
Algorithms at Scale

(Week 2)

Puzzle of the Day:

A bag contains a collection of blue and red balls. Repeat:

• Take two balls from the bag.

• If they are the same color, discard them both and add a blue ball.

• If they are different colors, discard the blue ball and put the red ball back.

What do you know about the color of the final ball?

Summary

Today:

Number of connected components in
a graph.

• Additive approximation
algorithm.

Weight of MST

• Multiplicative approximation
algorithm.

Last Week:

Toy example 1: array all 0’s?

• Gap-style question:
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3. 9 dots
4 lines

Announcements / Reminders

Problem sets:

Problem Set 1 was due today.

Problem Set 2 will be released tonight.

Announcements / Reminders

Next Week: Guest Lecture

Arnab Bhattacharyya

Arnab’s research:
“My research area is theoretical computer science, in a broad sense.
More specifically, I am interested in algorithms for big data,
computational complexity, analysis and extremal combinatorics on
finite fields, and algorithmic models for natural systems.”

Today’s Problem: Connected Components

Assumptions:

Graph G = (V,E)

• Undirected

• n nodes

• m edges

• maximum degree d

Error term: 𝜀

Output:
Number of connected components.

Example: output 3

A

B

c

Today’s Problem: Connected Components

Approximation:

Output C such that:

Alternate form:

Correct output: w.p. > 2/3

Example:
𝜀 = 1/10
Output ∊ {2,3,4}

A

B

c

Today’s Problem: Connected Components

When is this useful?

What are trivial values of 𝜀?

What are hard values of 𝜀?

What sort of applications is this useful for?

Approximate Connected Components

When is this useful?

What are interesting values of 𝜀?

• What happens when 𝜀 = 1?

• What happens when 𝜀 = 1/(2n)?

What sort of applications is this useful for?

• Large graphs?

• Large social networks?

• The internet?

• Networks with many connected components?

• Number of components follows a heavy tail distribution?

Approximate Connected Components

Define: per-node cost

Let n(u) = number of nodes in the
connected component
containing node u.

w
x

y

z

Key Idea 1:

n(w) = 6
n(x) = 6

n(y) = 3

n(z) = 1

A

B

c

Approximate Connected Components

Define: per-node cost

Let n(u) = number of nodes in the
connected component
containing node u.

Let cost(u) = 1/n(u).

Key Idea 1:

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Approximate Connected Components

Why is this useful?

Key Idea 1:

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Why is this useful?

Approximate Connected Components

Key Idea 1:

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Why is this useful?

Approximate Connected Components

Key Idea 1:

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Why is this useful?

Approximate Connected Components

Key Idea 1:

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

sum = 0
for each u in V:

sum = sum + cost(u)
return sum

Approximate Connected Components

Algorithm 1

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

sum = 0
for each u in V:

sum = sum + cost(u)
return sum

Comments:
• Need a way to efficiently

compute cost(u).

• Runs in O(n) time.

Approximate Connected Components

Algorithm 1

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Sample

• Choose a small random
subset S of V.

• For each node u in S,
compute cost(u).

• Use the sample to estimate
the average cost of all the
nodes.

Approximate Connected Components

Key Idea 2: Sampling

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Worries?

Approximate Connected Components

Key Idea 2: Sampling

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Worries?

• Big components are sampled
more often than small
components?

• Small components may
never be sampled?

• Bad examples?
1 component of size 90,
10 components of size 1

Approximate Connected Components

Key Idea 2: Sampling

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Comments:
• (sum/s) is average cost of sample.

• Efficiently compute cost(u)?

• Runs in O(s) time.

Approximate Connected Components

Algorithm 2

y

z

cost(y) = 1/3

cost(z) = 1

w
x

cost(w) = 1/6
cost(x) = 1/6

A

B

c

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Define random variables: Y1, Y2, …, Ys

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Notice:

Output of algorithm is:

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Notice:

Expected output of algorithm is:

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Important step:

Expected out is number of connected components!

