Algorithms at Scale (Week 7)

Puzzle of the Day:

100 prisoners. Every so often, one is chosen at random to enter a room with a light bulb. You can turn the light bulb on or off.

- WIN if one prisoner announces correctly that all have visited the room.
- LOSE if announcement is incorrect.

What if, initially, the state of the light is unknown, either on or off?

Summary

Last Week: Clustering

k-median clustering LP approximation algorithm Streaming Other clustering problems

Today: Caching

External memory model

 How to predict the performance of algorithms?

B-trees

• Efficient searching

Write-optimized data structures

• Buffer trees

Cache-oblivious algorithms

van Emde Boas memory layout

Summary

Last Week: Clustering

k-median clustering LP approximation algorithm Streaming Other clustering problems

Today: Caching

External memory model

 How to predict the performance of algorithms?

B-trees

• Efficient searching

Write-optimized data structures

• Buffer trees

Cache-oblivious algorithms

van Emde Boas memory layout

Four basic topics

1) Dimensionality reduction (i.e., sampling algorithms)

2) Streaming data analysis

3) Cache efficient search structures (e.g., log-structured merge trees, COLA)

4) Algorithms for the MPC / k-server model.

Four basic topics

1) Dimensionality reduction (i.e., sampling algorithms)

2) Streaming data analysis

3) Cache efficient search structures (e.g., log-structured merge trees, COLA)

4) Algorithms for the MPC / k-server model.

Or choose your own....

Three parts:

1) Explain:

Read research paper or other information on the topic, and write an explanatory paper that explains

2) Extend:

Implement the data structures described and run experiments, or design the algorithm that is requested.

3) Presentation:

Give a presentation on the topic.

Record and submit your presentation.

6 (or so) will be chosen to present in class in Week 13.

This week:

1) Form a team of two.

Choose a partner with a shared interest.

I'll put up a spreadsheet to help do matching.

2) Choose a topic.

I'll post the four topics, along with some specific questions to answer.

3) Do background reading.

Find key material and begin to read it.

To submit: team, topic, summary of background reading.

Summary

Last Week: Clustering

k-median clustering LP approximation algorithm Streaming Other clustering problems

Today: Caching

External memory model

 How to predict the performance of algorithms?

B-trees

• Efficient searching

Write-optimized data structures

• Buffer trees

Cache-oblivious algorithms

van Emde Boas memory layout

Why do we analyze algorithms?

1. To ensure that it does the right thing (i.e., *correctness*).

2. To predict the *performance* (or determine which is fastest).

Example: 100 TB of data

1) Store data sorted in an array

- \Rightarrow Scan all the data: O(n)
- \Rightarrow (Binary) search: O(log n)

2) Store data in a linked list

- \Rightarrow Scan all the data: O(n)
- \Rightarrow Search: O(n)

3) Store data in a red-black tree

- ⇒ Scan all the data: O(n)
- \Rightarrow Search: O(log n)

1) Store data sorted in an array

- \Rightarrow Scan all the data: O(n)
- ⇒ (Binary) search: O(log n)

2) Store data in a linked list

- \Rightarrow Scan all the data: O(n)
- \Rightarrow Search: O(n)

3) Store data in a red-black tree

- \Rightarrow Scan all the data: O(n) \leftarrow
- \Rightarrow Search: O(log n)

Same performance!

Example: 100 TB of data

1) Store data sorted in an array

- \Rightarrow Scan all the data: O(n)
- ⇒ (Binary) search: O(log n) ←

2) Store data in a linked list

- \Rightarrow Scan all the data: O(n)
- \Rightarrow Search: O(n)

3) Store data in a red-black tree

- \Rightarrow Scan all the data: O(n)
- \Rightarrow Search: O(log n) \triangleleft

Same performance!

