
Algorithms	at	Scale
(Week	7)

Puzzle	of	the	Day:
100	prisoners.		Every	so	often,	one	is	chosen	at	random	to	enter	a	room

with	a	light	bulb.		You	can	turn	the	light	bulb	on	or	off.	

• WIN if	one	prisoner	announces	correctly	that	all	have	visited	the	room.

• LOSE if	announcement	is	incorrect.

What	if,	initially,	the	state	of	the	light	is	unknown,	either	on	or	off?



Summary

Today:	Caching

External	memory	model
• How	to	predict	the	performance	

of	algorithms?
B-trees
• Efficient	searching
Write-optimized	data	structures
• Buffer	trees
Cache-oblivious	algorithms
• van	Emde Boas	memory	layout

Last	Week:	Clustering

k-median	clustering
LP	approximation	algorithm
Streaming
Other	clustering	problems
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MiniProjects

Four	basic	topics

1)	Dimensionality	reduction	(i.e.,	sampling	algorithms)

2)	Streaming	data	analysis

3)	Cache	efficient	search	structures	(e.g.,	log-structured	
merge	trees,	COLA)

4)	Algorithms	for	the	MPC	/	k-server	model.



MiniProjects

Four	basic	topics

1)	Dimensionality	reduction	(i.e.,	sampling	algorithms)

2)	Streaming	data	analysis

3)	Cache	efficient	search	structures	(e.g.,	log-structured	
merge	trees,	COLA)

4)	Algorithms	for	the	MPC	/	k-server	model.

Or	choose	your	own….



MiniProjects

Three	parts:

1)	Explain:	
Read	research	paper	or	other	information	on	the	topic,	and	write	
an	explanatory	paper	that	explains	

2)	Extend:
Implement	the	data	structures	described	and	run	experiments,	or	
design	the	algorithm	that	is	requested.

3)	Presentation:
Give	a	presentation	on	the	topic.
Record	and	submit	your	presentation.		
6	(or	so)	will	be	chosen	to	present	in	class	in	Week	13.



MiniProjects

This	week:

1)	Form	a	team	of	two.
Choose	a	partner	with	a	shared	interest.		
I’ll	put	up	a	spreadsheet	to	help	do	matching.

2)	Choose	a	topic.
I’ll	post	the	four	topics,	along	with	some	specific	questions	to	answer.

3)	Do	background	reading.
Find	key	material	and	begin	to	read	it.

To	submit:	team,	topic,	summary	of	background	reading.
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Key Trends
Why do we analyze algorithms?

1. To ensure that it does the right thing (i.e., correctness).

2. To predict the performance (or determine which is fastest).



Predicting	Performance

Example:	100	TB	of	data

1)	Store	data	sorted	in	an	array
⇒ Scan	all	the	data:	O(n)
⇒ (Binary)	search:	O(log	n)

2)	Store	data	in	a	linked	list
⇒ Scan	all	the	data:	O(n)
⇒ Search:	O(n)

3)	Store	data	in	a	red-black	tree
⇒ Scan	all	the	data:	O(n)
⇒ Search:	O(log	n)
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Predicting	Performance

Example:	100	TB	of	data

1)	Store	data	sorted	in	an	array
⇒ Scan	all	the	data:	O(n)
⇒ (Binary)	search:	O(log	n)

2)	Store	data	in	a	linked	list
⇒ Scan	all	the	data:	O(n)
⇒ Search:	O(n)

3)	Store	data	in	a	red-black	tree
⇒ Scan	all	the	data:	O(n)
⇒ Search:	O(log	n)

Analysis	is	not	predicting	
performance	very	well!



A	Real	Computer	(?)
CPU

L3	Cache

Disk

Main	Memory

L1 L1 L1L1

L2 L2 L2L2



Where is most data stored? Hard disk!
– Magnetic
– Mechanical
– Slow (6000rpm = 10ms)

Two step access:
1. seek (find right track)
2. read track

Disks



Two step access:
1. seek (find right track)
2. read track
In practice: Cache entire track

Disks

track 11

track 17



Haswell	Architecture	(2-18	cores)
Memory	Type size line size clock	cycles
L1	cache 64	KB 64	B ~4

L2	cache 256	KB 64 B ~10

L3	cache 2-40	MB 64	B 40-74

L4	(optional) 128 MB

Main	Memory <	128	GB 16	KB ~200-350

SSD Disk BIG Variable	(e.g.,	16KB) ~20,000

Disk BIGGER Variable	(e.g.,	16KB) ~20,000,000

L3	Cache

Disk

Main	Memory

Notes:
• Several	other	”caches”	e.g.,	TLB,	micro-

op	cache,	instruction	cache,	etc.

• L1/L2	caches	are	per	core.

• L3/L4	cache	are	shared	per	socket.

• Main	memory	shared	cross	socket.



A	Real	Computer	(?)
CPU
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Disk

Main	Memory
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Haswell	Architecture

A	simple	example	calculation:

What	fraction	of	operations	”hit”	each	cache?
⇒ 90%	L1	hit	rate	(4	cycles)
⇒ 8%	L2	hit	rate	(10	cycles)
⇒ 2%	main	memory	(300	cycles)

Just	an	example..

L3	Cache

Disk

Main	Memory



Haswell	Architecture

A	simple	example	calculation:

What	fraction	of	operations	”hit”	each	cache?
⇒ 90%	L1	hit	rate	(4	cycles)
⇒ 8%	L2	hit	rate	(10	cycles)
⇒ 2%	main	memory	(300	cycles)

What	fraction	of	time	for	each	cache?
⇒ 35%	waiting	for	L1
⇒ 8%	waiting	for	L2
⇒ 57%	waiting	for	main	memory

Conclusion:	
98%	cache	hit	è
57%	waiting	on	main	memory	

Just	an	example..