(Algorithm is an unbiased estimator.)

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Notice:

Goal:

Approximate Connected Components

Algorithm 2 Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

Notice:

Goal:

Approximate Connected Components

Algorithm 2 Analysis

Given: independent random variables Y1, Y2, …, Ys

Assume: each Yj ∊ [0,1]

Then:

Approximate Connected Components

Reminder: Hoeffding Bound

Given: independent random variables Y1, Y2, …, Ys

Assume: each Yj ∊ [0,1]

Then:

Approximate Connected Components

Reminder: Hoeffding Bound

Goal:

Derivation:

Approximate Connected Components

Algorithm 2 Analysis

Derivation:

Approximate Connected Components

Algorithm 2 Analysis

Derivation:

Approximate Connected Components

Algorithm 2 Analysis

Derivation:

Approximate Connected Components

Algorithm 2 Analysis

Derivation:

Approximate Connected Components

Algorithm 2 Analysis

Approximate Connected Components

Algorithm 2 Analysis

Derivation:

Approximate Connected Components

Algorithm 2 Analysis

Derivation:

Approximate Connected Components

Algorithm 2 Analysis

Derivation:

Approximate Connected Components

Algorithm 2 Analysis

Derivation:

Approximate Connected Components

Algorithm 2 Analysis

Derivation:

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

We have shown:
W.p. > 2/3, output is equal to:

CC(G) ± 𝜀n/2

Approximate Connected Components

Algorithm 2

y

z

cost(y) = 1/3

cost(z) = 1

w
x

cost(w) = 1/6
cost(x) = 1/6

A

B

c

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

We have shown:
Time: O(1/𝜀2)

Approximate Connected Components

Algorithm 2

y

z

cost(y) = 1/3

cost(z) = 1

w
x

cost(w) = 1/6
cost(x) = 1/6

A

B

c

Key problem:

How to efficiently compute
cost(u).

Approximate Connected Components

Key Idea 2: Sampling

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Key problem:

How to efficiently compute
cost(u).

Key idea 3:

Approximate cost(u).

Approximate Connected Components

Key Idea 2: Sampling

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Approximate low cost
components:

If cost(u) is small, round up.

Approximate Connected Components

Key Idea 3: Approximate Cost

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

cHow small is small enough?

Approximate low cost
components:

If cost(u) < 𝜀/2, round up.

Approximate Connected Components

Key Idea 3: Approximate Cost

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Ignore low cost
components:

If cost(u) < 𝜀/2, round up.

Total added cost ≤ 𝜀n/2.

Approximate Connected Components

Key Idea 3: Approximate Cost

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Approximate Connected Components

Define: per-node cost

Let n(u) = number of nodes in the
connected component
containing node u.

Let ñ(u) = min(n(u), 2/𝜀).

Let cost(u) = max(1/n(u), 𝜀/2).

= 1/ñ(u).

Key Idea 3: Approximate Cost

w
x

y

z

cost(w) = 1/6
cost(x) = 1/6

cost(y) = 1/3

cost(z) = 1

A

B

c

Approximate Connected Components

Define: per-node cost

Let n(u) = number of nodes in the
connected component
containing node u.

Let ñ(u) = min(n(u), 2/𝜀).

Let cost(u) = max(1/n(u), 𝜀/2).

= 1/ñ(u).

Key Idea 3: Approximate Cost

Define:

Note:

Approximate Connected Components

Define: per-node cost

Let n(u) = number of nodes in the
connected component
containing node u.

Let ñ(u) = min(n(u), 2/𝜀).

Let cost(u) = max(1/n(u), 𝜀/2).

= 1/ñ(u).

Key Idea 3: Approximate Cost

Define:

Note:

Approximate Connected Components

Close enough approximation:

Intuition:
By rounding cost(u) up to
𝜀/2, we increase the error
at most 𝜀n/2.

