
Algorithms	at	Scale
(Week	5)

Puzzle	of	the	Day:
Five	prisoners	are	each	given	a	black or	white hat,	each	with	probability	1/2.

• Can	see	others	hats.		Cannot	see	own	hat.

• All	guess	simultaneously:	“black”	or	“white”	or	“NO	GUESS”

• WIN if	at	least	one correct	guess,	no	incorrect	guess.

What	is	their	best	strategy?		 (Hint:	solve	3	prisoners	first!)

Summary

Today:	Graph	Streaming

Connectivity
• Is	the	graph	connected?
Bipartite
• Is	the	graph	bipartite?
MST
• Find	a	minimum	spanning	tree
Spanners
• Find	approximate	shortest	paths
Matching
• Find	an	(approximate)	maximum	

matching.

Last	Week:	Streaming

Misra-Gries:
• Item	frequency
• Heavy	Hitters
Flajolet-Martin:
• Number	of	distinct	elements
• Median-of-means	technique
• Chebychev+Chernoff
Problem	Set:
• Alternate	solution	to	item	

frequency	and	heavy	hitters.

Streaming	a	Graph

Data	arrives	in	a	stream:	S	=	s1,	s2,	…,	sT

Each	sj is	an	edge	in	the	graph.
⇒ Each	edge	shows	up	exactly	once.
⇒ Edges	show	up	in	an	arbitrary	(worst-case)	order.

Example:
S	=	(A,B),	(C,D),	(F,E),	(C,E),	(E,D),	(A,F),	(B,F)

Beware	alternatives:
⇒ Edges	may	be	repeated.
⇒ Edges	may	be	added and	deleted.
⇒ Edges	are	a	random	permutation.

A
B C

D

EF

Streaming	a	Graph

Data	arrives	in	a	stream:	S	=	s1,	s2,	…,	sT

Each	sj is	an	edge	in	the	graph.
⇒ Each	edge	shows	up	exactly	once.
⇒ Edges	show	up	in	an	arbitrary	(worst-case)	order.

Example:
S	=	(A,B),	(C,D),	(F,E),	(C,E),	(E,D),	(A,F),	(B,F)

Goal:	minimize	space	
⇒ Sublinear	space	is	often	impossible.
⇒ Best	possible:	O(n	log	n)	space.
⇒ Focus	on	dense	graphs.

A
B C

D

EF

Connected	Components

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• Goal:	O(n	log	n) space.

Output:	
Number	of	connected	components.

Example:	output	3

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Proof:	obvious.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Space:

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Space:	O(n	log	n)

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Space:	O(n	log	n)

Update	cost:

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F	∪e has	no	cycles	then
add	e	to	F

n =	#	of	components	in	F.
return	n

Connected	Components

Spanning	Forest

Space:	O(n	log	n)

Update	cost:	O(α(n,	n))

Union-Find
Inverse-Ackerman
amortized	cost.

Is	graph	bipartite?

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• Goal:	O(n	log	n) space.

Output:	
Is	the	graph	bipartite?

Example:	NO

Is	graph	bipartite?

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• Goal:	O(n	log	n) space.

Output:	
Is	the	graph	bipartite?
Can	the	graph	be	2-colored?

Example:	YES

Is	graph	bipartite?

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• Goal:	O(n	log	n) space.

Output:	
Is	the	graph	bipartite?
Can	the	graph	be	2-colored?
Does	the	graph	have	no	odd-length	

cycles? Example:	NO

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

Maintain	spanning	forest	of	the	graph.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

odd	cycle
return	NOT	BIPARTITE

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

Proof:	

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

Proof:
If	G	is	bipartite,	always	return	YES because	there	are	no	odd	cycles.		

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

Proof:
If	G	is	not	bipartite?

Is	graph	bipartite?

Bipartite	Spanning	Forest

Proof:
Assume	G is	not	bipartite,	
not	detected.

Look	at	final	forest.

Is	graph	bipartite?

