
Algorithms at Scale
(Week 4)

Puzzle of the Day:

A bipartite graph:
• m left nodes, n right nodes [numbered 1 to n]
• Each left node has degree 1.

Given log(m) space, a stream of edges:

1. m = n + 1, max right degree is 2, min right degree is 1.
See stream once. Find the edge with degree 2.

2. m = n + 2, max right degree is 2, min right degree is 1.
See stream once. Find two edges with degree 2.

3. m = n + 1, max right degree is m. See stream log(m) times.
Find any edge with degree > 1.

m left n right

Summary

Last Week: Property Testing

Sorting: Is this array sorted?

• Gap-style question: sorted or far from sorted?

Yao’s Lemma:

• Key technique for proving lower bound.

• Show that testing if something is sorted has
inherent cost.

CS5234 Part 1: Sublinear Time

Property Testing:

Toy example 1: array all 0’s?

• All 0’s or far from all 0’s?

Is the graph connected?

• Connected or far from
connected?

Image properties

• Is the image divisible?

• Is the image a rectangle?

• Is the image convex?

Is the array sorted?

• Sorted or far from sorted?

Approximation:

Toy example 2: Faction of 1’s?

• Additive ± 𝜀𝜀 approximation

Number of connected
components in a graph.

• Additive ± 𝜀𝜀 approximation.

Weight of MST

• Multiplicative (1 ± 𝜀𝜀)
approximation.

Size of maximal matching

• Additive ± 𝜀𝜀 approximation.

PAC learning

• Approximate concept.

CS5234 Part 1: Sublinear Time

Property Testing:

Toy example 1: array all 0’s?

• All 0’s or far from all 0’s?

Is the graph connected?

• Connected or far from
connected?

Image properties

• Is the image divisible?

• Is the image a rectangle?

• Is the image convex?

Is the array sorted?

• Sorted or far from sorted?

Approximation:

Toy example 2: Faction of 1’s?

• Additive ± 𝜀𝜀 approximation

Number of connected
components in a graph.

• Additive ± 𝜀𝜀 approximation.

Weight of MST

• Multiplicative (1 ± 𝜀𝜀)
approximation.

Size of maximal matching

• Additive ± 𝜀𝜀 approximation.

PAC learning

• Approximate concept.

Basic recipe: sampling
1. Identify local property.

2. Sample from dataset, measure local property.

3. Show E[out] = goal (i.e., unbiased estimator).

4. Show answer is close to expectation (via
Chernoff, Hoeffding, Markov, Chebychev).

CS5234 Part 2: Sublinear Space

Data arrives in a stream: S = s1, s2, …, sT
Examples:

• Twitter tweet stream
⇒ On average, how many hashtags per tweet?
⇒ How many unique users tweet per day?
⇒ On average, how many times does a user tweet per day?

• Facebook friend updates
⇒ How many connected components in the Facebook graph?
⇒ Is the Facebook graph k-connected?
⇒ How many triangles are there in the Facebook graph?

• Sensor data
⇒ What is the average temperature for region xxx?

• Stock market
⇒ What was the most traded stock in December 2017?
⇒ What was the average stock price of MSFT in 2018?
⇒ If MSFT went up, did GOOGL go up or down?

Summary

Next Weeks: Graphs

Connectivity:

• Is the graph connected?

MST:

• Find an MST

Matching:

• Approximate the maximal
matching.

Shortest paths:

• Approximate the shortest paths
in a graph.

Triangles:

• How many triangles in a graph?

Today: Data

Counting distinct elements:

• How many items in the
stream?

Item frequencies:

• How often does an item
appear in a stream?

Heavy hitters:

• Identify the most frequent
items

Statistics

• Average, median, etc.

Announcements / Reminders

Problem sets:

Problem Set 3 will be released tonight.