Approximate Connected Components

Close enough approximation:

Intuition:
By rounding cost(u) up to
𝜀/2, we increase the error
at most 𝜀n/2.

Approximate Connected Components

Close enough approximation:

Intuition:
By rounding cost(u) up to
𝜀/2, we increase the error
at most 𝜀n/2.

Approximate Connected Components

Close enough approximation:

Intuition:
By rounding cost(u) up to
𝜀/2, we increase the error
at most 𝜀n/2.

Approximate Connected Components

Close enough approximation:

Intuition:
By rounding cost(u) up to
𝜀/2, we increase the error
at most 𝜀n/2.

Approximate Connected Components

Close enough approximation:

Intuition:
By rounding cost(u) up to
𝜀/2, we increase the error
at most 𝜀n/2.

sum = 0
for j = 1 to s:

Choose u uniformly at random.
sum = sum + cost(u)

return n∙(sum/s)

We have shown:
Sufficient to approximate

cost(u) by rounding up.

Approximate Connected Components

Algorithm 3

y

z

cost(y) = 1/3

cost(z) = 1

w
x

cost(w) = 1/6
cost(x) = 1/6

A

B

c

Approximate Connected Components

Define: per-node cost

Let n(u) = number of nodes in the
connected component
containing node u.

Let ñ(u) = min(n(u), 2/𝜀).

Let cost(u) = max(1/n(u), 𝜀/2).

= 1/ñ(u).

Algorithm 3

How to efficiently
compute cost(u)?

Approximate Connected Components

Define: per-node cost

Let n(u) = number of nodes in the
connected component
containing node u.

Let ñ(u) = min(n(u), 2/𝜀).

Let cost(u) = max(1/n(u), 𝜀/2).

= 1/ñ(u).

Algorithm 3

How to efficiently
compute cost(u)?

sum = 0
for j = 1 to s:

Choose u uniformly at random.
Perform a BFS from u; stop after seeing 2/𝜀 nodes.
if BFS found > 2/𝜀 nodes:

sum = sum + 𝜀/2
else if BFS found n(u) nodes:

sum = sum + 1/n(u)
return n∙(sum/s)

Approximate Connected Components

Algorithm 3

Goal:

Approximate Connected Components

Analysis

Goal:

Implies:

Approximate Connected Components

Analysis

Define random variables: Y1, Y2, …, Ys

Approximate Connected Components

Algorithm 3 Analysis

Rounded up cost

Define random variables: Y1, Y2, …, Ys

Approximate Connected Components

Algorithm 3 Analysis

Unbiased estimator:

Approximate Connected Components

Algorithm 3 Analysis

Notice:

Expected output of algorithm is:

Approximate Connected Components

Algorithm 3 Analysis

Goal:

Approximate Connected Components

Algorithm 3 Analysis

Derivation:

Approximate Connected Components

Algorithm 3 Analysis

Approximate Connected Components

Algorithm 3 Analysis

Derivation:

Goal:

Implies:

Approximate Connected Components

Analysis

sum = 0
for j = 1 to s:

Choose u uniformly at random.
Perform a BFS from u; stop after seeing 2/𝜀 nodes.
if BFS found > 2/𝜀 nodes:

sum = sum + 𝜀/2
else if BFS found n(u) nodes:

sum = sum + 1/n(u)
return n∙(sum/s)

Approximate Connected Components

Algorithm 3

We have shown:

With probability > 2/3,

output is equal to:

CC(G) ± 𝜀n

Approximate Connected Components

Algorithm 3

y

z

cost(y) = 1/3

cost(z) = 1

w
x

cost(w) = 1/6
cost(x) = 1/6

A

B

c

sum = 0
for j = 1 to s:

Choose u uniformly at random.
Perform a BFS from u; stop after seeing 2/𝜀 nodes.
if BFS found > 2/𝜀 nodes:

sum = sum + 𝜀/2
else if BFS found n(u) nodes:

sum = sum + 1/n(u)
return n∙(sum/s)

