation useful?

• Is there a better notion of “close to connected”?

• For what values of 𝜀𝜀 and d is this actually fast? 

• What happens in dense graphs?

• Can you find a faster algorithm?  In theory?  In practice?



Announcements / Reminders

Problem sets:

Problem Set 1 will be released tomorrow.

Problem Set 1 will be due next week.



Summary

Today:

Number of connected components in 
a graph.

• Approximation algorithm.

Weight of MST

• Approximation algorithm.

Last Week:

Toy example 1: array all 0’s?

• Gap-style question:              
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3.
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