
CS5234

Algorithms at Scale
(Fast Algorithms for Slow Problems)

Welcome!

Puzzle of the Day:

5 x 4:
Use 7 lines. 7 x 7:

Use 12 lines

Connect the dots.
Use ?? straight lines.
Don’t lift your pen from the paper.

Can you end at the same
place you began?



Everyone here knows classical algorithms:
• Dijkstra’s, Prim’s, Red-black trees, Fibonacci Heaps, etc.

What happens when you try to use these 
algorithms on real-world data sets?

Why are we here?



Imagine a graph containing: 
• 4 billion nodes 
• 1.2 trillion edges

(The Facebook graph, for example, is at least that big.)

(Today, a 1TB data set is not that big.)

Example:

E.g.,  1 TB of data



Imagine a graph containing: 
• 4 billion nodes 
• 1.2 trillion edges

Simple question: 
What is the diameter of your graph?

Example:

E.g.,  1 TB of data



Imagine a graph containing: 
• 4 billion nodes 
• 1.2 trillion edges

Simple question: 
What is the diameter of your graph?

Simple answer:
Run breadth-first-search n times.

Example:

E.g.,  1 TB of data

O(m∙n)



Assume a graph of size 1TB.

• Disk scan: 200 MB/s  83 minutes
• Disk seek: 1 MB/s  11.5 days

Cost of simple breadth-first-search?   1 week

Cost of finding the diameter?    years

Some numbers



To answer simple questions…
• What is the diameter?
• Is the graph connected?
• How many connected components are there?
• What is the shortest path from A to B?
• Find a minimum spanning tree.

… when classical algorithms are too slow.

Why are we here?



What can we do?

General strategies?



What can we do?
• Optimize the algorithm.

– Leverage special structures (e.g., graph is planar).
– E.g., Use caches more efficiently, keep your data better organized, etc.

• Approximate the answer.
– E.g., Use random sampling.

• Parallelize the computation.
– E.g., leverage multicore / multiprocessor / cluster computation

General strategies?



Step 1: Approximate

Goal: 
Given graph G=(V,E), find approximate 
diameter D such that:

(½)∙diameter(G) ≤ D ≤ 2∙diameter(G) 

Example: Diameter

2-approximation



Simple approximation algorithm:

Example: Diameter



Simple approximation algorithm:
1. Choose a node u.
2. Run BFS from u.
3. Let v be farthest node from u.
4. Return d(u,v).

Example: Diameter

u

v

d(u,v) = 4



Simple approximation algorithm:
1. Choose a node u.
2. Run BFS from u.
3. Let v be farthest node from u.
4. Return d(u,v).

Proof:
For all pairs (x,y):
d(x,y) ≤ d(x,u) + d(u,y)

≤ d(u,v) + d(u,v)
≤ 2∙d(u,v)

Example: Diameter

u

v

d(u,v) = 4



Simple approximation algorithm:
1. Choose a node u.
2. Run BFS from u.
3. Let v be farthest node from u.
4. Return d(u,v).

Time:
O(m + n)

Example: Diameter

u

v

d(u,v) = 4



Simple approximation algorithm:
1. Choose a node u.
2. Run BFS from u.
3. Let v be farthest node from u.
4. Return d(u,v).

Time:
O(m + n)

Example: Diameter

u

v

d(u,v) = 4
Oops…
Better, but still slow.

Cost of simple BFS?   
≅ 1 week



Step 2: Scan time is faster than seek time!
• Disk scan: 200 MB/s  83 minutes
• Disk seek: 1 MB/s  11.5 days

Goal: 
Do BFS by scanning entire graph in any order.
Find log(n)-approximation. 

Time: O(n + m) scan time.

Example: Diameter

Speedup of 100x for log-approximate answer.



Step 3: Sampling + Approximation

Goal: 
If the graph has diameter ≤ D return true.
If the graph is FAR from a graph with 
diameter ≤ 4D + 2 return true.

Time: O(1/ 3) 

Example: Diameter

error term / depends on how FAR is FAR



Step 4: Optimization + 2-Approximation

Goal: 
Use faster BFS to get a 2-approximation.
Assume a cache of size C with block-size B. 

Time: O(n + (m/B)∙log
C/B

(m/B)) 

Example: Diameter

Speedup of 100x to 1000x when data is on disk.



Step 4: Parallelize + 2-Approximation

Goal: 
Use parallel-BFS to find a 2-approximation.

Time: O((m/p)∙log2n + D∙log3n) on p cores.
or

Time: n iterations on Map-Reduce cluster.