Approximate Connected Components

Algorithm 3

Cost of BFS: O((2 / 𝜀)∙d)

sum = 0
for j = 1 to s:

Choose u uniformly at random.
Perform a BFS from u; stop after seeing 2/𝜀 nodes.
if BFS found > 2/𝜀 nodes:

sum = sum + 𝜀/2
else if BFS found n(u) nodes:

sum = sum + 1/n(u)
return n∙(sum/s)

Approximate Connected Components

Algorithm 3

Cost of BFS: O((2 / 𝜀)∙d)

Total cost:

O(s(2/𝜀)∙d) =

O((1/𝜀2)(2/𝜀)d) =

O(d/𝜀3)

We have shown:

With probability > 2/3,

output is equal to:

CC(G) ± 𝜀n

Running time:

Approximate Connected Components

Algorithm 3

y

z

cost(y) = 1/3

cost(z) = 1

w
x

cost(w) = 1/6
cost(x) = 1/6

A

B

c

We have shown:

With probability > 1 - 1/δ,

output is equal to:

CC(G) ± 𝜀n

Running time:

Approximate Connected Components

Algorithm 3

y

z

cost(y) = 1/3

cost(z) = 1

w
x

cost(w) = 1/6
cost(x) = 1/6

A

B

c

Summary

Today:

Number of connected components in
a graph.

• Approximation algorithm.

Weight of MST

• Approximation algorithm.

Last Week:

Toy example 1: array all 0’s?

• Gap-style question:
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3. 9 dots
4 lines

Today’s Problem: Minimum Spanning Tree

Assumptions:

Graph G = (V,E)

• Undirected

• Weighted, max weight W

• Connected

• n nodes

• m edges

• maximum degree d

Error term: 𝜀 < 1/2

Output:
Weight of MST. Example: output 16

1

1

1

2

2
2

2

2

3

3

3
3

Today’s Problem: Minimum Spanning Tree

Approximation:

Output M such that:

Alternate form:

Correct output: w.p. > 2/3
1

1

1

2

2
2

2

2

3

3

3
3

Example:
𝜀 = 1/4
Output ∊ [12,20]

Today’s Problem: Minimum Spanning Tree

When is this useful?

What are trivial values of 𝜀?

What are hard values of 𝜀?

What sort of applications is this useful for?

Why multiplicative approximation for MST and
additive approximation for connected components?

Simple Minimum Spanning Tree

Which edges must be in MST?

How many weight-2 edges in
MST?

Best (exact) algorithm?

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Simple Minimum Spanning Tree

Let G1 = graph containing only
edges of weight 1.

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Simple Minimum Spanning Tree

Let G1 = graph containing only
edges of weight 1.

Let C1 = number of connected
components in G1.

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Ex: C1 = 6

Simple Minimum Spanning Tree

Let G1 = graph containing only
edges of weight 1.

Let C1 = number of connected
components in G1.

Claim: MST contains example
C1-1 edges of weight 2.

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Ex: C1 = 6

Simple Minimum Spanning Tree

Claim: MST contains example
C1-1 edges of weight 2.

Basic MST Property:
For any cut, minimum weight
edge across cut is in MST.

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Ex: C1 = 6

Simple Minimum Spanning Tree

Claim: MST contains example
C1-1 edges of weight 2.

Algorithm:
For any connected component,
add minimum weight outgoing
edge.

Here all the edges have weight 2,
so add C1-1 edges of weight 2.

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Ex: C1 = 6

Simple Minimum Spanning Tree

Claim: MST contains example
C1-1 edges of weight 2.

Weight of MST?

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Ex: C1 = 6

Simple Minimum Spanning Tree

Claim: MST contains example
C1-1 edges of weight 2.

Weight of MST?