L3	Cache

Disk

Main	Memory



Haswell	Architecture

A	simple	example	calculation:

What	fraction	of	operations	”hit”	each	cache?
⇒ 90%	L1	hit	rate	(4	cycles)
⇒ 8%	L2	hit	rate	(10	cycles)
⇒ 1.8%	main	memory	(300	cycles)
⇒ 0.2%	disk	(20,000,000	cycles)

What	fraction	of	time	for	each	cache?
⇒ 99.98%	waiting	for	disk

Disk	is	much,	much	worse!

Just	an	example..

L3	Cache

Disk

Main	Memory



Where	is	the	bottleneck?

The	bottleneck	depends	on	the	application:
• Small	working	set	data	lives	in	L1/L2	cache	è fast.
• Medium	working	set	data	lives	in	main	memory	è bottleneck	is	

memory	latency.
• Big	data	lives	on	disk	è bottleneck	is	disk	latency	/	bandwidth.

For	most	applications,	
one	level	dominates	the	
cost.

(Costs	grow	fast!	

Largest level	dominates.)

L3	Cache

Disk

Main	Memory



External	Memory	Model	(Aggarwal,	Vitter	1988)

Goal:
• Simple	model	(i.e.,	tractable)
• Sufficiently	accurate	model	(i.e.,	useful)



External	Memory	Model	(Aggarwal,	Vitter	1988)
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External	Memory	Model	(Aggarwal,	Vitter	1988)

and	arrows	of

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	BIG)

(size	M)

Cost:	00

opposing	end	them

to	die	to	sleep
no	more

outrageous	fortune

to	be	or	not	to	be

whether	tis	nobler

in	the	mind	to
suffer	the	slings

that	is	the	question

or	to	take	arms

against	a	sea	of

suffer	the	slings

troubles	and	by

Cost:	01

against	a	sea	of
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External	Memory	Model	(Aggarwal,	Vitter	1988)
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and	algorithms	for

dream	of	B-trees

External	Memory	Model	(Aggarwal,	Vitter	1988)

and	arrows	of
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External	Memory	Model	(Aggarwal,	Vitter	1988)

cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	BIG)

(size	M)

Rules:

On	read	/	write	operation:
1. Check	if	line	is	in	cache.		If	so,	perform	operation	in	cache.
2. Else,	expel	a	line	from	cache	(write	it	back	to	memory).
3. Load	requested	line	in	cache.
4. Perform	operation	in	cache.

Cost:
Number	of	lines	read	from	or	written	to	memory.



External	Memory	Model	(Aggarwal,	Vitter	1988)

cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	BIG)

(size	M)

Rules:

On	read	/	write	operation:
1. Check	if	line	is	in	cache.		If	so,	perform	operation	in	cache.
2. Else,	expel	a	line	from	cache	(write	it	back	to	memory).
3. Load	requested	line	in	cache.
4. Perform	operation	in	cache.

Cost:
Number	of	lines	read	from	or	written	to	memory.

Which	line	to	
expel?

Where	to	store	
line	in	cache?



External	Memory	Model	(Aggarwal,	Vitter	1988)
Rules:

On	read	/	write	operation:
1. Check	if	line	is	in	cache.		If	so,	perform	operation	in	cache.
2. Else,	expel	a	line	from	cache	(write	it	back	to	memory).
3. Load	requested	line	in	cache.
4. Perform	operation	in	cache.

Simplifications:
1. Only	one	level	of	cache.	(Ignores	L1,	L2,	etc.)
2. Only	charges	for	memory	access.		(All	other	operations	are	free!)
3. Ideal	caches.	(Can	store	any	line	anywhere	in	the	cache!)
4. Ideal	replacement.	(Ejects	the	line	that	will	be	not	used	for	the	longest	time!)



External	Memory	Model	(Aggarwal,	Vitter	1988)
Rules:

On	read	/	write	operation:
1. Check	if	line	is	in	cache.		If	so,	perform	operation	in	cache.
2. Else,	expel	a	line	from	cache	(write	it	back	to	memory).
3. Load	requested	line	in	cache.
4. Perform	operation	in	cache.

Simplifications:
1. Only	one	level	of	cache.	(Ignores	L1,	L2,	etc.)
2. Only	charges	for	memory	access.		(All	other	operations	are	free!)
3. Ideal	caches.	(Can	store	any	line	anywhere	in	the	cache!)
4. Ideal	replacement.	(Ejects	the	line	that	will	be	not	used	for	the	longest	time!)

Three	reasons:
• Works	pretty	well	in	practice.
• Simplifies	analysis.
• One	level	usually	dominates.



External	Memory	Model	(Aggarwal,	Vitter	1988)
Rules:

On	read	/	write	operation:
1. Check	if	line	is	in	cache.		If	so,	perform	operation	in	cache.
2. Else,	expel	a	line	from	cache	(write	it	back	to	memory).
3. Load	requested	line	in	cache.
4. Perform	operation	in	cache.

Simplifications:
1. Only	one	level	of	cache.	(Ignores	L1,	L2,	etc.)
2. Only	charges	for	memory	access.		(All	other	operations	are	free!)
3. Ideal	caches.	(Can	store	any	line	anywhere	in	the	cache!)
4. Ideal	replacement.	(Ejects	the	line	that	will	be	not	used	for	the	longest	time!)

Good	assumption?
• Usually,	memory	access	

dominates	costs.
• Not	true	for	compute-limited	

problems	(e.g.,	TSP).