Bipartite	Spanning	Forest

Proof:
Assume	G is	not	bipartite,	
not	detected.

Look	at	final	forest.
2-color	the	nodes	in	the	forest.

(Note:	coloring	must	fail	for	graph,	
because	graph	is	not	bipartite.	But	can	be
good	for	forest.)

Is	graph	bipartite?

Bipartite	Spanning	Forest

Proof:
Assume	G is	not	bipartite,	
not	detected.

Look	at	final	forest.
2-color	the	nodes	in	the	forest.

Look	at	mis-colored	edge	that	was	
not	included	in	forest.	

Is	graph	bipartite?

Bipartite	Spanning	Forest

Proof:
Assume	G is	not	bipartite,	
not	detected.

Look	at	final	forest.
2-color	the	nodes	in	the	forest.

Look	at	mis-colored	edge	that	was	
not	included	in	forest.	

When	edge	e was	seen	in	stream,	
there	was	an	even	cycle	in	F∪e.

Is	graph	bipartite?

Bipartite	Spanning	Forest

Proof:
Assume	G is	not	bipartite,	
not	detected.

Look	at	final	forest.
2-color	the	nodes	in	the	forest.

Look	at	mis-colored	edge	that	was	
not	included	in	forest.	

When	edge	e was	seen	in	stream,	
there	was	an	even	cycle	in	F∪e.

Even	cycle	è properly	colored.

Is	graph	bipartite?

Bipartite	Spanning	Forest

Proof:
Assume	G is	not	bipartite,	
not	detected.

Look	at	final	forest.
2-color	the	nodes	in	the	forest.

Look	at	mis-colored	edge	that	was	
not	included	in	forest.	

When	edge	e was	seen	in	stream,	
there	was	an	even	cycle	in	F∪e.

Even	cycle	è properly	colored.

Is	graph	bipartite?

Bipartite	Spanning	Forest
Proof:
Assume	G is	not	bipartite,	
not	detected.

Look	at	final	forest.
2-color	the	nodes	in	the	forest.

Look	at	mis-colored	edge	that	was	
not	included	in	forest.	

When	edge	e was	seen	in	stream,	
there	was	an	even	cycle	in	F∪e.

Even	cycle	è properly	colored.
Contradiction.

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

Space:	O(n	log	n)

F	:	forest,	initially	empty
for	each	edge	e in	stream:

if	F∪e has	no	cycles	then
add	e	to	F.

if	F∪e has	odd	cycle	then
return	NO.

return	YES

Is	graph	bipartite?

Bipartite	Spanning	Forest

Space:	O(n	log	n)
Update	cost:	O(α(n,	n,))

Union-Find
Inverse-Ackerman
amortized	cost. Coloring

Maintain	2-coloring

Shortest	Paths

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• Goal:	O(n	log	n) space.

Output:	
Find	a	shortest	path	from	u	to	v?

Shortest	Paths

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• Goal:	O(n	log	n) space.

Output:	
Find	an	APPROXIMATE	shortest	path	
between	all	pairs?

Shortest	Paths

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• Goal:	O(n	log	n) space.

Output:	
Find	an	APPROXIMATE	shortest	path	
between	all	pairs?

Find	a	“good”	subgraph…

Spanner

Find	a	subgraph	H	⊆G	:
• H	is	sparse	

(not	too	many	edges)
• For	all	pairs	nodes	(u,	v):

“Shortest	path	in	H	is	close	to	the	real	
shortest	path.”

Stretch:	α
“ratio	of	spanner	shortest	path	
to	real	shortest	path”

dG(u, v)  dH(u, v)  ↵dG(u, v)

v
u

dG(u, v) = 1

dH(u, v) = 3

x

y

dG(x, y) = 2

dH(x, y) = 6

Spanner

Find	a	subgraph	H	⊆G	:
• H	is	sparse	

(not	too	many	edges)
• For	all	pairs	nodes	(u,	v):

“Shortest	path	in	H	is	close	to	the	real	
shortest	path.”

