Algorithms at Scale
(Week 5)

Puzzle of the Day:

Five prisoners are each given a black or white hat, each with probability 1/2.
* (Can see others hats. Cannot see own hat.

* All guess simultaneously: “black” or “white” or “NO GUESS”

* WIN if at least one correct guess, no incorrect guess.

What is their best strategy? (Hint: solve 3 prisoners first!)

Summary

Last Week: Streaming

Misra-Gries:

* |tem frequency

* Heavy Hitters
Flajolet-Martin:

* Number of distinct elements
* Median-of-means technique
 Chebychev+Chernoff
Problem Set:

 Alternate solution to item
frequency and heavy hitters.

Today: Graph Streaming

Connectivity

 Isthe graph connected?
Bipartite

 |sthe graph bipartite?

MST

 Find @a minimum spanning tree
Spanners

 Find approximate shortest paths
Matching

* Find an (approximate) maximum
matching.

Streaming a Graph

Data arrives in a stream:S=s,,S,, ..., St

Each s;is an edge in the graph.

= Each edge shows up exactly once.
= Edges show up in an arbitrary (worst-case) order.

Example:
S =(A,B), (C,D), (F,E), (C,E), (E,D), (A,F), (B,F)

A

Beware alternatives:
= Edges may be repeated.

= Edges may be added and deleted.
= Edges are a random permutation.

Streaming a Graph

Data arrives in a stream:S=s,,S,, ..., St

Each s;is an edge in the graph.

= Each edge shows up exactly once.
= Edges show up in an arbitrary (worst-case) order.

Example:
S =(A,B), (C,D), (F,E), (C,E), (E,D), (A,F), (B,F)

L A
Goal: minimize space

= Sublinear space is often impossible.
= Best possible: O(n log n) space.
= Focus on dense graphs.

Connected Components

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

 Goal: O(n log n) space.

Output:
Number of connected components.

Example: output 3

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Maintain spanning forest of the graph.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Proof: obvious.

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Space:

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Space: O(n log n)

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Space: O(n log n)

Update cost:

Connected Components

Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
addetoF
n = # of components in F.
return n

Space: O(n log n)

Union-Find
Inverse-Ackerman

Update cost: O(a(n’ n)) amortized cost.

Is graph bipartite?

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

 Goal: O(n log n) space.

Output:
Is the graph bipartite?

Example: NO

Is graph bipartite?

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

 Goal: O(n log n) space.

Output:
Is the graph bipartite?
Can the graph be 2-colored?

Example: YES

Is graph bipartite?

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

 Goal: O(n log n) space.

Output:

Is the graph bipartite?

Can the graph be 2-colored?

Does the graph have no odd-length
cycles? Example: NO

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

Maintain spanning forest of the graph.

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

odd cycle
return NOT BIPARTITE

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

Proof:

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

Proof:
If G is bipartite, always return YES because there are no odd cycles.

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

Proof:
If G is not bipartite?

Is graph bipartite?

Bipartite Spanning Forest

Proof:
Assume G is not bipartite,
not detected.

Look at final forest.

Is graph bipartite?

Bipartite Spanning Forest

Proof:
Assume G is not bipartite,
not detected.

Look at final forest.
2-color the nodes in the forest.

(Note: coloring must fail for graph,
because graph is not bipartite. But can be
good for forest.)

Is graph bipartite?

Bipartite Spanning Forest

Proof:
Assume G is not bipartite,
not detected.

Look at final forest.
2-color the nodes in the forest.

Look at mis-colored edge that was
not included in forest.

Is graph bipartite?

Bipartite Spanning Forest

Proof:
Assume G is not bipartite,
not detected.

Look at final forest.
2-color the nodes in the forest.

Look at mis-colored edge that was
not included in forest.

When edge e was seen in stream,
there was an even cycle in FU e.

Is graph bipartite?

Bipartite Spanning Forest

Proof:
Assume G is not bipartite,
not detected.

Look at final forest.
2-color the nodes in the forest.

Look at mis-colored edge that was
not included in forest.

When edge e was seen in stream,
there was an even cycle in FU e.

Even cycle =» properly colored.

Is graph bipartite?

Bipartite Spanning Forest

Proof:
Assume G is not bipartite,
not detected.

Look at final forest.
2-color the nodes in the forest.

Look at mis-colored edge that was
not included in forest.

When edge e was seen in stream,
there was an even cycle in FU e.

Even cycle =» properly colored.

Is graph bipartite?

Bipartite Spanning Forest

Proof:
Assume G is not bipartite,
not detected.

Look at final forest.
2-color the nodes in the forest.