Example: Diameter



Algorithms 101

• Kruskal’s Algorithm
• Prim’s Algorithm

• Runs in O(m log n) time for n nodes and m edges.

• Fast enough?

Another Ex: Minimum Spanning Tree



Special Structure

• Is graph planar?  
 Then we can find an MST in O(m) time.

• Is the graph a social network?
 Then graph has special structure too!

Example: Minimum Spanning Tree



Randomization and Approximation

• Can we find a faster randomized algorithm?
• Approximate MSG?
• Estimate weight of MST?

Amazingly: O(dW log(dW)) 
for a graph with degree d and max. edge weight W
No dependence on n!!

Example: Minimum Spanning Tree



Streaming

• What if we only have limited access to data?
• We get to read each edge once in some 

arbitrary order: e1, e2, e3, …, em

• We can’t store the whole graph!
• Output an (approximate) MST?

Example: Minimum Spanning Tree



Dynamic

• What if edges change over time?
• Edges are continually added and removed 

from our graph.
• After each change, find a new MST.

Example: Minimum Spanning Tree



Caching

• Caching performance is critical.
• Each time we access part of the graph, a 

block of memory is loaded.  
– Expensive!

• How can we design an algorithm for finding 
an MST that uses cache efficiently?

Example: Minimum Spanning Tree



Parallel/GPU/Distributed

• Can we leverage a multicore machine to find 
an MST faster?

• Can we use GPUs to get faster performance?
• Can we use a distributed cluster (e.g., 

MapReduce/Hadoop) to find an MST faster?

Example: Minimum Spanning Tree



Scale

• How do we deal with graphs that are big?
• Cannot store entire graph in memory.
• Processing time is large!

New Challenges



Where is the data?

• Data is no longer as easily accessible.
• Is data distributed?
• Is data streaming?
• Is data noisy?

New Challenges



Dynamic world

• Data is no longer static.
• Graphs change over time.
• Edges may be added and removed.
• Users may come and go.

New Challenges



Context matters

• Where did the data come from?
• Is it from a social network?
• Is it from a wireless network?
• Is it from a game?
• How can we leverage the structure to do 

better?

New Challenges



To answer simple questions…
• What is the diameter?
• Is the graph connected?
• How many connected components are there?
• What is the shortest path from A to B?
• Find a minimum spanning tree.

… when classical algorithms are too slow by…
• Optimizing the algorithm.

– Leverage special structure (e.g., graph is planar).

– Use caches more efficiently, keep your data better organized, etc.
• Approximating the answer.

– E.g., Use random sampling.
• Parallelizing the computation.

– E.g., leverage multicore / multiprocessor / cluster computation

Why are we here?



This is a class about algorithms.



This is a class about algorithms.

expected value P=NP



This is a class about algorithms.

The goal is to deeply understand the algorithms we are studying.

How do they work?

Why do they work?

What are the underlying techniques?

What are the trade-offs?

How do you implement them?



Previous Student feedback:

“What a great class, but so many algorithms.  I wish I had known that the
class was going to include so many proofs and so much math.”
-- Gil Gunderson

“I loved the class, it was amazing, the algorithms were almost like magic!
But unfortunately I had no idea what you were talking about most of the time, 
since I had never taken an algorithms class before.”  
-- Ernie Macmillan

** The above quotes are entirely fabricated and only loosely reflect real student feedback.



“To find the shortest path, first use Prim’s
algorithm (with a Fibonacci Heap) to find an MST
in O(m + n log n) time.”

You should have two immediate reactions:

For example, if I say:



“To find the shortest path, first use Prim’s
algorithm (with a Fibonacci Heap) to find an MST
in O(m + n log n) time.”

You should have two immediate reactions:

1. Nod your head since you understand exactly what I 
am saying.

For example, if I say:



“To find the shortest path, first use Prim’s
algorithm (with a Fibonacci Heap) to find an MST
in O(m + n log n) time.”

You should have two immediate reactions:

1. Nod your head since you understand exactly what I 
am saying.

2. Tell me that this claim seems like NONSENSE
(because MSTs are almost never useful for finding a 
shortest path).

For example, if I say:



Target students:
– Advanced (3rd or 4th year) undergraduates
– Master’s students
– PhD students
– Interested in algorithms
– Interested in tools for solving hard problems

Prerequisites: 
– CS3230 (Analysis of Algorithms)
– Mathematical fundamentals

CS5234 : Algorithms at Scale



“If you need your software to run twice as fast, 
hire better programmers.  

But if you need your software to run more than 
twice as fast, use a better algorithm.”