Frequencies / Heavy Hitters

Given a stream of items:

S = s1, s2, …, sm

Assume:
• length of stream: m
• allowable space: small

(e.g., logarithmic)

Find:
• count(x) : number of times x appears in stream.
• heavy hitters : every item that appears at least 𝜀𝜀m times.
Parameter: 𝜀𝜀

Example:
[A, B, B, D, A, B, B, E, H, B, J, B, B, B, A, A]

m = 16
count(A) = 4
count(B) = 8
count(J) = 1

heavy(1/2) = {B}
heavy(1/4) = {A,B}

Frequencies / Heavy Hitters

Given a stream of items:

S = s1, s2, …, sm

Assume:
• length of stream: m
• allowable space: small

(e.g., logarithmic)

Find:
• count(x) : number of times x appears in stream.
• heavy hitters : every item that appears at least 𝜀𝜀m times.
Parameter: 𝜀𝜀

Example:
[A, B, B, D, A, B, B, E, H, B, J, B, B, B, A, A]

m = 16
count(A) = 4
count(B) = 8
count(J) = 1

heavy(1/2) = {B}
heavy(1/4) = {A,B}

Impossible
(prove it)

Frequencies / Heavy Hitters

Given a stream of items:

S = s1, s2, …, sm

Assume:
• length of stream: m
• allowable space: small

(e.g., logarithmic)
• N(x) = number of times times x appears in stream.

Find:
• count(x) : N(x)—𝜀𝜀m ≤ count(x) ≤ N(x) + 𝜀𝜀m
• heavy hitters : return

1. every item that appears ≥ 2𝜀𝜀m times.
2. no item that appears < 𝜀𝜀m times.

Frequencies / Heavy Hitters

count(x) : N(x)—𝜀𝜀m ≤ count(x) ≤ N(x) + 𝜀𝜀m

Example:
[A, B, B, D, A, B, B, E, H, B, J, B, B, B, A, A]

m = 16
𝜀𝜀 = 1/8
N(A) = 4
N(B) = 8
N(J) = 1
N(L) = 0

count(A) = 6
count(A) = 2

count(B) = 10

count(J) = 0
count(L) = 2

Frequencies / Heavy Hitters

heavy hitters : return
1. every item that appears ≥ 2𝜀𝜀m times.
2. no item that appears < 𝜀𝜀m times.

Example:
[A, B, B, D, A, B, B, D, H, B, J, B, B, B, A, A]

m = 16
𝜀𝜀 = 1/8
N(A) = 4
N(B) = 8
N(D) = 2
N(J) = 1

must return: A, B

may return: D

may NOT return: J

Challenge: Small Space

With arbitrary space:

• Maintain m counters.
• Use a hash table.
• Use a counting Bloom filter

With small space:

• Cannot maintain counts of all items!
• Try to maintain counts only for frequent items.

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Count(x):
1. if <x, c> is in set P, return c.
2. else return 0.

Misra-Gries Algorithm

Key parameter: k

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 1)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 1)
(5, 1)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 1)
(5, 1)
(7, 1)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 0)
(5, 0)
(7, 0)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 1)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)
(5, 1)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)
(5, 4)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)
(5, 4)
(7, 1)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 1)
(5, 3)
(7, 0)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 1)
(5, 3)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)
(5, 3)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)
(5, 3)

Claim: space = O(k log(m))

(Count all the bits you need to store k counts up to m)

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)
(5, 3)

Is the answer good?

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)
(5, 3)

Is the answer good?
• count(7) = 0

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)
(5, 3)

Is the answer good?
• count(7) = 0
• count(2) = 2

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Example stream (k=2):
2, 5, 7, 2, 2, 5, 5, 5, 5, 7, 2

(2, 2)
(5, 3)

Is the answer good?
• count(7) = 0
• count(2) = 2
• count(5) = 3

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Claim: count(x) ≤ N(x)

Why? Only increment <x, c> at most N(x) times.

Set P of <item, count> pairs.
For each u in stream S:

1. if <u, c> is in set P, increment c.
2. else add <u, 1> to set P.
3. if |P| > k, decrement count c for each item.
4. Remove all items from P with count c=0.

Misra-Gries Algorithm

Claim: count(x) ≥ N(x)—(m/k)

Misra-Gries Algorithm

Claim: count(x) ≥ N(x)—(m/k)

Proof:
1. Count of x is incremented N(x) times total.

Misra-Gries Algorithm

Claim: count(x) ≥ N(x)—(m/k)

Proof:
1. Count of x is incremented N(x) times total.
2. Total number of increments is m = ∑𝑥𝑥𝑁𝑁(𝑥𝑥).

Misra-Gries Algorithm

Claim: count(x) ≥ N(x)—(m/k)

Proof:
1. Count of x is incremented N(x) times total.
2. Total number of increments is m = ∑𝑥𝑥𝑁𝑁(𝑥𝑥).
3. When count(x) is decremented, at least k

other items are also decremented.