External	Memory	Model	(Aggarwal,	Vitter	1988)
Rules:

On	read	/	write	operation:
1. Check	if	line	is	in	cache.		If	so,	perform	operation	in	cache.
2. Else,	expel	a	line	from	cache	(write	it	back	to	memory).
3. Load	requested	line	in	cache.
4. Perform	operation	in	cache.

Simplifications:
1. Only	one	level	of	cache.	(Ignores	L1,	L2,	etc.)
2. Only	charges	for	memory	access.		(All	other	operations	are	free!)
3. Ideal	caches.	(Can	store	any	line	anywhere	in	the	cache!)
4. Ideal	replacement.	(Ejects	the	line	that	will	be	not	used	for	the	longest	time!)

Real	caches?
• E.g.,	8-way	set	associated
• Can	simulate,	lose	only	a	

constant	factor	(with	
resource	augmentation).



External	Memory	Model	(Aggarwal,	Vitter	1988)
Rules:

On	read	/	write	operation:
1. Check	if	line	is	in	cache.		If	so,	perform	operation	in	cache.
2. Else,	expel	a	line	from	cache	(write	it	back	to	memory).
3. Load	requested	line	in	cache.
4. Perform	operation	in	cache.

Simplifications:
1. Only	one	level	of	cache.	(Ignores	L1,	L2,	etc.)
2. Only	charges	for	memory	access.		(All	other	operations	are	free!)
3. Ideal	caches.	(Can	store	any	line	anywhere	in	the	cache!)
4. Ideal	replacement.	(Ejects	the	line	that	will	be	not	used	for	the	longest	time!)

Replacement	strategies?
• LRU:	least	recently	used
• Ideal:	farthest	in	the	future
• Can	simulate	ideal	with	LRU,	lose	factof of	

2	with	resource	augmentation.

For	analysis:	just	let	the	algorithm	decide!

Cannot	be	better	then	optimal…



External	Memory	Model	(Aggarwal,	Vitter	1988)
Rules:

On	read	/	write	operation:
1. Check	if	line	is	in	cache.		If	so,	perform	operation	in	cache.
2. Else,	expel	a	line	from	cache	(write	it	back	to	memory).
3. Load	requested	line	in	cache.
4. Perform	operation	in	cache.

Cost:
Number	of	lines	read	from	or	written	to	memory.

Simplifications:
1. Only	one	level	of	cache.	(Ignores	L1,	L2,	etc.)
2. Only	charges	for	memory	access.		(All	other	operations	are	free!)
3. Ideal	caches.	(Can	store	any	line	anywhere	in	the	cache!)
4. Ideal	replacement.	(Ejects	the	line	that	will	be	not	used	for	the	longest	time!)

cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	M)



External	Memory	Model	(Aggarwal,	Vitter	1988)
When	is	it	useful?

Cache	=	L1/L2:
• Latency	gap:	10	cycles	vs.	300	cycles.
• Block	size:	64	B.
• At	best,	every	cache	hit	can	save	cycles:	15*290	

Cache	=	Main	Memory:
1. Latency	gap:	300	cycles	vs.	20,000,000
2. Block	size:	16	KB
3. At	best,	every	cache	hit	can	save	cycles:	16,000*20,000000	

cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	M)



Predicting	Performance

Example:	Scanning	data	(size	N)

1)	Linked	list
⇒ Classical	analysis:	O(N)
⇒ External	memory:	O(N)

2)	Array
⇒ Classical	analysis:	O(N)
⇒ External	memory:	O(N/B)

cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	M)



Predicting	Performance

Example:	Searching	data	(size	N)

1)	Linked	list
⇒ Classical	analysis:	O(N)
⇒ External	memory:	O(N)

2)	Red-black	tree
⇒ Classical	analysis:	O(log	N)
⇒ External	memory:	O(log	N)

3)	Array
⇒ Classical	analysis:	O(log	N)
⇒ External	memory:	O(log	(N/B))

cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	M)



Predicting	Performance

Binary	Search

0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z

B

binary-search(m)
• query(h)	è cost	=	1
• query(q)	è cost	=	1
• query(l)	è cost	=	1
• query(n)	è cost	=	0
• query(m)	è cost	=	0

in	cache

101 01

in	cachein	cache

Total	cost:
• N/B	blocks	total

• Binary	search	on	N/B	blocks.

O(log(N/B))



Predicting	Performance

Binary	Search

0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z

B in	cache

101 01

in	cachein	cache

Comparison:
• Red-black	tree:	log(N)

• Array	binary	search:	log(N/B)	=	log(N)	– log(B)

Small	improvement,	if	B	is	big!



Predicting	Performance

Binary	Search

0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z

B in	cache

101 01

in	cachein	cache

Comparison:
• Red-black	tree:	log(N)

• Array	binary	search:	log(N/B)	=	log(N)	– log(B)

• B-tree:	logB(N)	=	log(N)	/	log(B)

Small	improvement,	if	B	is	big!

Real	improvement,	even	if	B	is	small!



Predicting	Performance

Example:	Sorting	data	(size	N)

1)	QuickSort?		MergeSort?

2)	B-tree
⇒ Classical	analysis:	O(N	log	N)
⇒ External	memory:	O(N	logB N)

cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines
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Predicting	Performance

Example:	Sorting	data	(size	N)

1)	QuickSort?		MergeSort?

2)	B-tree
⇒ Classical	analysis:	O(N	log	N)
⇒ External	memory:	O(N	logB N)
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Predicting	Performance

Example:	Sorting	data	(size	N)

1)	QuickSort?		MergeSort?