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Ex: C1 = 6Ex: 10 + 6 – 2 = 14

Simple Minimum Spanning Tree

Weight of MST: n + C1 - 2

Algorithm idea?

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Ex: C1 = 6

Simple Minimum Spanning Tree

Weight of MST: n + C1 - 2

Algorithm idea:
Approximate connected
components of G1.

Assume all weights 1 or 2

1

1

1

2

2
2

2

2

2

2

2
2

1

Ex: C1 = 6

Approximate Minimum Spanning Tree

Let G1 = graph containing only
edges of weight 1.

Let G2 = graph containing only
edges of weight {1, 2}.

…
Let Gj = graph containing only

edges of weights
{1, 2, …, j}.

Weights {1, 2, …, W}

1

1

1

2

2
2

2

2

3

3

3
3

Ex: G2

Approximate Minimum Spanning Tree

Let C1 = number CC in G1.

Let C2 = number CC in G2.

…
Let Cj = number CC in Gj.

Weights {1, 2, …, W}

1

1

1

2

2
2

2

2

3

3

3
3

Ex: G2

Approximate Minimum Spanning Tree

Claim:
MST(G) contains Cj – 1 edges
of weight > j.

Weights {1, 2, …, W}

1

1

1

2

2
2

2

2

3

3

3
3

Ex: G2

Approximate Minimum Spanning Tree

Claim:
MST(G) contains Cj – 1 edges
of weight > j.

Why?
There are Cj connected
components in Gj. There
much be Cj – 1 edges
connecting them, and each
must have weight > j.

Weights {1, 2, …, W}

1

1

1

2

2
2

2

2

3

3

3
3

Ex: G2

Approximate Minimum Spanning Tree

Lemma:

Weights {1, 2, …, W}

1

1

1

2

2
2

2

2

3

3

3
3

Ex: G2

Approximate Minimum Spanning Tree

Edges of weight 1:

n – 1 edges total in MST
C1 – 1 edges of weight > 1



(n – 1) – (C1 – 1) edges of
weight 1.



(n – C1) edges of weight 1.

Weights {1, 2, …, W}

1

1

1

2

2
2

2

2

3

3

3
3

Ex: G2

Approximate Minimum Spanning Tree

Edges of weight j+1:

Cj – 1 edges of weight > j
Cj+1 – 1 edges of weight > j+1



(Cj – 1) – (Cj+1 – 1) edges of
weight j+1.



(Cj – Cj+1) edges of weight j+1.

Weights {1, 2, …, W}

1

1

1

2

2
2

2

2

3

3

3
3

Ex: G2Note: Cj ≥ Cj+1

Approximate Minimum Spanning Tree

Sum the weights:

Weights {1, 2, …, W}

number of
edges of
weight 1

number of
edges of
weight j+1

weight of edge
of weight j+1

Note: sum is from j = 1 to W-1.

Approximate Minimum Spanning Tree

Sum the weights:

Weights {1, 2, …, W}

Approximate Minimum Spanning Tree

Sum the weights:

Weights {1, 2, …, W}

Approximate Minimum Spanning Tree

Sum the weights:

Weights {1, 2, …, W}

Approximate Minimum Spanning Tree

Lemma:

Weights {1, 2, …, W}

1

1

1

2

2
2

2

2

3

3

3
3

Ex: G2

Approximate Minimum Spanning Tree

sum = n – W

for j = 1 to W – 1:
Xj = AproxCC(Gj, d, 𝜀’, δ)
sum = sum + Xj

return sum

Algorithm ApproxMST

1

1

1

2

2
2

2

2

3

3

3
3

Ex: G2

Approximate Minimum Spanning Tree

sum = n – W

for j = 1 to W – 1:
Xj = AproxCC(Gj, d, 𝜀’, δ)
sum = sum + Xj

return sum

Error Calculation

Set: 𝜀’ = 𝜀/W

Sum of errors: ≤ W(𝜀n/W) ≤ 𝜀n

Approximate Minimum Spanning Tree

sum = n – W

for j = 1 to W – 1:
Xj = AproxCC(Gj, d, 𝜀’, δ)
sum = sum + Xj

return sum

Error Calculation

Guarantee for each AproxCC:

Approximate Minimum Spanning Tree

sum = n – W

for j = 1 to W – 1:
Xj = AproxCC(Gj, d, 𝜀’, δ)
sum = sum + Xj

return sum

Error Calculation

Guarantee for each AproxCC:

Not good enough: Pr{all correct} ≅ (2/3)W

Approximate Minimum Spanning Tree

sum = n – W

for j = 1 to W – 1:
Xj = AproxCC(Gj, d, 𝜀’, δ)
sum = sum + Xj

return sum

Error Calculation

Set 𝜀’ = 𝜀/W, δ = 1/(3W)

Error probability:

Approximate Minimum Spanning Tree

sum = n – W

for j = 1 to W – 1:
Xj = AproxCC(Gj, d, 𝜀’, δ)
sum = sum + Xj

return sum

Error Calculation

Set 𝜀’ = 𝜀/W, δ = 1/(3W)

Guarantee for each AproxCC:

Approximate Minimum Spanning Tree

sum = n – W

for j = 1 to W – 1:
Xj = AproxCC(Gj, d, 𝜀’, δ)
sum = sum + Xj

return sum

Error Calculation

Set: 𝜀’ = 𝜀/W, δ = 1/(3W)

Sum of errors: ≤ W(𝜀n/W) ≤ 𝜀n



Approximate Minimum Spanning Tree

Error Calculation

Approximate Minimum Spanning Tree

Error Calculation

Approximate Minimum Spanning Tree

Error Calculation

Approximate Minimum Spanning Tree

Error Calculation

Approximate Minimum Spanning Tree

Error Calculation

Approximate Minimum Spanning Tree

sum = n – W

for j = 1 to W – 1:
Xj = AproxCC(Gj, d, 𝜀’, δ)
sum = sum + Xj

return sum

Running time

Set 𝜀’ = 𝜀/W, δ = 1/(3W)

Running time:

Approximate Minimum Spanning Tree

sum = n – W

for j = 1 to W – 1:
Xj = AproxCC(Gj, d, 𝜀’, δ)
sum = sum + Xj

return sum

Running Time

Set 𝜀’ = 𝜀/W, δ = 1/(3W)

Running time:

We have shown:

With probability > 2/3, output is equal to:

MST(G)(1 ± 𝜀n)

Running time:

Approximate MST

Summary

Note:

Impossible to do better than:

Best known:

Approximate MST

Summary

See: Chazelle, Rubinfeld, Trevisan

Summary

Today:

Number of connected components in
a graph.

• Approximation algorithm.

Weight of MST

• Approximation algorithm.

Last Week:

Toy example 1: array all 0’s?

• Gap-style question:
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3. 9 dots
4 lines

Today’s Problem: Maximum Matching

Matching:

Output set of edges M such that no
two edges in M are adjacent.

Size of Maximum Matching:

Output the largest value v where
there is a matching M of size v.

Example:
Size of matching: 5

Today’s Problem: Maximal Matching

Maximal Matching:

Output set of edges M such that no
two edges in M are adjacent, and no
more edges can be added to M.

Size of Maximal Matching:

Output the largest value v where
there is a maximal matching M of
size v.

Example:
Size of matching: 5

Today’s Problem: Maximal Matching

Size of Maximal Matching:

Output the largest value v where
there is a maximal matching M of
size v.

Note:

The maximum matching is at most
twice as big as the maximal
matching.



Maximal is a 2-approximation of
maximum.

Example:
Size of matching: 5

Today’s Problem: Maximal Matching

Algorithm for maximal
matching:

1) Assign each edge a random
number. (Equivalent: choose a
random permutation of the
edges.)