Misra-Gries Algorithm

Claim: count(x) ≥ N(x)—(m/k)

Proof:
1. Count of x is incremented N(x) times total.
2. Total number of increments is m = ∑𝑥𝑥𝑁𝑁(𝑥𝑥).
3. When count(x) is decremented, at least k

other items are also decremented.
4. At most m decrements in total.

Misra-Gries Algorithm

Claim: count(x) ≥ N(x)—(m/k)

Proof:
1. Count of x is incremented N(x) times total.
2. Total number of increments is m = ∑𝑥𝑥𝑁𝑁(𝑥𝑥).
3. When count(x) is decremented, at least k

other items are also decremented.
4. At most m decrements in total.
5. So count(x) is decremented at most m/k

times.

Misra-Gries Algorithm

Claim: space = O(k log(m))

Claim: N(x) ≥ count(x) ≥ N(x)—(m/k)

Misra-Gries Algorithm

Claim: space = O(k log(m))

Claim: N(x) ≥ count(x) ≥ N(x)—(m/k)

Choose k = 1/𝜀𝜀

Misra-Gries Algorithm

Claim: space = O(k log(m))

Claim: N(x) ≥ count(x) ≥ N(x)—(m/k)

Claim: space = O(1/𝜀𝜀)

Claim: N(x) ≥ count(x) ≥ N(x)—𝜀𝜀m

Choose k = 1/𝜀𝜀

Heavy Hitters

How to use Misra-Gries to solve Heavy Hitters problem?

Heavy Hitters

How to use Misra-Gries to solve Heavy Hitters problem?

Return x if count(x) ≥ 𝜀𝜀m

Heavy Hitters

How to use Misra-Gries to solve Heavy Hitters problem?

Return x if count(x) ≥ 𝜀𝜀m

Condition 1: if N(x) ≥ 2𝜀𝜀m, then include x.

Heavy Hitters

How to use Misra-Gries to solve Heavy Hitters problem?

Return x if count(x) ≥ 𝜀𝜀m

Condition 1: if N(x) ≥ 2𝜀𝜀m, then include x.
 count(x) ≥ 2𝜀𝜀m—𝜀𝜀m = 𝜀𝜀m
 return x

Heavy Hitters

How to use Misra-Gries to solve Heavy Hitters problem?

Return x if count(x) ≥ 𝜀𝜀m

Condition 2: if N(x) < 𝜀𝜀m, then DO NOT include x.

Heavy Hitters

How to use Misra-Gries to solve Heavy Hitters problem?

Return x if count(x) ≥ 𝜀𝜀m

Condition 2: if N(x) < 𝜀𝜀m, then DO NOT include x.
 count(x) < 𝜀𝜀m
 DO NOT return x

Frequencies / Heavy Hitters

Given a stream of items:

S = s1, s2, …, sm

Assume:
• length of stream: m
• allowable space: O(log(m)/𝜀𝜀)
• N(x) = number of times times x appears in stream.

Find:
• count(x) : N(x)—𝜀𝜀m ≤ count(x) ≤ N(x) + 𝜀𝜀m
• heavy hitters : return

1. every item that appears ≥ 2𝜀𝜀m times.
2. no item that appears < 𝜀𝜀m times.

Summary

Next Weeks: Graphs

Connectivity:

• Is the graph connected?

MST:

• Find an MST

Matching:

• Approximate the maximal
matching.

Shortest paths:

• Approximate the shortest paths
in a graph.

Triangles:

• How many triangles in a graph?

Today: Data

Item frequencies:

• How often does an item
appear in a stream?

Heavy hitters:

• Identify the most frequent
items

Counting distinct elements:

• How many items in the
stream?

Statistics

• Average, median, etc.

Number of Distinct Items

Given a stream of items:

S = s1, s2, …, sm

Assume:
• length of stream: m
• allowable space: small

(e.g., logarithmic)

Find:
• distinct : number of distinct items in stream.
• distinct(𝜀𝜀): (1± 𝜀𝜀) approximation with probability at least (1-δ).
Parameters: 𝜀𝜀, δ

Example:
[A, B, B, D, A, B, B, E, H, B, J, B, B, B, A, A]

m = 16

distinct = 6
distinct(1/3) >= 4
distinct(1/3) <= 8

Challenge: Small Space

With arbitrary space:
• Use a hash table.
• Use a Bloom filter

With small space:

• Can you solve it with Misra-Gries?