Example: 100 TB of data

1) Store data sorted in an array

- \Rightarrow Scan all the data: O(n)
- \Rightarrow (Binary) search: O(log n)

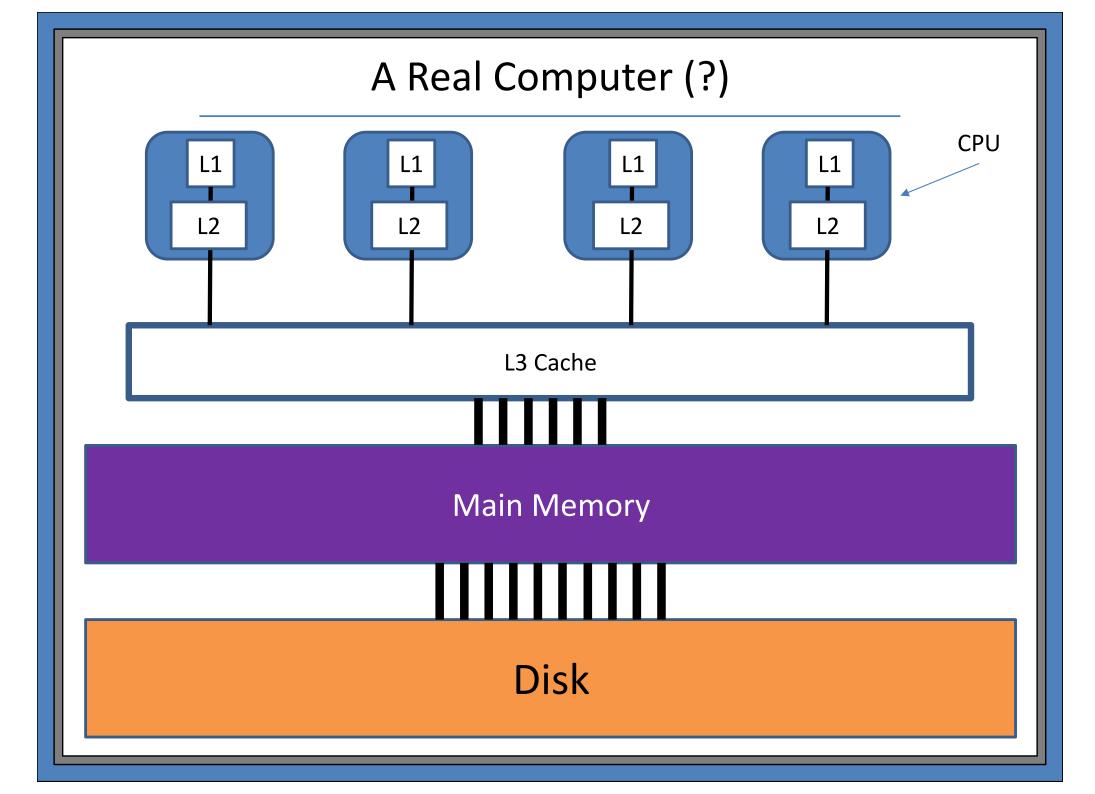
2) Store data in a linked list

- \Rightarrow Scan all the data: O(n)
- ⇒ Search: O(n)

3) Store data in a red-black tree

- \Rightarrow Scan all the data: O(n)
- \Rightarrow Search: O(log n)

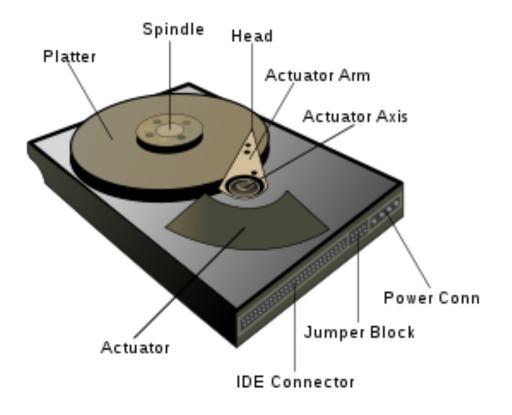
Analysis is not predicting performance very well!



Disks

Where is most data stored? Hard disk!