Look at mis-colored edge that was
not included in forest.

When edge e was seen in stream,
there was an even cycle in F U e.

Even cycle =» properly colored.
Contradiction.

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

Space: O(n log n)

Is graph bipartite?

Bipartite Spanning Forest

F : forest, initially empty
for each edge e in stream:
if F U e has no cycles then
add eto F.
if FU e has odd cycle then
return NO.
return YES

. | Union-Find
Space- O(n Og n) Inverse-Ackerman .
Coloring

Update cost: O(a(n; n;)) amortized cost. Maintain 2-coloring

Shortest Paths

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

 Goal: O(n log n) space.

Output:
Find a shortest path from u to v?

Shortest Paths

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

 Goal: O(n log n) space.

Output:

Find an APPROXIMATE shortest path
between all pairs?

Shortest Paths

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

 Goal: O(n log n) space.

Output:

Find an APPROXIMATE shortest path
between all pairs?

Find a “good” subgraph...

Spanner

Find a subgraph H € G :
* Hissparse
(not too many edges)
* For all pairs nodes (u, v):

da(u,v) < dg(u,v) < adg(u,v)

“Shortest path in H is close to the real
shortest path.”

Stretch: a

“ratio of spanner shortest path
to real shortest path”

Spanner

Find a subgraph H € G :
* Hissparse
(not too many edges)
* For all pairs nodes (u, v):

da(u,v) < dg(u,v) < adg(u,v)

“Shortest path in H is close to the real
shortest path.”

Stretch: a

“ratio of spanner shortest path
to real shortest path”

Spanner

To find stretch:

* Look at every edge (u,v) in the
graph G.

* Take the maximum value of:

dy(u,v)

da(u,v)

Spanner

To find stretch:

* Look at every edge (u,v) in the
graph G.

e Take the maximum value of:

dy(u,v)

da(u,v)

What about other (x,y)?

P = (x,u1,u2, us, us,y)

T

shortest path from x to y in graph G

Spanner

What about other (x,y)?

P = (Qf, Ui, ug, Ug,U4,y)

\ shortest path from x to y in

graph G

shortest paths in graph H

Spanner

What about other (x,y)?

P = (Qf, Ui, ug, Ug,U4,y)

\ shortest path from x to y in

graph G

— (CC, u1) ‘ distance o in graph H
— (ul, Uz) ‘ distance a in graph H
- (u2, u3) ‘ distance a in graph H

— (U37 Ug) ‘ distance a in graph H
(g, ‘ distance a in graph H

Spanner

What about other (x,y)?

P = (Qf, Ui, ug, Ug,U4,y)

\ shortest path from x to y in

graph G

— (5177 Ul) ‘ distance a in graph H
(ul, UQ) ‘ distance a in graph H
(u2, u3) ‘ distance a in graph H

(U37 U4 ‘ distance a in graph H
(g, ‘ distance a in graph H

P,>P,>P,=>»P,=>P. =) path of length a|P| in graph H

Spanner

To find stretch:

* Look at every edge (u,v) in the
graph G.
* Take the maximum value of:

dy(u,v)

da(u,v)

Strategy:
* Remove edges on short cycles.

* If alternative path is < 2k, then
delete edge.

Spanner

Spanner Construction(k)

H : subgraph, initially empty
for each edge e = (u,v) in stream:
if d,(u,v) >2k—1 (in H)
add e to H.
return H

Remove all small cycles from the graph.
Parameter: k

Spanner

Spanner Construction(k)

H : subgraph, initially empty
for each edge e = (u,v) in stream:
if d,(u,v) >2k—1 (in H)
add e to H.
return H

Claim:
H has stretch at most 2k-1.

Spanner

Spanner Construction(k)

H : subgraph, initially empty
for each edge e = (u,v) in stream:
if d,(u,v) >2k—1 (in H)
add e to H.
return H

Claim:
H has stretch at most 2k-1.

Proof: only delete edge if there is path in H < 2k-1.

Spanner

Spanner Construction(k)

H : subgraph, initially empty
for each edge e = (u,v) in stream:
if d,(u,v) >2k—1 (in H)
add e to H.
return H

Claim:
H has no cycles of size < 2k.

Proof: only add edge if there is no path in H < 2k-1.

Spanner

Spanner Construction(k)

H : subgraph, initially empty
for each edge e = (u,v) in stream:
if d,(u,v) >2k—1 (in H)
add e to H.
return H

Key Question:
How big is H?

Spanner

Definition:
girth(G) = size of smallest cycle in G.

Example:
Girth=6

Spanner

Definition:
girth(G) = size of smallest cycle in G.