2)	B-tree
⇒ Classical	analysis:	O(N	log	N)
⇒ External	memory:	O(N	logB N)

Optimal:

cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	M)

sort(N) = O

✓
N

B
logM

B

N

B

◆

= O

✓
N

B
logM

B

N

M

◆

logM
B

N

B
= logM

B

✓
N

M

M

B

◆
= logM

B

N

M
+ 1



Predicting	Performance

Example:	Sorting	data	(size	N)

Optimal:

Notes:
• Size	of	cache	(M)	matters.
• 3	standard	solutions

• External	MergeSort
• External	QuickSort
• BufferTree Sort

• One	“cache	oblivious”	solution
• FunnelSort

cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	M)

sort(N) = O

✓
N

B
logM

B

N

B

◆

= O

✓
N

B
logM

B

N

M

◆



Predicting	Performance

Example:	Graphs	(V	nodes,	E	edges)

1) Priority	Queue:	

2)	Unweighted	shortest	paths:

3)	Dijkstra’s:

4)	Unweighted	APSP:	
cache	line	/	block

memory	line	/	block

Cache

Memory	or	Disk

block	size	B

block	size	B

communication
bus

M/B
lines

(size	M)

O

✓
1

B
logM/B

V

B

◆

O

✓
V +

E

B
logM/B

E

B

◆

O

✓
V +

E

B
log

E

M

◆

O

✓
V E

B
logM

B

E

B

◆

For	<	65PB,	4000x	faster	than	O(VE).



Today’s	Plan

Searching	and	Sorting

1. B-trees
⇒ Algorithm
⇒ Amortized	analysis

2. Buffer	trees
⇒ Write-optimized	data	structures
⇒ Buffered	data	structures
⇒ Amortized	analysis

3. van	Emde Boas	Search	Tree
⇒ Cache-oblivious	algorithms
⇒ van	Emde Boas	memory	layout



B-trees

Basic	facts

• One	of	the	most	important	data	structures	out	there	today.		
(Variants	used	in	all	major	databases.)

• Very	fast.		(Not	just	asymptotic	analysis,	but	in	practice	nearly	
impossible	to	beat	a	well-implemented	B-tree.)

• Benefit	comes	both	from	good	cache	performance,	low	overhead,	
good	parallelization,	etc.



B-trees

Basic	facts

• One	of	the	most	important	data	structures	out	there	today.		
(Variants	used	in	all	major	databases.)

• Very	fast.		(Not	just	asymptotic	analysis,	but	in	practice	nearly	
impossible	to	beat	a	well-implemented	B-tree.)

• Benefit	comes	both	from	good	cache	performance,	low	overhead,	
good	parallelization,	etc.



(a,	b)-trees
Basics:
• Tree	structure.

• Satisfies	search	property.

• b	≥	2a
(e.g.,	a	=	B,	b	=	2B)

• All	keys	stored	in	leaves

• Internal	nodes	store	pivots	
to	guide	search.

p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1



(a,	b)-trees

Each	node	stores:
• parent
• set	of	pivots	p1,	p2,	…
• pointers	to	sub-trees	T1,	T2,	…

Search	property:
For		subtree	Tj:	

all	the	keys	in	Tj have	
values	 in	the	range
(pj-1,	pj]

p1							p2 p3			

≤	p1

>	p1
≤	p2

>	p2
≤	p3

>	p3



(a,	b)-trees

Each	node	stores:
• parent
• set	of	pivots	p1,	p2,	…
• pointers	to	sub-trees	T1,	T2,	…

Question:
How	should	a	node	store	its	
keys	and	sub-tree	pointers?

p1							p2 p3			

≤	p1

>	p1
≤	p2

>	p2
≤	p3

>	p3



(a,	b)-trees
Each	node	stores:
• parent
• set	of	pivots	p1,	p2,	…
• pointers	to	sub-trees	T1,	T2,	…

Question:
How	should	a	node	store	its	
keys	and	sub-tree	pointers?

Possible	answers:
1. In	this	model,	does	not	matter.
2. In	practice,	use	a	small	tree.
3. Can	use	a	recursive	B-tree,	

optimized	for	a	different	level	
cache!

p1							p2 p3			

≤	p1

>	p1
≤	p2

>	p2
≤	p3

>	p3



(a,	b)-trees
Basics:
• tree	structure
• satisfies	search	property
• b	≥	2a

(e.g.,	a	=	B,	b	=	2B)

Rules:
1. Root	has	≥	2	children.
2. Non-root	nodes	have	≥	a	

children.
3. All	nodes	have	≤	b	children.
4. All	leaves	have	the	same	

depth.
5. For	all	leaves:	a	≤	#keys	≤	b

p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1



Rules #1--3:
– Every non-leaf node has either:                            

2 or 3 or 4 children

4 children3 children2 children

Ex: (2,4) Trees

23

15 42

23   42

15 30

23  42  72

12 3052 50 84



Search property:

4 children3 children2 children

Ex: (2,4) Trees

23

15 42

23   42

15 30

23  42  72

12 3052 50 84



Rule 4: Every leaf has the same depth.
– Every path from root->leaf is the same length.