- Magnetic
- Mechanical
- Slow (6000rpm = 10ms)
- Two step access: 1. seek *(find right track)* 2. read track

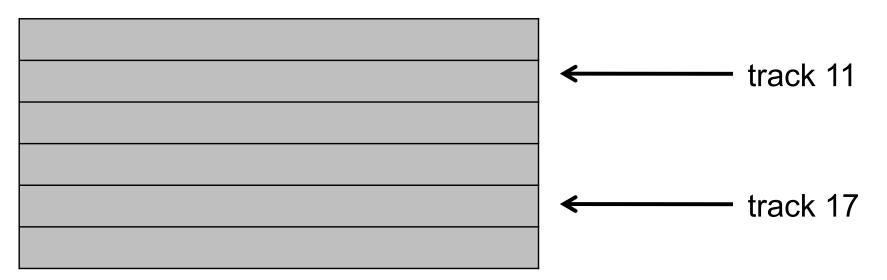


Disks

Two step access:

- 1. seek (find right track)
- 2. read track

In practice: Cache entire track

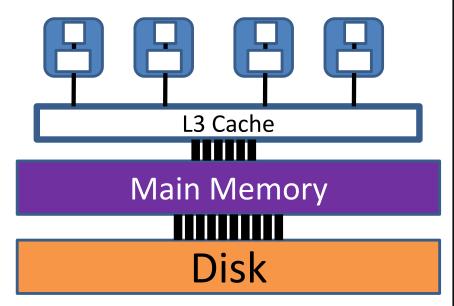


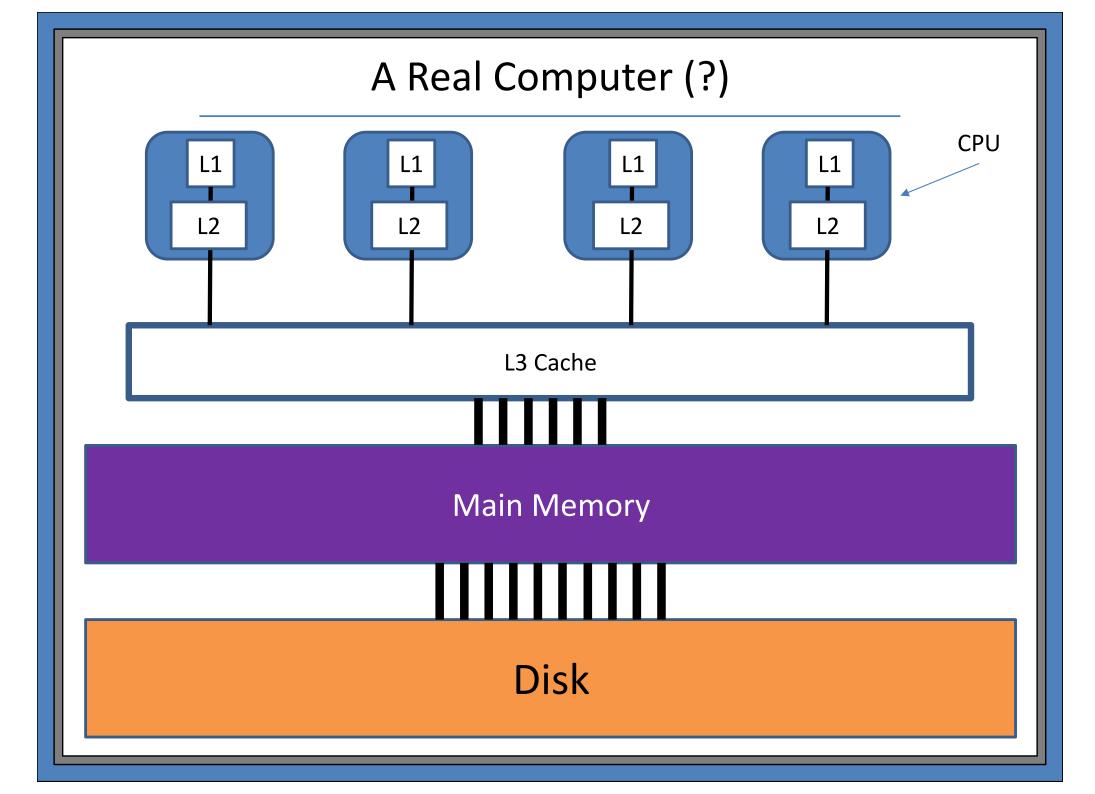
Haswell Architecture (2-18 cores)

Memory Type	size	line size	clock cycles
L1 cache	64 KB	64 B	~4
L2 cache	256 KB	64 B	~10
L3 cache	2-40 MB	64 B	40-74
L4 (optional)	128 MB		
Main Memory	< 128 GB	16 KB	~200-350
SSD Disk	BIG	Variable (e.g., 16KB)	~20,000
Disk	BIGGER	Variable (e.g., 16KB)	~20,000,000

Notes:

- Several other "caches" e.g., TLB, microop cache, instruction cache, etc.
- L1/L2 caches are per core.
- L3/L4 cache are shared per socket.
- Main memory shared cross socket.