Theorem:
If graph G has girth(G) > 2k, then it

1
has O(n' %) edges.

Example:
Girth=6

Spanner

Theorem:

1
If graph G has girth(G) > 2k, then it has 0(n1+i) edges.

Proof:

14+

Let H be a graph with > 10n" "« edges and girth(G) > 2k.

Spanner

Theorem:

1
If graph G has girth(G) > 2k, then it has 0(n1+i) edges.

Proof: (by contradiction)

14+

Let H be a graph with > 10n" "« edges and girth(G) > 2k.

Kill low degree nodes:

1
Repeat: if node u has degree < 2nk then delete it (and adjacent edges.

Spanner

Theorem:

1
If graph G has girth(G) > 2k, then it has 0(n1+i) edges.

Proof: (by contradiction)
14—

Let H be a graph with > 10n" "« edges and girth(G) > 2k.

Kill low degree nodes:

1
Repeat: if node u has degree < 2nk then delete it (and adjacent edges.

1 1
= Removes at most 2n * nk = 2n' "k edges = graph H is not empty.

=» Graph H has no low degree nodes.

+

Spanner

Theorem:

1
If graph G has girth(G) > 2k, then it has 0(n1+i) edges.

Proof: (by contradiction)

1
H is a graph with > 8n' "% edges and girth(G) > 2k, graph H
1

has no nodes with degree < 2nk .

Spanner

Theorem:

1
If graph G has girth(G) > 2k, then it has 0(n1+i) edges.

Proof: (by contradiction)

1
H is a graph with > 8n' "% edges and girth(G) > 2k, graph H
1

has no nodes with degree < 2nk .

Choose anode uin H’. Let T be all the nodes at distance
< k from u.

Spanner

Choose anode uin H. Let T be all the nodes at distance
< k from u.

1

u has degree > 2nk
Claim: Tis a tree /N

No cycles of length 2k.

Spanner

Choose anode uin H. Let T be all the nodes at distance
< k from u.

1

u has degree > 2nk
Claim: T is a tree :
o /v\has degree > 2nk

No cycles of length 2k.

Spanner

Choose anode uin H. Let T be all the nodes at distance
< k from u.

1
u has degree > 2nk

Claim: Tis a tree .

v has degree > 2nk
O ’\\

No cycles of length 2k. /.\
o/x 1

has degree > 2nk

Spanner

Choose anode uin H. Let T be all the nodes at distance
< k from u.

1
u has degree > 2nk

Claim: Tis a tree .

v has degree > 2nk
O ’\\

No cycles of length 2k.

>

T is a tree. .\
h/x

Any cross edge creates a cycle
of length < 2k.

1
has degree > 2nk

(lgnore edges between leaves.)

Spanner

Choose anode uin H. Let T be all the nodes at distance
< k from u.

1

u has degree > 2nk
Claim: Tis a tree :
o /v\has degree > 2nk

Number of nodes in tree T:
k A
> (in/k) >N ./.\

has degree > 2nk
Contradiction!

Graph H cannot exist.

Spanner

Definition:
girth(G) = size of smallest cycle in G.

Theorem:
If graph G has girth(G) > 2k, then it

1
has O(n' %) edges.

Example:
Girth=6

Spanner

Spanner Construction(k)

H : subgraph, initially empty
for each edge e = (u,v) in stream:
if d,(u,v) >2k—1 (in H)

return H

add e to H.

Size of

H:

Graph
= Gra

H has girth(H) > 2k.

1
oh H has O0(n'*%) edges.

Spanner

Spanner Construction(k)

Size of H:
Graph H has girth(H) > 2k.

1
= Graph H has O0(n"*%) edges.

1. k=2
3-spanner, space: O(n/?logn)

2. k=log(n)
log(n)-spanner, space:

O(nttt/1em 160) = O(nlogn)

Spanner

Can we do better?

Not if the Erdos Girth Conjecture
is true!

Matching

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

 Goal: O(n log n) space.

Output:
Find a maximum sized matching.

Matching

Greedy Match

M : matching, initially empty
for each edge e = (u,v) in stream:
if uand v are not matched in M
add (u,v) to M.
return M

Key idea:
Add edge whenever it does not
conflict with an existing edge.

Matching

Greedy Match

M : matching, initially empty
for each edge e = (u,v) in stream:
if uand v are not matched in M
add (u,v) to M.
return M

Claim:
M is a legal matching.