Ex: (2,4) Trees

6023   32

15 30

80  87  92

77 8238 90 95

42  73

65  7048



Ex: (2,4) Trees
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Ex: (2,4) Trees

6023   32

15 30

80  87  92

77 8238 90 95

42  73

65  7048

T1 T2 T3

p2p1



(a,	b)-trees

search(k):
v =	root
while	not	leaf(v):

if	k	≤	p1 then	v=T1
else	let	c	=	max(j	:	k	>	pj)

v	=	Tc+1

p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1



Ex: (2,4) Trees

6023   32

15 30
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search(82)



Ex: (2,4) Trees
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Ex: (2,4) Trees

6023   32

15 30

80  87  92

77 8238 90 95

42  73

65  7048

search(82)



(a,	b)-trees
Claim:
Search	works.

p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1



(a,	b)-trees
Claim:
An	(a,b)-tree	with	n	keys	

has	height: p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1

 loga

⇣n
a

⌘
+ 1



(a,	b)-trees
Claim:
An	(a,b)-tree	with	n	keys	

has	height:

Proof:
• At	most	(n/a) leaves.
• Every	node	except	the	root	

has	degree	at	least	a.
• So	a	node	at	height																		

has	at	least:

leaves.	
• So	the	children	of	the	root	

have	maximum	height:	

p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1

 loga

⇣n
a

⌘
+ 1

loga

⇣n
a

⌘

� aloga(n
a ) � n

a

loga

⇣n
a

⌘



(a,	b)-trees
Claim:
An	(a,b)-tree	with	n keys	

has	height:

Corollary:
If	a≥B,	then	an	(a,b)-tree	with	

n keys	has	height:

p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1

 loga

⇣n
a

⌘
+ 1

O(logB n)



(a,	b)-trees

insert(k):
1. Search	for	leaf	node	v containing	key	k
2. Add	key	k to	leaf	node	v.
3. If	node	v has	>	b keys:

• Split	node	v into	two.		
Each	piece	has	>	b/2	≥	a	keys.

• Call	new	nodes	x and	y.
• k =	max	element	in	x.		(If	v is	not	a	leaf,	remove	k	from	

node	v.)
• Recursively	insert	k into	parent(v).
• Update	parent/child	pointers	of	x,	y,	parent(v).



(2,4) Trees: Inserting

6023   32

15 30

80  87  92

77 8238 90 95

42  73

65  7048

insert(71)



(2,4) Trees: Inserting
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(2,4) Trees: Inserting
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(2,4) Trees: Inserting
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(2,4) Trees: Inserting
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(2,4) Trees: Inserting
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(2,4) Trees: Inserting

6023   32

15 30

80  87  92

77 8238 90 95

42  73

65  70  71  72 48

insert(72)

Too many (4) pivots…
Too many (5) children.



(2,4) Trees: Inserting

6023   32

15 30

80  87  92

77 8238 90

42  73
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48

insert(72)

Split the node in two.

71  72 



(2,4) Trees: Inserting

60  7023   32

15 30

80  87  92

77 8238 90

42  73

65 70
48

insert(72)

Insert into parent.

71  72 



(2,4) Trees: Inserting

60  7023   32

15 30

80  87  92

77 8238 90

42  73

48

insert(72)

Recurse (if parent is full).

71  72 65 70



(2,4) Trees: Inserting

60  7023   32

15 30

80  87  92

77 8238 90
65

48

insert(72)

What if the root is full?

71  72 

34  73  79



(2,4) Trees: Inserting

60  7023   32

15 30

80  87  92

77 8238 90
65

48

insert(72)

Split and create a new root.

71  72 

73  7934

47



Key claim: preserves all properties:
1. Every node has [a,b] children.
2. Search tree property.
3. All leaves have the same depth.

(2,4) Trees



Lazy option: do splitting when needed.
Proactive option: split in advance.

One pass insertion:
– If root contains b keys, split root and create new 

root.
– While searching for the leaf, split any node that is 

full (i.e., contains b keys).
– On arrival at leaf, there is enough space in the leaf 

to add the key!

(a,b)-Trees



(a,	b)-trees

delete(k):
1. Search	for	leaf	node	v containing	key	k
2. Delete	key	k from	leaf	node	v.
3. If	v is	root	and	has	only	one	child,	delete	root.
4. If	|v|<	a:

• Let	u be	a	sibling	of	v.	
• Case	1:	|u|	+	|v|	>	b-1

Divide	keys	evenly	between	u and	v.
Each	gets	at	least	b/2	≥	a.

• Case	2:	|u|	+	|v|	≤	b-1
Merge	u and	v.
Recursively	delete	pivot	from	parent.
Update	parent/child	pointers.



B-tree
Fix	a	and	b:
Set	a	=	B,	b	=	2B.

Performance:
• Reading/writing	each	node	of	

the	tree	takes	O(1) block	
transfers.

• Insert/delete	requires	
reading/writing	O(1) nodes	at	
each	level	of	the	tree.

• Thus	the	total	cost	of	each	
read/write	operation	is:	

p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1

O(logB n)



B-tree
Fix	a	and	b:
Set	a	=	B,	b	=	2B.

Some	numbers:
• Assume	your	disk	has	16	KB	

sized	blocks.	

• Assume	you	have	10	TB	
database.

• Then	your	B-tree	has	3	levels.

• Since	the	root	and	first	level	
are	always	in	cache	(e.g.,	256	
MB),	each	operation	requires	
1	cache	miss.

p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1



B-tree
Fix	a	and	b:
Set	a	=	B,	b	=	2B.

Some	numbers:
• Assume	your	disk	has	16	KB	

sized	blocks.	

• Assume	you	have	1000	TB	
database.

• Then	your	B-tree	has	4	levels.

• Since	the	root	and	first	level	
are	always	in	cache	(e.g.,	256	
MB),	each	operation	requires	
2	cache	miss.

p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1



Amortized	Analysis
Fix	a	and	b:
Set	a	=	B,	b	=	5B.