Stretch:	α
“ratio	of	spanner	shortest	path	
to	real	shortest	path”

dG(u, v)  dH(u, v)  ↵dG(u, v)

v
u

dG(u, v) = 1

dH(u, v) = 3

x

y

dG(x, y) = 2

dH(x, y) = 6

Spanner

To	find	stretch:
• Look	at	every	edge	(u,v) in	the	

graph	G.
• Take	the	maximum	value	of:

v
u

x

y
dH(u, v)

dG(u, v)

z

Spanner

To	find	stretch:
• Look	at	every	edge	(u,v) in	the	

graph	G.
• Take	the	maximum	value	of:

What	about	other	(x,y)?

v
u

x

y
dH(u, v)

dG(u, v)

z

P = (x, u1, u2, u3, u4, y)

shortest	path	from	x to	y	in	graph G

Spanner

What	about	other	(x,y)?

v
u

x

y

z
P = (x, u1, u2, u3, u4, y)

P1 = (x, u1)

P2 = (u1, u2)

P3 = (u2, u3)

P4 = (u3, u4)

P5 = (u4, y)

shortest	path	from	x to	y	in	
graph G

shortest	paths	in	graph H

Spanner

What	about	other	(x,y)?

v
u

x

y

z
P = (x, u1, u2, u3, u4, y)

P1 = (x, u1)

P2 = (u1, u2)

P3 = (u2, u3)

P4 = (u3, u4)

P5 = (u4, y)

shortest	path	from	x to	y	in	
graph G

distance	α	in	graph H

distance	α	in	graph H

distance	α	in	graph H
distance	α	in	graph H

distance	α	in	graph H

Spanner

What	about	other	(x,y)?

v
u

x

y

z
P = (x, u1, u2, u3, u4, y)

P1 = (x, u1)

P2 = (u1, u2)

P3 = (u2, u3)

P4 = (u3, u4)

P5 = (u4, y)

shortest	path	from	x to	y	in	
graph G

distance	α	in	graph H

distance	α	in	graph H

distance	α	in	graph H
distance	α	in	graph H

distance	α	in	graph H

P1èP2èP3èP4èP5 path	of	length	α|P|	in	graph H

Spanner

To	find	stretch:
• Look	at	every	edge	(u,v) in	the	

graph	G.
• Take	the	maximum	value	of:

Strategy:
• Remove	edges	on	short	cycles.
• If	alternative	path	is	<	2k,	then	

delete	edge.

v
u

x

y
dH(u, v)

dG(u, v)

z

H	:	subgraph,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	dH(u,v)	>	2k—1		(in	H)
add	e	to	H.

return	H

Spanner

Spanner	Construction(k)

Remove	all	small	cycles	from	the	graph.
Parameter:	k

v

u

x

y

z

Ex:	k=3

H	:	subgraph,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	dH(u,v)	>	2k—1		(in	H)
add	e	to	H.

return	H

Spanner

Spanner	Construction(k)

Claim:
H has	stretch	at	most	2k-1.

v

u

x

y

z

Ex:	k=3

H	:	subgraph,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	dH(u,v)	>	2k—1		(in	H)
add	e	to	H.

return	H

Spanner

Spanner	Construction(k)

Claim:
H has	stretch	at	most	2k-1.

Proof:	only	delete	edge	if	there	is	path	in	H	≤	2k-1.

v

u

x

y

z

Ex:	k=3

H	:	subgraph,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	dH(u,v)	>	2k—1		(in	H)
add	e	to	H.

return	H

Spanner

Spanner	Construction(k)

Claim:
H has	no	cycles	of	size	≤	2k.

Proof:	only	add	edge	if	there	is	no	path	in	H	≤	2k-1.

v

u

x

y

z

Ex:	k=3

H	:	subgraph,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	dH(u,v)	>	2k—1		(in	H)
add	e	to	H.

return	H

Spanner

Spanner	Construction(k)

Key	Question:
How	big	is	H?

v

u

x

y

z

Ex:	k=3

Spanner

Definition:
girth(G)	=	size	of	smallest	cycle	in	G.

v
u

x

y

z

Example:
Girth	=	6

Spanner

Definition:
girth(G)	=	size	of	smallest	cycle	in	G.