Challenge: Small Space

With arbitrary space:
• Use a hash table.
• Use a Bloom filter

With small space:

• Can you solve it with Misra-Gries? NO
 Cannot distinguish 0 from 1 appearance.

• Need another trick…

Challenge: Small Space

Trick 1: Hash Function
• Assume a hash function h(x)  [1,N].
• Assume it is perfectly random, i.e., each item x is mapped to a

random item in [1,N].

Key points:

• Every time you see x it is mapped to the same hash.
• Collisions are still possible!

Challenge: Small Space

Trick 1: Hash Function
• Assume a hash function h(x)  [1,N].
• Assume it is perfectly random, i.e., each item x is mapped to a

random item in [1,N].

Key points:

• Every time you see x it is mapped to the same hash.
• Collisions are still possible!
• How much space to store hash function?

Challenge: Small Space

Trick 1: Hash Function
• Assume a hash function h(x)  [1,N].
• Assume it is perfectly random, i.e., each item x is mapped to a

random item in [1,N].

Key points:

• Every time you see x it is mapped to the same hash.
• Collisions are still possible!
• How much space to store hash function?
 Need Ω(n log N) bits!
 Need to store hash value for each possible item.

• Can use k-wise-independent hash functions instead.

Challenge: Small Space

Trick 1.1: Hash Function
• Assume a hash function h(x)  [0,1].
• Assume it is perfectly random, i.e., each item x is mapped to a

random item in [0,1].

Key points:

• To simplify the math, let’s map to [0,1] instead.
• Easy to translate to discrete model. (Exercise!)

Challenge: Small Space

Trick 2: minimum of a set of random variables

Imagine a bucket
of balls.

Roll the balls
down the stairs.

Each ball stops at
each step with
probability ½.

Challenge: Small Space

Trick 2: minimum of a set of random variables

Imagine a bucket
of balls.

Roll the balls
down the stairs.

Each ball stops at
each step with
probability ½.

Ball goes here w.p. 1/2

Challenge: Small Space

Trick 2: minimum of a set of random variables

1/2

1/4

Imagine a bucket
of balls.

Roll the balls
down the stairs.

Each ball stops at
each step with
probability ½.

Ball goes here w.p. 1/4

Challenge: Small Space

Trick 2: minimum of a set of random variables

1/2

1/4

1/8

Imagine a bucket
of balls.

Roll the balls
down the stairs.

Each ball stops at
each step with
probability ½.

Ball goes here w.p. 1/8

Challenge: Small Space

Trick 2: minimum of a set of random variables

1/2

1/4

1/8

1/16

1/32

Imagine a bucket
of balls.

Roll the balls
down the stairs.

Each ball stops at
each step with
probability ½.

Ball goes here w.p. 1/8

Challenge: Small Space

Trick 2: minimum of a set of random variables

1/2

1/4

1/8

1/16

1/32

Imagine a bucket
of balls.

Roll the balls
down the stairs.

Each ball stops at
each step with
probability ½.

Start with 16 balls.

Expect about 8 to stop here.

Challenge: Small Space

Trick 2: minimum of a set of random variables

1/2

1/4

1/8

1/16

1/32

Imagine a bucket
of balls.

Roll the balls
down the stairs.

Each ball stops at
each step with
probability ½.

Start with 16 balls.

Expect about 8 to stop here.

Expect about 4 to stop here.

Challenge: Small Space

Trick 2: minimum of a set of random variables

Step
1

1/2

Step
2

1/4

Step
3

1/8

Step
4

1/16

Step
5

1/32

Imagine a bucket
of balls.

Roll the balls
down the stairs.

Each ball stops at
each step with
probability ½.

Start with 16 balls.

Expect about 8 to stop here.

Expect about 4 to stop here.

Expect about 2 to stop here.

Expect about 1 to stop here.

Expect 0 here!

Challenge: Small Space

Trick 2: minimum of a set of random variables

Step
1

1/2

Step
2

1/4

Step
3

1/8

Step
4

1/16

Step
5

1/32

If last bucket
containing at
least one ball is
step j, estimate
that there are 2j

balls in total!

Start with 16 balls.

Expect about 8 to stop here.

Expect about 4 to stop here.

Expect about 2 to stop here.

Expect about 1 to stop here.

Expect 0 here!

Challenge: Small Space

Trick 2: minimum of a set of random variables

0

1

Hash h maps each item
to a random location
in the range [0,1].

Challenge: Small Space

Trick 2: minimum of a set of random variables

0

1

Hash h maps each item
to a random location
in the range [0,1].