1

2

3

4

5

6
7

8

9

10

11

12

Today’s Problem: Maximal Matching

Algorithm for maximal
matching:

1) Assign each edge a random
number. (Equivalent: choose a
random permutation of the
edges.)

2) Greedily, in order, try to add each
edge to the matching.

1

2

3

4

5

6
7

8

9

10

11

12

Today’s Problem: Maximal Matching

Algorithm for maximal
matching:

1) Assign each edge a random
number. (Equivalent: choose a
random permutation of the
edges.)

2) Greedily, in order, try to add each
edge to the matching.

1

2

3

4

5

6
7

8

9

10

11

12

Today’s Problem: Maximal Matching

Algorithm for maximal
matching:

1) Assign each edge a random
number. (Equivalent: choose a
random permutation of the
edges.)

2) Greedily, in order, try to add each
edge to the matching.

 Each random permutation defines
a unique maximal matching.

1

2

3

4

5

6
7

8

9

10

11

12

Today’s Problem: Maximal Matching

To solve via sampling:

1) Choose a random permutation
for the edges (e.g., a hash
function).

2) Choose s edges at random.

3) Decide if they are in the matching
for the chosen permutation.

1

2

3

4

5

6
7

8

9

10

11

12

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if query(e’) = true

return false
return true

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if query(e’) = true

return false
return true

Oops… That doesn’t exactly work!

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

Today’s Problem: Maximal Matching

To decide if an edge is in the
matching:

1

2

3

4

5

6
7

8

9

10

11

12
query(e):

for all neighbors e’ of e:
if hash(e’) < hash(e)

if query(e’) = true
return false

return true

hash(e) returns the number chosen for edge e.
Only query smaller edges. Larger edges do not matter.

 FALSE

Today’s Problem: Maximal Matching

Key question:
How expensive is a query?

1

2

3

4

5

6
7

8

9

10

11

12

query(e):
for all neighbors e’ of e:

if hash(e’) < hash(e)
if query(e’) = true

return false
return true

Today’s Problem: Maximal Matching

Some simple analysis:

If graph has maximum degree d, then
there are at most 2dk paths of length
k starting from the query edge.

1

2

3

4

5

6
7

8

9

10

11

12

Today’s Problem: Maximal Matching

Some simple analysis:

If graph has maximum degree d, then
there are at most 2dk paths of length
k starting from the query edge.

Each path of length k defines a
random permutation of hash values.

1

2

3

4

5

6
7

8

9

10

11

12

Permutation: [6,1,11,10,3]

Today’s Problem: Maximal Matching

Some simple analysis:

If graph has maximum degree d, then
there are at most 2dk paths of length k
starting from the query edge.

Each path of length k defines a random
permutation of hash values.

There are k! possible permutations.

1

2

3

4

5

6
7

8

9

10

11

12

Permutation: [6,1,11,10,3]

Today’s Problem: Maximal Matching

Some simple analysis:

If graph has maximum degree d, then
there are at most 2dk paths of length k
starting from the query edge.

Each path of length k defines a random
permutation of hash values.

There are k! possible permutations.

Pr[path is all decreasing] = 1/k!

1

2

3

4

5

6
7

8

9

10

11

12

Permutation: [6,1,11,10,3]

Today’s Problem: Maximal Matching

Conclusion:

The expected number of paths

traversed of length k is at most:
𝑑𝑘

𝑘!

1

2

3

4

5

6
7

8

9

10

11

12

Permutation: [6,1,11,10,3]

Today’s Problem: Maximal Matching

Conclusion:

The expected number of paths

traversed of length k is at most:
𝑑𝑘

𝑘!

The expected total cost of a query is:

෍

𝑘=1

∞
𝑑𝑘

𝑘!
= 𝑂 𝑒𝑑

1

2

3

4

5

6
7

8

9

10

11

12

Permutation: [6,1,11,10,3]

Today’s Problem: Maximal Matching

Key question:
How expensive is a query?