Theorem:
If	graph	G has	girth(G)	>	2k,	then	it	

has	𝑂(𝑛$%
&
') edges. v

u

x

y

z

Example:
Girth	=	6

Spanner

Theorem:

If	graph	G has	girth(G)	>	2k,	then	it	has	𝑂(𝑛$%
&
') edges.

Proof:	
Let	H be	a	graph	with	>	10𝑛$%

&
' edges	and	girth(G)	>	2k.	

Spanner

Theorem:

If	graph	G has	girth(G)	>	2k,	then	it	has	𝑂(𝑛$%
&
') edges.

Proof:		(by	contradiction)
Let	H be	a	graph	with	>	10𝑛$%

&
' edges	and	girth(G)	>	2k.

Kill	low	degree	nodes:
Repeat: if	node	u	has	degree	≤ 2𝑛

&
' then	delete	it	(and	adjacent	edges.	

Spanner

Theorem:

If	graph	G has	girth(G)	>	2k,	then	it	has	𝑂(𝑛$%
&
') edges.

Proof:		(by	contradiction)
Let	H be	a	graph	with	>	10𝑛$%

&
' edges	and	girth(G)	>	2k.

Kill	low	degree	nodes:
Repeat: if	node	u	has	degree	≤ 2𝑛

&
' then	delete	it	(and	adjacent	edges.

èRemoves	at	most	2n ∗ 𝑛
&
' = 2𝑛$%

&
'	 edges	è graph	H is	not	empty.

èGraph	H has	no	low	degree	nodes.

Spanner

Theorem:

If	graph	G has	girth(G)	>	2k,	then	it	has	𝑂(𝑛$%
&
') edges.

Proof:		(by	contradiction)
H’ is	a	graph	with	>	8𝑛$%

&
' edges	and	girth(G)	>	2k,	graph	H

has	no	nodes	with	degree	<	2𝑛
&
' .

Spanner

Theorem:

If	graph	G has	girth(G)	>	2k,	then	it	has	𝑂(𝑛$%
&
') edges.

Proof:		(by	contradiction)
H’ is	a	graph	with	>	8𝑛$%

&
' edges	and	girth(G)	>	2k,	graph	H

has	no	nodes	with	degree	<	2𝑛
&
' .

Choose	a	node	u in	H’.		Let	T be	all	the	nodes	at	distance	
≤	k from	u.

Spanner

Choose	a	node	u in	H’.		Let	T be	all	the	nodes	at	distance	
≤	k from	u.

Claim:	T is	a	tree
u has	degree	≥	2𝑛

&
'

No	cycles	of	length	2k.

Spanner

Choose	a	node	u in	H’.		Let	T be	all	the	nodes	at	distance	
≤	k from	u.

Claim:	T is	a	tree
u has	degree	≥	2𝑛

&
'

No	cycles	of	length	2k.

v has	degree	≥	2𝑛
&
'

Spanner

Choose	a	node	u in	H’.		Let	T be	all	the	nodes	at	distance	
≤	k from	u.

Claim:	T is	a	tree
u has	degree	≥	2𝑛

&
'

No	cycles	of	length	2k.

v has	degree	≥	2𝑛
&
'

x has	degree	≥	2𝑛
&
'

Spanner

Choose	a	node	u in	H’.		Let	T be	all	the	nodes	at	distance	
≤	k from	u.

Claim:	T is	a	tree
u has	degree	≥	2𝑛

&
'

No	cycles	of	length	2k.
è
T	is	a	tree.

v has	degree	≥	2𝑛
&
'

x has	degree	≥	2𝑛
&
'Any	cross	edge	creates	a	cycle

of	length	≤	2k.

(Ignore	edges	between	leaves.)

Spanner

Choose	a	node	u in	H’.		Let	T be	all	the	nodes	at	distance	
≤	k from	u.