How	often	does	a	node		
split	or	merge?

p1				p2			p3			… pa-1			pa

p1				p2			p3			… pb-1			pb

About	to	merge:

About	to	split:



Amortized	Analysis
Fix	a	and	b:
Set	a	=	B,	b	=	5B.

Claim:
After	each	split,	a	node	
has:

≥	2B-1	keys
≤	4B	keys	

Because:
• b/2	=	(5/2)B	>	2B
• b/2	=	(5/2)B	<	5B

p1				p2			p3			… pa-1			pa

p1				p2			p3			… pb-1			pb

About	to	merge:

About	to	split:



Amortized	Analysis
Fix	a	and	b:
Set	a	=	B,	b	=	5B.

Claim:
After	each	share/merge,	a	
node	has:

≥	2B-1	keys
≤	4B	keys	

Modify	share/merge	rule:
• If	|u|	+	|v|	>	4B,	share.
• If	|u|	+	|v|	≤	4B,	merge.	

p1				p2			p3			… pa-1			pa

p1				p2			p3			… pb-1			pb

About	to	merge:

About	to	split:

(B	+	5B)/2	<	4B	

(B-1	+	B)	≥ 2B-1



Amortized	Analysis
Fix	a	and	b:
Set	a	=	B,	b	=	5B.

Claim:
After	each	split/share/merge,	
a	node	has:

≥	2B-1	keys
≤	4B	keys	

p1				p2			p3			… pa-1			pa

p1				p2			p3			… pb-1			pb

About	to	merge:

About	to	split:



Amortized	Analysis
Fix	a	and	b:
Set	a	=	B,	b	=	5B.

Claim:
After	each	split/share/merge,	
a	node	has:

≥	2B-1	keys
≤	4B	keys	

How	long	until	next	
split/share/merge?

p1				p2			p3			… pa-1			pa

p1				p2			p3			… pb-1			pb

About	to	merge:

About	to	split:



Amortized	Analysis
Fix	a	and	b:
Set	a	=	B,	b	=	5B.

Claim:
After	each	split/share/merge,	
a	node	has:

≥	2B-1	keys
≤	4B	keys	

How	long	until	next	
split/share/merge?
At	least	B-1 more	operations.

p1				p2			p3			… pa-1			pa

p1				p2			p3			… pb-1			pb

About	to	merge:

About	to	split:



Amortized	Analysis
Fix	a	and	b:
Set	a	=	B,	b	=	5B.

Claim:
After	each	split/share/merge,	
at	least	B-1 more	operations	
before	the	next	split/share	
merge.

Claim:
The	amortized	cost	of	
split/share/merge	is	O(1/B)
per	node,	and	O((1/B)logB(B))	
per	operation.

p1				p2			p3			… pa-1			pa

p1				p2			p3			… pb-1			pb

About	to	merge:

About	to	split:



B-tree
What	changes	if	each	
node	stores	a	parent	
pointer? p1

p1p1				p2

p1				p2 p1				p2 p1				p2 p1



B-tree
What	changes	if	each	node	
stores	a	parent	pointer?

On	every	split,	need	to	update	
the	parent	pointer	for	θ(B)
children!	

Very	expensive!

Insert	may	cost	θ(B	logB n) if	
every	level	needs	to	be	split!

p1

p1				p2			p3			p4 p5

p1				p2 p1				p2 p1				p2 p1



B-tree
What	changes	if	each	node	
stores	a	parent	pointer?

On	every	split,	need	to	update	
the	parent	pointer	for	θ(B)
children!	

NOT	very	expensive	(amortized)!

Splitting/merging	may	cost						
θ((1/B)B	logB n) amortized,	if	
every	level	needs	to	be	split!

p1

p1				p2			p3			p4 p5

p1				p2 p1				p2 p1				p2 p1

Same	for	merging… Also	helps	with	concurrency	and	locking…



Today’s	Plan

Searching	and	Sorting

1. B-trees
⇒ Algorithm
⇒ Amortized	analysis

2. Buffer	trees
⇒ Write-optimized	data	structures
⇒ Buffered	data	structures
⇒ Amortized	analysis

3. van	Emde Boas	Search	Tree
⇒ Cache-oblivious	algorithms
⇒ van	Emde Boas	memory	layout



Cost	Trade-Offs
Can	you	do	better	than	a	B-tree?
⇒ Is																					optimal	or	can	you	do	better?O(logB n)



Cost	Trade-Offs

Can	you	do	better	than	a	B-tree?
⇒ Is																					optimal	or	can	you	do	better?

For	searching,																				is	optimal.
(in	the	comparison-based	model)

Exercise:	prove	it.

O(logB n)

O(logB n)



Cost	Trade-Offs

Can	you	do	better	than	a	B-tree?
⇒ Is																					optimal	or	can	you	do	better?

For	searching,																				is	optimal.
(in	the	comparison-based	model)

For	inserting/deleting,	it	is	NOT optimal.
(Example:	linked	list	has	O(1)	inserts.)

O(logB n)

O(logB n)



Cost	Trade-Offs

Goal:
A	external	memory	data	structure	with	fast searches,	and	
super-fast	insertions/deletions.

“Write-optimized	data	structure.”



Cost	Trade-Offs

Why?

1) Some	applications	have	more	update	operations	than	query	
operations	(e.g.,	logs).

2) Some	applications	have	*a	lot*	of	update	operations,	so	it	pays	to	
make	them	faster.

3) Some	applications	have	expensive	updates,	e.g.,	a	multi-index	
database.



Cost	Trade-Offs

Multi-index	database:

Database	may	have	more	than	one	index,	e.g.:
• Employee	database:	name,	age,	salary,	position

Advantage:	search	by	any	index	in	O(logBn) time.