Matching

Greedy Match

M : matching, initially empty
for each edge e = (u,v) in stream:
if uand v are not matched in M
add (u,v) to M.
return M

et M* be a maximum matching.
Claim:
|IM*| <2|M| = 2-approximation

Matching 2-approximation

Proof:

Charging argument:

Matching 2-approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

Matching 2-approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

1. If eisin M (our matching), charge 1 to e.

Matching 2-approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

1. If eisin M (our matching), charge 1 to e.

2. Otherwise, there exists an edge €’ in M (our matching)
adjacent to e.

(If not, we would have added e to M.)

Matching 2-approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

1. If eisin M (our matching), charge 1 to e.

2. Otherwise, there exists an edge €’ in M (our matching)
adjacent to e.

Charge 1 to €.

Matching 2-approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

1. If eisin M (our matching), charge 1 to e.

2. Otherwise, there exists an edge €’ in M (our matching)
adjacent to e.

Charge 1 to €.

Total charges: |M*|

Matching 2-approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

1. If eisin M (our matching), charge 1 to e.

2. Otherwise, there exists an edge €’ in M (our matching)
adjacent to e.

Charge 1 to €.

Claim: only edges in M are charged.

Matching 2-approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

1. If eisin M (our matching), charge 1 to e.

2. Otherwise, there exists an edge €’ in M (our matching)
adjacent to e.

Charge 1 to e’. /

Claim: each edge in M is charged at most twice.
(Either case (1) holds once or case (2) holds at most twice.)

e)

Matching 2-approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

1. If eisin M (our matching), charge 1 to e.

2. Otherwise, there exists an edge €’ in M (our matching)
adjacent to e.

Charge 1 to e’. /

Claim: each edge in M is charged at most twice.
Claim: total chargeis < 2|M].

e)

Matching 2-approximation

Proof:

Charging argument:

Total charge =|M*|
Total chargeis<2|M|

> 4
Theorem: 2-approximation

M™| < 2|M|

Matching

Greedy Match

M : matching, initially empty
for each edge e = (u,v) in stream:
if uand v are not matched in M
add (u,v) to M.
return M

et M* be a maximum matching.
Claim:
|IM*| <2|M| = 2-approximation

Weighted Matching

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

 Goal: O(n log n) space.

Output:
Find a maximum weight matching.

Example:
weight = 22

Matching

Greedy Match

M : matching, initially empty
for each edge e = (u,v) in stream:
Let C be edges adjacent to u
and vin M.
if w(e) > w(C):
remove C from M.
add e to M.

Does it work?

Matching

Greedy Match

Matching

Greedy Match

Matching

Greedy Match

Matching

Greedy Match

Choose € = 1/n.

Matching

Greedy Match

Choose € = 1/n.

Your matching: weight = 2

Matching

Greedy Match

Choose € = 1/n.
Your matching: weight = 2

OPT matching: weight > n/2

Matching

Less Greedy Match

M : matching, initially empty
for each edge e = (u,v) in stream:
Let C be edges adjacent to u
and vin M.
if w(e) > (1+y) w(C):
remove C from M.
add e to M.

Matching

Less Greedy Match

Matching

Less Greedy Match

Matching

Less Greedy Match

Matching

Less Greedy Match

1+y

Your matching: (1+y)"

Matching

Less Greedy Match

1+y

Your matching: (1+y)"

Best matching: 1 + (1+y) + (1+y)2 + ... + (1+y)" < (1+y)*?

Approximation: (for this example only)
L+

sy =)

Less Greedy Matching

Terminology:

Define:

* Edge e is born if/when added to M.

 Edge e is killed by €’ if e is removed when e’ is born.

 Edge e is a survivor if it is born and never killed.

Less Greedy Matching

Tree of the Dead

If e is a survivor::
To(e) = {e}
T,(e) = edges killed by edges in Ty(e)
T,(e) = edges killed by edges in T,(e)

T(e) = edges killed by edge in T, ,(e)

Less Greedy Matching

Tree of the Dead

If e is a survivor::
To(e) = {e}
T,(e) = edges killed by edges in Ty(e)
T,(e) = edges killed by edges in T,(e)

T(e) = edges killed by edge in T, ,(e)

Claim:
W(Tj(e)) > (1 +7)W(Tjta(e))

(Because edges in j+1 were killed by
edges in because they were smaller.)

Less Greedy Matching

Tree of the Dead

If e is a survivor::
To(e) = {e}
T,(e) = edges killed by edges in Ty(e)
T,(e) = edges killed by edges in T,(e)

T(e) = edges killed by edge in T, ,(e)

Calculate: weight of edges in
the tree of the dead for e.