-- Software Lead at Microsoft



“... pleasure has probably been the main goal all 
along. 

But I hesitate to admit it, because computer 
scientists want to maintain their image as hard-
working individuals who deserve high salaries... 
”

-- D. E. Knuth



 Mid-term exam
October 16 In class, Week 9

 Final exam
November 27 

(Please double-check the official schedule in case it 
changes or in case this is wrong!) 

CS5234 Overview



 Lecture
Thursday 6:30-8:30pm

 Extra time
Thursday 8:30-9:30pm

Extra time will be used for discussion, reviewing 
problem sets, answering questions, solving riddles, 
doing crossword puzzles, eating cookies, etc.

CS5234 Overview



 Assessments
Problem sets + Mini-Project

Mid-term exam

Final exam

 Problem sets
– 5-6 sets (roughly every week)

– Focused on algorithm design and analysis.

– Perhaps a few will require coding.

CS5234 Overview



 Mini-Project
Small project

Idea: put together some of the different 
ideas we have used in the class.

Time scale: last 4 weeks of the semester.

CS5234 Overview



Survey: Google form. 

On the web page. 

What is your background?

Not more than 10 minutes.

PS1: Released tomorrow.

CS5234 Overview



 Problem set grading
Simple scheme:

3 : excellent, perfect answer

2 : satisfactory, mostly right

1 : many mistakes / poorly written

0 : mostly wrong / not handed in

-1 : utter nonsense

CS5234 Overview



 What to submit:
Concise and precise answers:

Solutions should be rigorous, containing all 
necessary detail, but no more. 

Algorithm descriptions consist of: 
1. Summary of results/claims.
2. Description of algorithm in English.
3. Pseudocode, if helpful.
4. Worked example of algorithm.
5. Diagram / picture. 
6. Proof of correctness and performance 

analysis.

CS5234 Overview



 How to draw pictures?
By hand:

Either submit hardcopy, or scan, or take a 
picture with your phone!

Or use a tablet / iPad…

Digitally: 
1. xfig (ugh)
2. OmniGraffle (mac)
3. Powerpoint (hmmm)
4. ???

CS5234 Overview



 Policy on plagiarism:
Do your work yourself:

Your submission should be unique, unlike 
anything else submitted, on the web, etc. 

Discuss with other students: 
1. Discuss general approach and techniques.
2. Do not take notes.
3. Spend 30 minutes on facebook (or equiv.).
4. Write up solution on your own. 
5. List all collaborators.

Do not search for solutions on the web:
Use web to learn techniques and to review 
material from class. 

CS5234 Overview



 Policy on plagiarism:
Penalized severely:

First offense: minimum of one letter grade lost on 
final grade for class (or referral to SoC disciplinary 
committee).

Second offense: F for the class and/or referral to 
SoC.

Do not copy/compare solutions!

CS5234 Overview



Introduction to Algorithms
– Cormen, Leiserson, Rivest, Stein

Algorithms Review



Algorithm Design
– Kleinberg and Tardos

Algorithms Review



 Sampling and Sketching Very Big Graphs

 Efficient Algorithms for Modern Machines

A modern twist on classic problems…
BFS, DFS, MST, Shortest Path, etc.

Topics (tentative)



 Sampling and Sketching Very Big Graphs
Part 1: Graph properties in less than linear time

Connectivity

Connected components

Minimum spanning tree

Average degree

Approximate diameter

Matching

Topics (tentative)



 Sampling and Sketching Very Big Graphs
Part 2: Sketches and streams

Sampling from a stream

L0-samplers

Graph sketches

Connectivity

Minimum spanning trees

Triangle counting

Topics (tentative)



 Efficient Algorithms for Modern Machines
Part 3: Caching

Cache-efficient algorithms

BFS

Priority queues

Shortest path

Minimum spanning trees

Topics (tentative)



 Efficient Algorithms for Modern Machines
Part 4: Parallel Algorithms

Fork-join parallelism

Map-Reduce

BFS / DFS

Shortest path

Topics (tentative)



CS5234 Overview

 Webpage:
http://www.comp.nus.edu.sg/~gilbert/CS5234

 Instructor: Seth Gilbert
Office: COM2-323
Office hours: by appointment



CS5234
Algorithms at Scale
(Fast Algorithms for Slow Problems)

Welcome!

Puzzle of the Day:

5 x 4:
Use 7 lines. 7 x 7:

Use 12 lines

Connect the dots.
Use ?? straight lines.
Don’t lift your pen from the paper.

Can you end at the same
place you began?