Claim:	T is	a	tree

Number	of	nodes	in	tree	T:

Contradiction!
Graph	H	cannot	exist.

u has	degree	≥	2𝑛
&
'

v has	degree	≥	2𝑛
&
'

x has	degree	≥	2𝑛
&
'

�
⇣
2n1/k

⌘k
> n

Spanner

Definition:
girth(G)	=	size	of	smallest	cycle	in	G.

Theorem:
If	graph	G has	girth(G)	>	2k,	then	it	

has	𝑂(𝑛$%
&
') edges. v

u

x

y

z

Example:
Girth	=	6

H	:	subgraph,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	dH(u,v)	>	2k—1		(in	H)
add	e	to	H.

return	H

Spanner

Spanner	Construction(k)

Size	of	H:
Graph	H has	girth(H)	>	2k.

è Graph	H has	𝑂(𝑛$%
&
') edges.

v

u

x

y

z

Ex:	k=3

Spanner

Spanner	Construction(k)

Size	of	H:
Graph	H has	girth(H)	>	2k.

è Graph	H has	𝑂(𝑛$%
&
') edges.

1. k	=	2
3-spanner,	space:

2. k	=	log(n)
log(n)-spanner,	space:

v

u

x

y

z

Ex:	k=3

O(n3/2
log n)

O(n1+1/ logn
log n) = O(n log n)

Spanner

Can	we	do	better?

Not	if	the	Erdos Girth	Conjecture	
is	true!

v

u

x

y

z

Ex:	k=3

Matching

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• Goal:	O(n	log	n) space.

Output:	
Find	a	maximum	sized	matching.

M	:	matching,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	u and	v	are	not	matched	in	M
add	(u,v)	to	M.

return	M

Matching

Greedy	Match

Key	idea:
Add	edge	whenever	it	does	not	
conflict	with	an	existing	edge.

M	:	matching,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	u and	v	are	not	matched	in	M
add	(u,v)	to	M.

return	M

Matching

Greedy	Match

Claim:
M is	a	legal	matching.

M	:	matching,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	u and	v	are	not	matched	in	M
add	(u,v)	to	M.

return	M

Matching

Greedy	Match

Let	M* be	a	maximum	matching.
Claim:
|M*|	≤	2|M|è 2-approximation

Matching	2-approximation

Charging	argument:

Proof:

Matching	2-approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

Proof:

Matching	2-approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

1. If	e is	in	M (our	matching),	charge	1 to	e.

Proof:

Matching	2-approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

1. If	e is	in	M (our	matching),	charge	1 to	e.
2. Otherwise,	there	exists	an	edge	e’ in	M (our	matching)	

adjacent	to	e.

(If	not,	we	would	have	added	e	to	M.)

Proof:

e
e’

Matching	2-approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

1. If	e is	in	M (our	matching),	charge	1 to	e.
2. Otherwise,	there	exists	an	edge	e’ in	M (our	matching)	

adjacent	to	e.
Charge	1 to	e’.

Proof:

e
e’

Matching	2-approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

1. If	e is	in	M (our	matching),	charge	1 to	e.
2. Otherwise,	there	exists	an	edge	e’ in	M (our	matching)	

adjacent	to	e.
Charge	1 to	e’.

Total	charges:	|M*|

Proof:

e
e’

Matching	2-approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

1. If	e is	in	M (our	matching),	charge	1 to	e.
2. Otherwise,	there	exists	an	edge	e’ in	M (our	matching)	

adjacent	to	e.
Charge	1 to	e’.

Claim:	only	edges	in	M	are	charged.

Proof:

e
e’

Matching	2-approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

1. If	e is	in	M (our	matching),	charge	1 to	e.
2. Otherwise,	there	exists	an	edge	e’ in	M (our	matching)	

adjacent	to	e.
Charge	1 to	e’.

Claim:	each	edge	in	M is	charged	at	most	twice.
(Either	case	(1)	holds	once	or	case	(2)	holds	at	most	twice.)