Less Greedy Matching

Tree of the Dead

W(Tj(e)) > (L+7)W(Tjt1(e))

(I +)W(T(e)) = (1+7)ZW(Tj(€))

Less Greedy Matching

Tree of the Dead

W(Tj(e)) > (L+7)W(Tjt1(e))

(I +)W(T(e)) = (1+7)ZW(Tj(€))

< (I+7y)w(Ti(e)) + (1+7) Z W (Tj(e))

Less Greedy Matching

Tree of the Dead

Less Greedy Matching

Tree of the Dead

Less Greedy Matching

Tree of the Dead

Less Greedy Matching

Tree of the Dead

W(Tj(e)) > (L+7)W(Tjt1(e))

Less Greedy Matching

Tree of the Dead

W(Tj(e)) > (L+7)W(Tjt1(e))

Less Greedy Matching

Tree of the Dead

W(Tj(e)) > (L+7)W(Tjt1(e))

Matching approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

Matching approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

If eisin T(e’) for some survivor e’ (or if e is a survivor):
charge w(e) to e.

Matching approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).

If eisin T(e’) for some survivor e’ (or if e is a survivor):
charge w(e) to e.

Else: e was never born!

Why wasn’t e born? Some set C of neighbors was too big.

Matching approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).
If e was never born: w(e) < (1+y)w(C)

Case (1) C={e,}
Charge w(e) to e.

Matching approximation

Proof:

Charging argument:

Let e = some edge in M* (optimal maximum matching).
If e was never born: w(e) < (1+y)w(C)

Case (2) C={e,, e,}
w(e)w(er)

+ w(esz)

Charge:

to e,.

Charge: _ w(e)w(ea) o e,.
w(er) + w(es)

Matching approximation

Proof:

Case (2) C={e,, e,}
w(e)w(er)

+ w(esz)

Charge: to e,.

Charge: _ w(e)w(ea) o e,.
w(er) + w(es)

Matching approximation

Proof:

Case (2) C={e,, e,}
w(e)w(er)

+ w(esz)

Charge: to e,.

Charge: _ w(e)w(ea) o e,.
w(er) + w(es)

Matching approximation

Proof:

(1 +7)(w(er) + w(ez)

w(er)
w(eyr) + w(es)

(1 +y)(wler) +w(e2)

< (I+7)wler)

All charges to edge e are at most (1+y)w(e).

Matching approximation

Proof:

Total charges: w(M*¥*)

Matching approximation

Proof:

Total charges: w(M*¥*)

Each edge is charged:

 Either for 2 unborn edges in M*,
e Orfor1killed in M*,

Matching approximation

Proof:

Total charges: w(M*¥*)

Each edge is charged:

 Either for 2 unborn edges in M*,
e Orfor1killed in M*,

Can’t be both: you only are charged for a killing when you are in M* and killed!

When you are in M*, you have no neighbors in M* to prevent being born.

Matching approximation

Proof:

Better: charge shifting

If e=(u,v) kills e’=(u,w) and e’ is charged for unborn
(u,y), then move charge for (u,y) to e=(u,v).

w

\‘[orevents birth

9,

charge (u,v)
for
(u,y)

Matching approximation

Proof:

Total charges: w(M*¥*)
No edge more than 2 charges.

No killed edge (in tree of dead) has more than one
charge.

Each edge is charged:

* Either for 2 unborn edges in M*,
e Orfor1killed in M*,

Matching approximation

Math on board...

Total charges: w(M*¥*)
No edge more than 2 charges.

No killed edge (in tree of dead) has more than one
charge.

Each edge is charged:

* Either for 2 unborn edges in M*,
e Orfor1killed in M*,

Matching

Less Greedy Match

M : matching, initially empty
for each edge e = (u,v) in stream:
Let C be edges adjacent to u
and vin M.
if w(e) > (1+y) w(C):
remove C from M.
add e to M.

Claim: 6-approximation of optimal

Matching

Less Greedy Match

M : matching, initially empty
for each edge e = (u,v) in stream:
Let C be edges adjacent to u
and vin M.
if w(e) > (1+y) w(C):
remove C from M.
add e to M.

Better algorithm: (2+&)-approximation of optimal

Summary

Last Week: Streaming

Misra-Gries:

* |tem frequency

* Heavy Hitters
Flajolet-Martin:

* Number of distinct elements
* Median-of-means technique
 Chebychev+Chernoff
Problem Set:

 Alternate solution to item
frequency and heavy hitters.

Today: Graph Streaming

Connectivity

 Isthe graph connected?
Bipartite

 |sthe graph bipartite?

MST

 Find @a minimum spanning tree
Spanners

 Find approximate shortest paths
Matching

* Find an (approximate) maximum
matching.