E[cost] = O(ed)

1

2

3

4

5

6
7

8

9

10

11

12

query(e):
for all neighbors e’ of e:

if hash(e’) < hash(e)
if query(e’) = true

return false
return true

Today’s Problem: Maximal Matching

To solve via sampling:

1) Choose a random permutation
for the edges (e.g., a hash
function).

2) Choose s edges at random.

3) Decide if they are in the matching
for the chosen permutation via
query operation.

1

2

3

4

5

6
7

8

9

10

11

12

sum = 0
for j = 1 to s:

Choose edge e uniformly at random.
if (query(e) = true) then

sum = sum + 1
return m∙(sum/s)

Approximate Maximal Matching

MaxMatch-Sampling

sum = 0
for j = 1 to s:

Choose edge e uniformly at random.
if (query(e) = true) then

sum = sum + 1
return m∙(sum/s)

Approximate Maximal Matching

MaxMatch-Sampling

Claim: returns size of maximal matching ± εm

sum = 0
for j = 1 to s:

Choose edge e uniformly at random.
if (query(e) = true) then

sum = sum + 1
return m∙(sum/s)

Approximate Maximal Matching

MaxMatch-Sampling

Claim: returns size of maximal matching ± εm

Claim: Runs in time O(ed / ε2)

Today’s Problem: Maximal Matching

Two improvements:

1) Reduce error from ± εm to ± εn. 1

2

3

4

5

6
7

8

9

10

11

12

Today’s Problem: Maximal Matching

Two improvements:

1) Reduce error from ± εm to ± εn.
(Hint: each node is either matched or unmatched,
and you can compute the size of the matching
from the number of matched nodes.)

1

2

3

4

5

6
7

8

9

10

11

12

Today’s Problem: Maximal Matching

Two improvements:

1) Reduce error from ± εm to ± εn.
(Hint: each node is either matched or unmatched,
and you can compute the size of the matching
from the number of matched nodes.)

2) Reduce the running time from
exponential to O(d4/ ε2).

1

2

3

4

5

6
7

8

9

10

11

12

Today’s Problem: Maximal Matching

Two improvements:

1) Reduce error from ± εm to ± εn.
(Hint: each node is either matched or unmatched,
and you can compute the size of the matching
from the number of matched nodes.)

2) Reduce the running time from
exponential to O(d4/ ε2).

(Hint: In query, explore neighboring edges in
order of smallest weight first. Analysis is not
simple!)

1

2

3

4

5

6
7

8

9

10

11

12

Questions to think about:

1) Show that the sampling algorithm
works as claims (if the query
operation is correct).

2) Reduce error from ± εm to ± εn.
(Hint: each node is either matched or unmatched,
and you can compute the size of the matching
from the number of matched nodes.)

3) Can you find a multiplicative
(instead of additive) approximation?
Why not?
(Hint: Think about a graph where the maximal
matching is very small.)

1

2

3

4

5

6
7

8

9

10

11

12

Two more questions:

1) Give an algorithm for deciding if
the black pixels are connected or
ε-far from connected in an n by n
square of pixels.

2) Give an algorithm for deciding if
the black pixels are a rectangle or
ε-far from a rectangle in an n by n
square of pixels.

connected

rectangleHint: imagine querying a grid of pixels distance εn apart.

Summary

Today:

Number of connected components in
a graph.

• Approximation algorithm.

Weight of MST

• Approximation algorithm.

Size of maximal matching

• Approximation algorithm.

Last Week:

Toy example 1: array all 0’s?

• Gap-style question:
All 0’s or far from all 0’s?

Toy example 2: Faction of 1’s?

• Additive ± 𝜀 approximation

• Hoeffding Bound

Is the graph connected?

• Gap-style question.

• O(1) time algorithm.

• Correct with probability 2/3.