Disadvantage:	cost	of	an	update?



Cost	Trade-Offs

Multi-index	database:

Database	may	have	more	than	one	index,	e.g.:
• Employee	database:	name,	age,	salary,	position

Advantage:	search	by	any	index	in	O(logBn) time.

Disadvantage:	cost	of	an	update:	O(klogBn) time	for	k indices.

Ideal	trade-off:	update	should	be	k-times	faster	than	searches!



Streaming	a	Graph

Data	arrives	in	a	stream:	S	=	s1,	s2,	…,	sT

Each	sj is	an	edge	in	the	graph.
⇒ Each	edge	shows	up	exactly	once.
⇒ Edges	show	up	in	an	arbitrary	(worst-case)	order.

Example:
S	=	(A,B),	(C,D),	(F,E),	(C,E),	(E,D),	(A,F),	(B,F)

Goal:	minimize	space	
⇒ Sublinear	space	is	often	impossible.
⇒ Best	possible:	O(n	log	n)	space.
⇒ Focus	on	dense	graphs.

A
B C

D

EF



Buffer	Tree
Recipe:

1) Build	a	(2,4)-tree.

p1				p2		



Buffer	Tree
Recipe:

1) Build	a	(2,4)-tree.

2) Add	a	buffer	of	size	2B to	
every	node	in	the	tree. p2p1

buffer



Buffer	Tree
Recipe:

1) Build	a	(2,4)-tree.

2) Add	a	buffer	of	size	2B to	
every	node	in	the	tree.

3) For	each	leaf,	ensure	it	has	
≥	B keys	and	≤	5B keys

p2p1

buffer

k1,	k2,	k3,	k4,	k5,	k6,	k7



Buffer	Tree
insert(key):

1) Add	ins[key] to	root	buffer.

2) Stop.

Cost:	O(1)
p2p1

buffer

k1,	k2,	k3,	k4,	k5,	k6,	k7



Buffer	Tree
insert(key):

1) Add	ins[key] to	root	buffer.

2) Clean	buffer:	
• If	del[key] is	in	buffer,	

remove	it.
• Remove	duplicate	

ins[key] operations.

3) Stop.

Cost:	O(1)

p2p1

buffer

k1,	k2,	k3,	k4,	k5,	k6,	k7



Buffer	Tree
insert(key):

1) Add	ins[key] to	root	buffer.

2) Clean	buffer:	
• If	del[key] is	in	buffer,	

remove	it.
• Remove	duplicate	

ins[key] operations.

3) If	|buffer|	>	B,	then	flush	
the	buffer.	

Cost:	O(1)	+	buffer	flush

p2p1

buffer

k1,	k2,	k3,	k4,	k5,	k6,	k7



Buffer	Tree
delete(key):

1) Add	del[key] to	root	buffer.

2) Clean	buffer:	
• If	ins[key] is	in	buffer,	

remove	it	and	del[key].
• Remove	duplicate	

del[key] operations.

3) If	|buffer|	>	B,	then	flush	
the	buffer.	

Cost:	O(1)	+	buffer	flush

p2p1

buffer

k1,	k2,	k3,	k4,	k5,	k6,	k7



Buffer	Tree
search(key):

1) Perform	a	tree	walk	from	
root	to	leaf.

2) At	every	node	on	the	walk,	
search	the	buffer	for	the	
key.

3) When	you	get	to	a	leaf,	
search	the	leaf	for	the	key.

Cost?

p2p1

buffer

k1,	k2,	k3,	k4,	k5,	k6,	k7



Buffer	Tree
search(key):

1) Perform	a	tree	walk	from	
root	to	leaf.

2) At	every	node	on	the	walk,	
search	the	buffer	for	the	
key.

3) When	you	get	to	a	leaf,	
search	the	leaf	for	the	key.

Cost:

p2p1

buffer

k1,	k2,	k3,	k4,	k5,	k6,	k7

O(log n)

Notice	branching	factor:	2,	not	B.



Buffer	Tree
flush(node	v):

1) Sort	the	buffer.

2) Move	every	operation	to	its	
proper	child.

3) Clean	child	buffer	(e.g.,	
remove	duplicates).

4) Recursively	flush	child	
buffer,	if	necessary.

p2p1

buffer

buffer



buffer

Buffer	Tree
flush(node	v):

1) Sort	the	buffer.

2) Move	every	operation	to	its	
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Buffer	Tree
One	special	case:

If	child	buffer	gets	full,	then	
pause,	flush	it,	and	then	
continue	flushing	the	parent.

• Each	flush	is	size	at	most	2B.

• So	only	need	to	pause	for	
flushing	each	child	once.
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Buffer	Tree
At	a	leaf

When	flushing	to	a	leaf:

• A	leaf	has	no	buffer.
• All	keys	stored	at	leaves.
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Buffer	Tree
At	a	leaf

When	flushing	to	a	leaf:

• A	leaf	has	no	buffer.
• All	keys	stored	at	leaves.
• First	perform	all	delete	

operations	at	leaf.
• Then	perform	inserts,	and	

do	splits	as	needed.
• At	end,	do	merges.

k1,	k3,	k4,	k6,	k9 k11,	k12,	k13	

merging	buffers	is	easy… but	can
result	in	flush	operations



Buffer	Tree
Amortized	Analysis

Each	node	has	a	bank	account.

Every	operation:
• If	root-to-leaf	path	for	a	key	

touches	a	node,	it	adds	
θ(1/B)	dollars	to	the	bank	
account	for	that	node.
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Buffer	Tree
Amortized	Analysis

Each	node	has	a	bank	account.