Proof:

e’

Matching	2-approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

1. If	e is	in	M (our	matching),	charge	1 to	e.
2. Otherwise,	there	exists	an	edge	e’ in	M (our	matching)	

adjacent	to	e.
Charge	1 to	e’.

Claim:	each	edge	in	M is	charged	at	most	twice.
Claim:	total	charge	is	≤	2|M|.

Proof:

e’

Matching	2-approximation

Charging	argument:

Total	charge	=|M*|
Total	charge	is	≤	2|M|
è
Theorem:	2-approximation

Proof:

|M⇤|  2|M |

M	:	matching,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

if	u and	v are	not	matched	in	M
add	(u,v)	to	M.

return	M

Matching

Greedy	Match

Let	M* be	a	maximum	matching.
Claim:
|M*|	≤	2|M|è 2-approximation

Weighted	Matching

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• Goal:	O(n	log	n) space.

Output:	
Find	a	maximum	weight	matching.

2

4

3

3 5

2

2

6

2

2

2
2

2

2

2

2

Example:
weight	=	22

M	:	matching,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

Let	C be	edges	adjacent	to	u
and	v in	M.
if	w(e)	>	w(C):	
remove	C from	M.
add	e to	M.

Matching

Greedy	Match

Does	it	work?

Matching

Greedy	Match

1

Matching

Greedy	Match

1 1+𝜀

Matching

Greedy	Match

1 1+2𝜀1+𝜀

Matching

Greedy	Match

1 1+n𝜀1+𝜀 1+2𝜀

Choose	𝜀 =	1/n.	

Matching

Greedy	Match

1 1+n𝜀1+𝜀 1+2𝜀

Choose	𝜀 =	1/n.	

Your	matching:	weight	=	2

Matching

Greedy	Match

1 1+n𝜀1+𝜀 1+2𝜀

Choose	𝜀 =	1/n.	

Your	matching:	weight	=	2

OPT	matching:	weight	>	n/2

M	:	matching,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

Let	C be	edges	adjacent	to	u
and	v in	M.
if	w(e)	>	(1+𝛄)	w(C):	
remove	C from	M.
add	e to	M.

Matching

Less	Greedy	Match

Matching

Less	Greedy	Match

1

Matching

Less	Greedy	Match

1 1+𝛄

Matching

Less	Greedy	Match

1 (1+𝛄)21+𝛄

Matching

Less	Greedy	Match

1 (1+𝛄)n1+𝛄 (1+𝛄)2

Your	matching:	(1+𝛄)n

Matching

Less	Greedy	Match

1 (1+𝛄)n1+𝛄 (1+𝛄)2

Your	matching:	(1+𝛄)n

Best	matching:	1	+	(1+𝛄)	+	(1+𝛄)2 +	… +	(1+𝛄)n ≤	(1+𝛄)n+1

Approximation: (for	this	example	only)	

(1 + �)n+1

(1 + �)n
 (1 + �)

Less	Greedy	Matching

Define:

• Edge	e is	born	if/when	added	to	M.

• Edge	e is	killed	by	e’ if	e	is	removed	when	e’	is	born.

• Edge	e is	a	survivor	if	it	is	born	and	never	killed.

Terminology:

Less	Greedy	Matching

If	e is	a	survivor::
• T0(e)	=	{e}
• T1(e)	=	edges	killed	by	edges	in	T0(e)
• T2(e)	=	edges	killed	by	edges	in	T1(e)

…
• Tj(e)	=	edges	killed	by	edge	in	Tj-1(e)	

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

Less	Greedy	Matching

If	e is	a	survivor::
• T0(e)	=	{e}
• T1(e)	=	edges	killed	by	edges	in	T0(e)
• T2(e)	=	edges	killed	by	edges	in	T1(e)

…
• Tj(e)	=	edges	killed	by	edge	in	Tj-1(e)

Claim:

(Because	edges	in	j+1 were	killed	by
edges	in	because	they	were	smaller.)	