1/2

What fraction are mapped
to the range [1/2, 1]?

Challenge: Small Space

Trick 2: minimum of a set of random variables

0

1

Hash h maps each item
to a random location
in the range [0,1].

1/2

Step 1
W.p. 1/2, h(x) ∊ [1/2, 1]
Expect about half the items to map here.

Challenge: Small Space

Trick 2: minimum of a set of random variables

0

1

Hash h maps each item
to a random location
in the range [0,1].

1/4

1/2

Step 1
W.p. 1/2, h(x) ∊ [1/2, 1]
Expect about 1/2 the items to map here.

Step 2
W.p. 1/4, h(x) ∊ [1/4, 1/2]
Expect about 1/4 the items to map here.

Challenge: Small Space

Trick 2: minimum of a set of random variables

0

1

Hash h maps each item
to a random location
in the range [0,1].

1/8

1/2

Step 1
W.p. 1/2, h(x) ∊ [1/2, 1]
Expect about 1/2 the items to map here.

Step 2
W.p. 1/4, h(x) ∊ [1/4, 1/2]
Expect about 1/4 the items to map here.

1/4
Step 3
W.p. 1/8, h(x) ∊ [1/8, 1/4]
Expect about 1/8 the items to map here.

Challenge: Small Space

Trick 2: minimum of a set of random variables

0

1

Hash h maps each item
to a random location
in the range [0,1].

1/8

1/2

In general
If there are n distinct items,
we expect n/2j items to map
to the region [1/2j, 1/2j-1].

1/4

Challenge: Small Space

Trick 2: minimum of a set of random variables

0

1

Hash h maps each item
to a random location
in the range [0,1].

1/8

1/2

In general
If there are n distinct items,
we expect n/2j items to map
to the region [1/2j, 1/2j-1].

Idea
If [1/2j, 1/2j-1] is the smallest
range containing at least one
item, then return 2j.1/4

Challenge: Small Space

Trick 2: minimum of a set of random variables

0

1

Hash h maps each item
to a random location
in the range [0,1].

1/8

1/2

In general
If there are n distinct items,
we expect n/2j items to map
to the region [1/2j, 1/2j-1].

Idea
If [1/2j, 1/2j-1] is the smallest
range containing at least one
item, then return 2j.

Simpler Idea
If x is the minimum hash
value, return 1/x.

1/4

Let x = 1.
For each u in stream S:

if h(u) < x then x = h(u)

Return 1/x – 1.

Flajolet-Martin (FM) Algorithm

Analysis:

Flajolet-Martin (FM) Algorithm

Analysis:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Analysis:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Discrete definition of expectation

Analysis:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

0

1

1/8

1/2

1/4

Analysis:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

0

1

1/8

1/2

1/4Note key assumption:
Each item is hashed independently!

Analysis:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Analysis:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Conclusion:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Conclusion:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Conclusion:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Cannot invert
expected values!

E[1/X] ≠ 1/E[X]

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

Variance:

Flajolet-Martin (FM) Algorithm

Assume items s1, s2, …,
Assume t distinct items.

1. Run a copies of FM: get X1, X2, …, Xa

2. Compute average:

3. Return (1/Z)-1.

Flajolet-Martin+ (FM+) Algorithm

Analysis:

Flajolet-Martin (FM) Algorithm

Analysis:

Flajolet-Martin (FM) Algorithm

Chebychev’s Inequality:
Let Y be a random variable.

Flajolet-Martin (FM) Algorithm

Note:
• More general than Chernoff: holds for all Y.
• Weaker than Chernoff: less tight bound.

Analysis:

Flajolet-Martin (FM) Algorithm

Analysis:

Flajolet-Martin (FM) Algorithm

Analysis:

Flajolet-Martin (FM) Algorithm

Analysis:

Flajolet-Martin (FM) Algorithm

Analysis:

Flajolet-Martin (FM) Algorithm

What have we shown?

That is, w.p. at least 3/4:

1)

2)

Flajolet-Martin (FM) Algorithm

FM+ returns:

Recall with probability at least 3/4:

Flajolet-Martin (FM) Algorithm

Recall: for 0 < x < 1/2

FM+ returns:

Recall with probability at least 3/4:

Flajolet-Martin (FM) Algorithm

Recall: for 0 < x < 1/2

1. Run a copies of FM: get X1, X2, …, Xa

2. Compute average:

3. Return (1/Z)-1.

Flajolet-Martin+ (FM+) Algorithm

Not done yet…. Better than ¾ probability?