Every	operation:
• If	root-to-leaf	path	for	a	key	

touches	a	node,	it	adds	
θ(1/B)	dollars	to	the	bank	
account	for	that	node.

Cost: O(1) +	buffer	flush	costs

è Pay	for	buffer	flush	from					
bank	account.
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Buffer	Tree
Amortized	Analysis

Cost	of	flush	at	node	v:
1. Load	the	buffer	and	

pointers:	O(1)

p2p1

buffer

$$



Buffer	Tree
Amortized	Analysis

Cost	of	flush	at	node	v:
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Buffer	Tree
Amortized	Analysis

Cost	of	flush	at	node	v:
1. Load	the	buffer	and	

pointers:	O(1)
2. Sort	the	buffer:	free.
3. Partition	the	keys	among	

the	children:	free.
4. Load	the	buffers	of	the	child	

nodes:	O(1)
5. Move	keys	to	child	buffers:	

free.
6. Recursive	flushing	charged	

to	child	nodes.
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Each	flush	costs	O(1).

A	flush	only	occurs	when	buffer	
contains	at	least	B items.

è Each	item	contributes	θ(1/B) to	
the	bank	account	is	enough!



Buffer	Tree
Amortized	Analysis

Cost	of	splitting/merging	
buffers:

• Each	split/merge	costs	O(1).
• By	previous	analysis	of	

(a,b)-tree,	a	split/merge	
only	occurs	(at	most)	once	
every	B-1 operations.

• Thus	each	operation	is	
charge	O(1/B) per	
split/merge.

p2p1

buffer

$$

Each	split/merge	costs	O(1).

A	split/merge	only	occurs	when	at	
least	B-1 operations	occur.

è Each	item	contributes	θ(1/B) to	
the	bank	account	is	enough!



Buffer	Tree
Amortized	Analysis

Each	node	has	a	bank	account.

Every	operation:
• If	root-to-leaf	path	for	a	key	

touches	a	node,	it	adds	
θ(1/B)	dollars	to	the	bank	
account	for	that	node.

Conclusion:
Cost	of	insert/delete	is:

p2p1

buffer

$$
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Buffer	Tree
Summary

Cost	of	operations:

insert/delete:

search:
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Buffer	Tree
Better	trade-off:

What	if	degree	of	each	node	is	
increased	to:

insert/delete: ??

search:	??
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Buffer	Tree
Better	trade-off:

What	if	degree	of	each	node	is	
increased	to:

What	if	degree	of	each	node	is	
increased	to:

insert/delete: ??

search:	??

p2p1

buffer
p
B

B✏

(B✏, 2B✏)-tree



Today’s	Plan

Searching	and	Sorting

1. B-trees
⇒ Algorithm
⇒ Amortized	analysis

2. Buffer	trees
⇒ Write-optimized	data	structures
⇒ Buffered	data	structures
⇒ Amortized	analysis

3. van	Emde Boas	Search	Tree
⇒ Cache-oblivious	algorithms
⇒ van	Emde Boas	memory	layout



Cache	Oblivious	Search	Trees
What	if	you	do	not	know	the	value	of	B or	M?

Cache	size	differ	on	every	machine,	on	every	architecture,	and	at
different	levels	of	the	caching	hierarchy.		Without	knowing	the	
specific	hardware,	how	do	you	optimize	properly?



Cache	Oblivious	Search	Trees

Idea:

Design	an	algorithm	that	does	not	know	B	or	M.

Analyze	the	algorithm	in	the	external	memory	model	
(where	B	and	M	are	known).



Cache	Oblivious	Search	Trees

Example:	an	array

An	algorithm	for	scanning	an	array	from	beginning	to	
end	does	not	depend	on	B	or	M.

The	running	time	for	an	algorithm	to	scan	an	array	of	
size	n	is	O(n/B).



Cache	Oblivious	Search	Trees

Today:

Static cache-oblivious	search	tree.

Goal:	build	a	tree	that	supports	efficient	search	operations.

(We	will	not	support	insert	and	delete.	See	research	papers.)
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Search	Operation
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van	Emde Boas	Layout:	Analysis

Start	with	the	balanced	binary	tree.
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van	Emde Boas	Layout:	Analysis

Run	the	recursive	decomposition
until	each	subtree	is	of	size:

>	√B
<	B

Each	subtree	is	stored
in	O(1) blocks.

Each	subtree	is	height
at	least	(1/2)log(B).

Any	root-to-leaf
path	crosses	at	most
2log(n)/log(B)	
subtrees.	

Total	cost	of	a	search	operation:

O

✓
log n

logB

◆
= O(logB n)



Today’s	Plan

Searching	and	Sorting

1. B-trees
⇒ Algorithm
⇒ Amortized	analysis

2. Buffer	trees
⇒ Write-optimized	data	structures
⇒ Buffered	data	structures
⇒ Amortized	analysis

3. van	Emde Boas	Search	Tree
⇒ Cache-oblivious	algorithms
⇒ van	Emde Boas	memory	layout



Buffer	tree:
What	if	degree	of	each	node	is	
increased	to:

What	if	degree	of	each	node	is	
increased	to:

Sorting:
Design	a	Buffer	Tree	that	is	good	for	
sorting.		(Hint:	you	can	make	the	
degree	bigger,	the	buffer	bigger,	
and/or	the	leaves	bigger.)

Goal:

Questions
More	sorting:
Design	an	external	memory	
MergeSort algorithm.

(Hint:	you	need	to	merge	more	
efficiently.)

(Hint	2:	you	will	need	to	do	a	
multiway	merge.)

Goal:
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