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)
W (Tj(e)) > (1 + �)W (Tj+1(e))

Less	Greedy	Matching

If	e is	a	survivor::
• T0(e)	=	{e}
• T1(e)	=	edges	killed	by	edges	in	T0(e)
• T2(e)	=	edges	killed	by	edges	in	T1(e)

…
• Tj(e)	=	edges	killed	by	edge	in	Tj-1(e)

Calculate:	weight	of	edges	in
the	tree	of	the	dead	for	e.	

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

Less	Greedy	Matching

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

W (Tj(e)) > (1 + �)W (Tj+1(e))

(1 + �)W (T (e)) = (1 + �)
1X

j=1

W (Tj(e))

< (1 + �)w(T1(e)) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) +
1X

j=1

W (Tj(e))

 w(e) + w(T (e))

Less	Greedy	Matching

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

W (Tj(e)) > (1 + �)W (Tj+1(e))

(1 + �)W (T (e)) = (1 + �)
1X

j=1

W (Tj(e))

< (1 + �)w(T1(e)) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) +
1X

j=1

W (Tj(e))

 w(e) + w(T (e))

Less	Greedy	Matching

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

W (Tj(e)) > (1 + �)W (Tj+1(e))

(1 + �)W (T (e)) = (1 + �)
1X

j=1

W (Tj(e))

< (1 + �)w(T1(e)) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) +
1X

j=1

W (Tj(e))

 w(e) + w(T (e))

Less	Greedy	Matching

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

W (Tj(e)) > (1 + �)W (Tj+1(e))

(1 + �)W (T (e)) = (1 + �)
1X

j=1

W (Tj(e))

< (1 + �)w(T1(e)) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) +
1X

j=1

W (Tj(e))

 w(e) + w(T (e))

Less	Greedy	Matching

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

W (Tj(e)) > (1 + �)W (Tj+1(e))

(1 + �)W (T (e)) = (1 + �)
1X

j=1

W (Tj(e))

< (1 + �)w(T1(e)) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) + (1 + �)
1X

j=2

W (Tj(e))

 w(e) +
1X

j=1

W (Tj(e))

 w(e) + w(T (e))

Less	Greedy	Matching

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

W (Tj(e)) > (1 + �)W (Tj+1(e))

(1 + �)W (T (e)) < w(e) + w(T (e))

è

Less	Greedy	Matching

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

W (Tj(e)) > (1 + �)W (Tj+1(e))

(1 + �)W (T (e)) < w(e) + w(T (e))

è

è

�W (T (e)) < w(e)

Less	Greedy	Matching

Tree	of	the	Dead

e

T1(e)

T3(e)

T2(e)

W (Tj(e)) > (1 + �)W (Tj+1(e))

(1 + �)W (T (e)) < w(e) + w(T (e))

è

è

è

�W (T (e)) < w(e)

W (T (e)) < w(e)/�

Matching	approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

Proof:

Matching	approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

If	e is	in	T(e’) for	some	survivor	e’ (or	if	e	is	a	survivor):
charge	w(e) to	e.

Proof:

Matching	approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

If	e is	in	T(e’) for	some	survivor	e’ (or	if	e	is	a	survivor):
charge	w(e) to	e.

Else:	e was	never	born!

Why	wasn’t	e born?	Some	set	C of	neighbors	was	too	big.

Proof:

Matching	approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

If	e was	never	born:	w(e)	≤	(1+𝛄)w(C)

Case	(1)	C	=	{e1}
Charge	w(e) to	e1.

Proof:

Matching	approximation

Charging	argument:
Let	e =	some	edge	in	M* (optimal	maximum	matching).

If	e was	never	born:	w(e)	≤	(1+𝛄)w(C)

Case	(2)	C	=	{e1,	e2}

Charge:																														to		e1.

Charge:																														to		e2.

Proof:

w(e)w(e1)

w(e1) + w(e2)

w(e)w(e2)

w(e1) + w(e2)

Matching	approximation

Why?