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

Define random variables: x1, x2, …, xb

xj = 1 if |Yj – t| ≤ 4𝜀𝜀t

xj = 0 otherwise

Note: xj are independent, 0/1 random variables!

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

Define random variables: x1, x2, …, xb

xj = 1 if |Yj – t| ≤ 4𝜀𝜀t

xj = 0 otherwise

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

Define random variables: x1, x2, …, xb

xj = 1 if |Yj – t| ≤ 4𝜀𝜀t

xj = 0 otherwise

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

Define random variables: x1, x2, …, xb

xj = 1 if |Yj – t| ≤ 4𝜀𝜀t

xj = 0 otherwise

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

When is the median the “right” answer?

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

When is the median the “right” answer?

100001

Y5Y1 Y4Y8 Y2Y6Y4 Y7Y3

t(1 ± 4𝜀𝜀)

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

When is the median the “right” answer?

100001

Y5Y1 Y4Y8 Y2Y6Y4 Y7Y3

t(1 ± 4𝜀𝜀)

Claim: If > 1/2 of the Yj’s are “good”, then the median is good.

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

When is the median the “right” answer?

100001

Y5Y1 Y4Y8 Y2Y6Y4 Y7Y3

t(1 ± 4𝜀𝜀)

Claim: If ∑𝑖𝑖=1𝑏𝑏 𝑥𝑥𝑖𝑖 ≥ 𝑏𝑏/2 then median is “right.”

Chernoff Bound:

Flajolet-Martin++ (FM++) Algorithm

When is the median the “right” answer?

100001

Y5Y1 Y4Y8 Y2Y6Y4 Y7Y3

t(1 ± 4𝜀𝜀)

Claim: If ∑𝑖𝑖=1𝑏𝑏 𝑥𝑥𝑖𝑖 ≥ 𝑏𝑏/2 then median is “right.”

Chernoff Bound:

Flajolet-Martin++ (FM++) Algorithm

Chernoff Bound:

Flajolet-Martin++ (FM++) Algorithm

b/2

Chernoff Bound:

Flajolet-Martin++ (FM++) Algorithm

b/2

1. Run b copies of FM: get Y1, Y2, …, Yb

2. Return median(Y1, Y2, …, Yb)

Flajolet-Martin++ (FM++) Algorithm

Conclusion:

With probability at least:

the FM++ algorithm returns an answer in the range:

Summary

Next Weeks: Graphs

Connectivity:

• Is the graph connected?

MST:

• Find an MST

Matching:

• Approximate the maximal
matching.

Shortest paths:

• Approximate the shortest paths
in a graph.

Triangles:

• How many triangles in a graph?

Today: Data

Counting distinct elements:

• How many items in the
stream?

Item frequencies:

• How often does an item
appear in a stream?

Heavy hitters:

• Identify the most frequent
items

Statistics

• Average, median, etc.

Algorithms at Scale
(Week 4)

Puzzle of the Day:

A bipartite graph:
• m left nodes, n right nodes
• Each left node has degree 1.

Given log(m) space, a stream of edges:

1. m = n + 1, max right degree is 2, min right degree is 1.
See stream once. Find the edge with degree 2.

2. m = n + 2, max right degree is 2, min right degree is 2.
See stream once. Find two edges with degree 2.

3. m = n + 1, max right degree is m. See stream log(m) times.
Find any edge with degree > 1.

m left n right

Questions to think about:

1) Imagine a stream of tweets.
You have no idea how long the stream of tweets is.
How do you sample k items from the stream?

2) Do you have to download at all the tweets to sample k?
How many tweets do you have to look at?

3) Tweets may have hashtags. Give an algorithm for finding
the average number of hashtags in a tweet. (Note: each
hashtag must have at least 2 characters, and tweets are at
most 280 characters.)

Questions to think about:

Here is an algorithm for approximate counting:

1. X = 0
2. For each item in the stream, increment X with probability p(X).
3. Return f(X)

What is a good choice of p(X) and f(X) to get very, very small
space usage?

(Since we can trivially count in log(n) space, the goal is to do
better than log(n)!)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Misra-Gries Algorithm
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin+ (FM+) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin (FM) Algorithm
	Flajolet-Martin+ (FM+) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Flajolet-Martin++ (FM++) Algorithm
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127