Case	(2)	C	=	{e1,	e2}

Charge:																														to		e1.

Charge:																														to		e2.

Proof:

w(e)w(e1)

w(e1) + w(e2)

w(e)w(e2)

w(e1) + w(e2)

Matching	approximation

Why?

Case	(2)	C	=	{e1,	e2}

Charge:																														to		e1.

Charge:																														to		e2.

Proof:

w(e)w(e1)

w(e1) + w(e2)

w(e)w(e2)

w(e1) + w(e2)

w(e)  (1 + �)(w(e1) + w(e2)

w(e)w(e1)

w(e1) + w(e2)
 (1 + �)(w(e1) + w(e2)

w(e1)

w(e1) + w(e2)

 (1 + �)w(e1)

Matching	approximation

Why?

All	charges	to	edge	e are	at	most	(1+𝛄)w(e).

Proof:

w(e)  (1 + �)(w(e1) + w(e2)

w(e)w(e1)

w(e1) + w(e2)
 (1 + �)(w(e1) + w(e2)

w(e1)

w(e1) + w(e2)

 (1 + �)w(e1)

Matching	approximation

Total	charges:		w(M*)

Proof:

Matching	approximation

Total	charges:		w(M*)

Each	edge	is	charged:
• Either	for	2	unborn	edges	in	M*.
• Or	for	1	killed	in	M*.

Proof:

Matching	approximation

Total	charges:		w(M*)

Each	edge	is	charged:
• Either	for	2	unborn	edges	in	M*.
• Or	for	1	killed	in	M*.

Proof:

Can’t	be	both:	you	only	are	charged	for	a	killing	when	you	are	in	M*	and	killed!

When	you	are	in	M*,	you	have	no	neighbors	in	M*	to	prevent	being	born.

Matching	approximation

Better:	charge	shifting

If	e=(u,v) kills	e’=(u,w)	and	e’	is	charged	for	unborn	
(u,y),	then	move	charge	for	(u,y) to	e=(u,v).

Proof:

u

v

w

y

kills

prevents	birth
charge	(u,v)
for
(u,y)

Matching	approximation

Total	charges:		w(M*)

No	edge	more	than	2	charges.

No	killed	edge	(in	tree	of	dead)	has	more	than	one	
charge.

Each	edge	is	charged:
• Either	for	2	unborn	edges	in	M*.
• Or	for	1	killed	in	M*.

Proof:

Matching	approximation

Total	charges:		w(M*)

No	edge	more	than	2	charges.

No	killed	edge	(in	tree	of	dead)	has	more	than	one	
charge.

Each	edge	is	charged:
• Either	for	2	unborn	edges	in	M*.
• Or	for	1	killed	in	M*.

Math	on	board…

M	:	matching,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

Let	C be	edges	adjacent	to	u
and	v in	M.
if	w(e)	>	(1+𝛄)	w(C):	
remove	C from	M.
add	e to	M.

Matching

Less	Greedy	Match

Claim:	6-approximation	of	optimal	

M	:	matching,	initially	empty
for	each	edge	e	=	(u,v) in	stream:

Let	C be	edges	adjacent	to	u
and	v in	M.
if	w(e)	>	(1+𝛄)	w(C):	
remove	C from	M.
add	e to	M.

Matching

Less	Greedy	Match

Better	algorithm:	(2+𝜀)-approximation	of	optimal	

Summary

Today:	Graph	Streaming

Connectivity
• Is	the	graph	connected?
Bipartite
• Is	the	graph	bipartite?
MST
• Find	a	minimum	spanning	tree
Spanners
• Find	approximate	shortest	paths
Matching
• Find	an	(approximate)	maximum	

matching.

Last	Week:	Streaming

Misra-Gries:
• Item	frequency
• Heavy	Hitters
Flajolet-Martin:
• Number	of	distinct	elements
• Median-of-means	technique
• Chebychev+Chernoff
Problem	Set:
• Alternate	solution	to	item	

frequency	and	heavy	hitters.