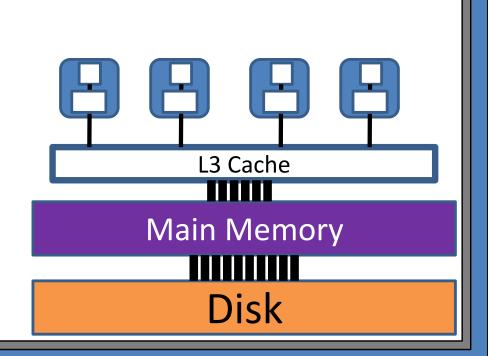


Haswell Architecture

A simple example calculation:

What fraction of operations "hit" each cache?

- \Rightarrow 90% L1 hit rate (4 cycles)
- \Rightarrow 8% L2 hit rate (10 cycles)
- ⇒ 2% main memory (300 cycles)



Just an example..

Haswell Architecture

What fraction of operations "hit" each cache?

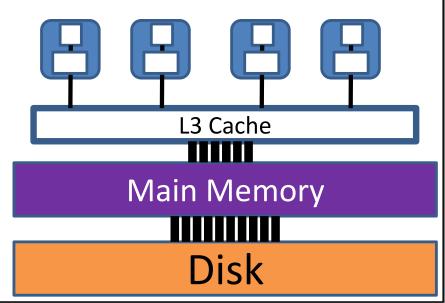
- \Rightarrow 90% L1 hit rate (4 cycles)
- ⇒ 2% main memory (300 cycles)

What fraction of time for each cache?

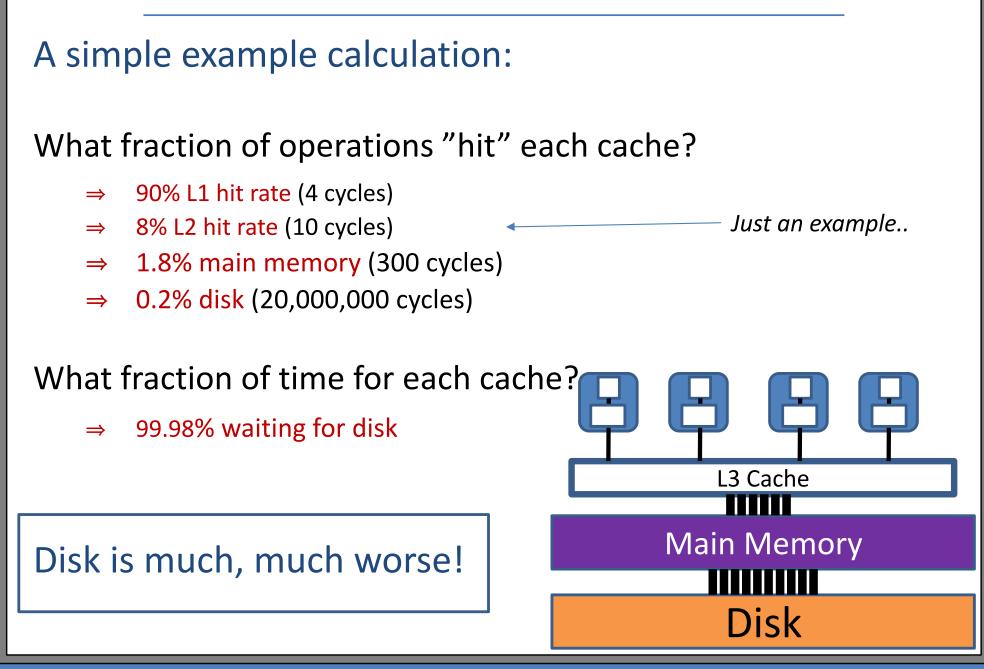
- \Rightarrow 35% waiting for L1
- \Rightarrow 8% waiting for L2
- ⇒ 57% waiting for main memory

Conclusion:

98% cache hit →57% waiting on main memory



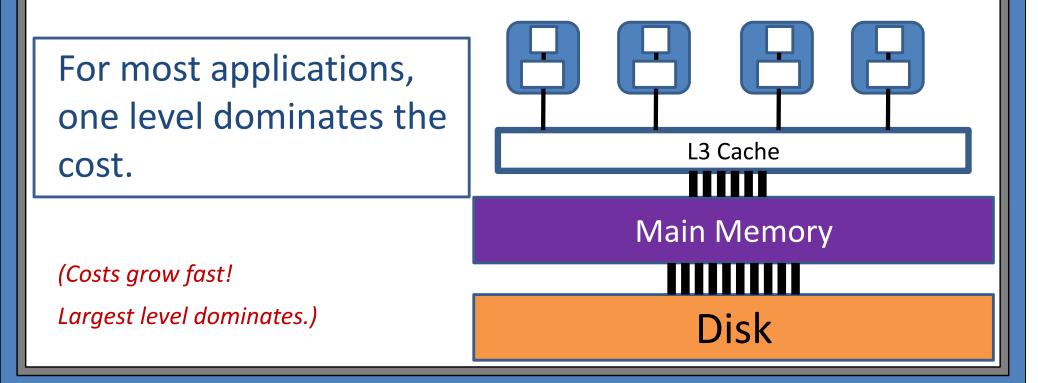
Haswell Architecture



Where is the bottleneck?

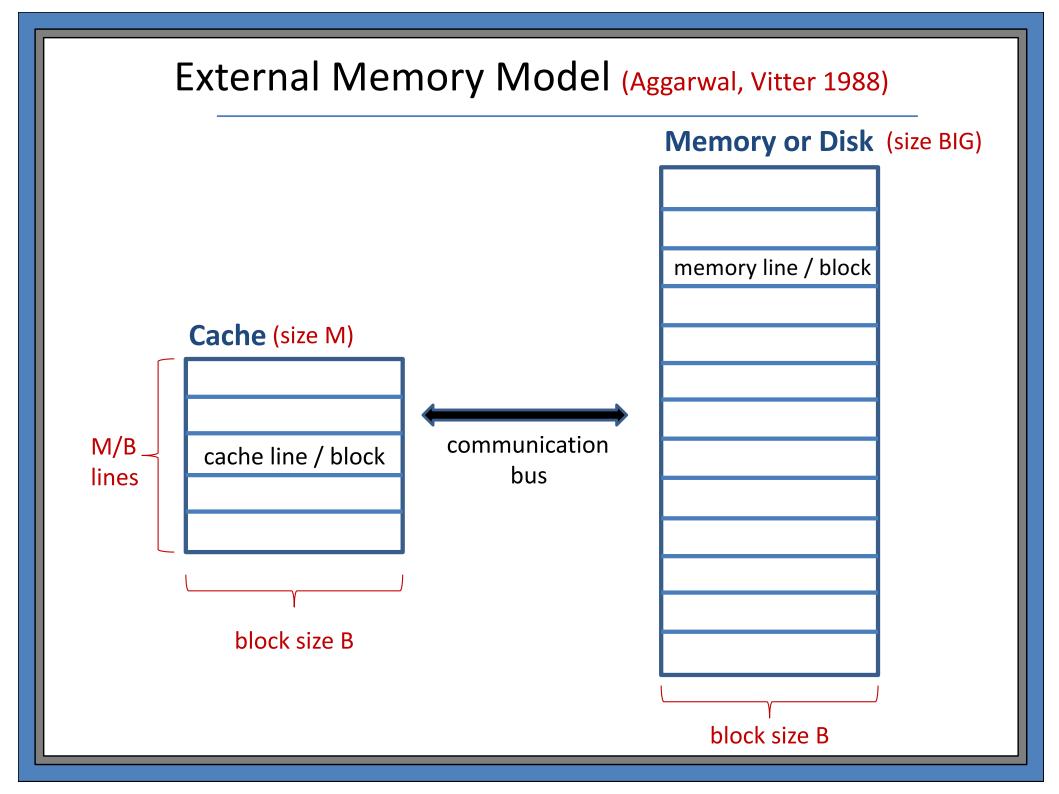
The bottleneck depends on the application:

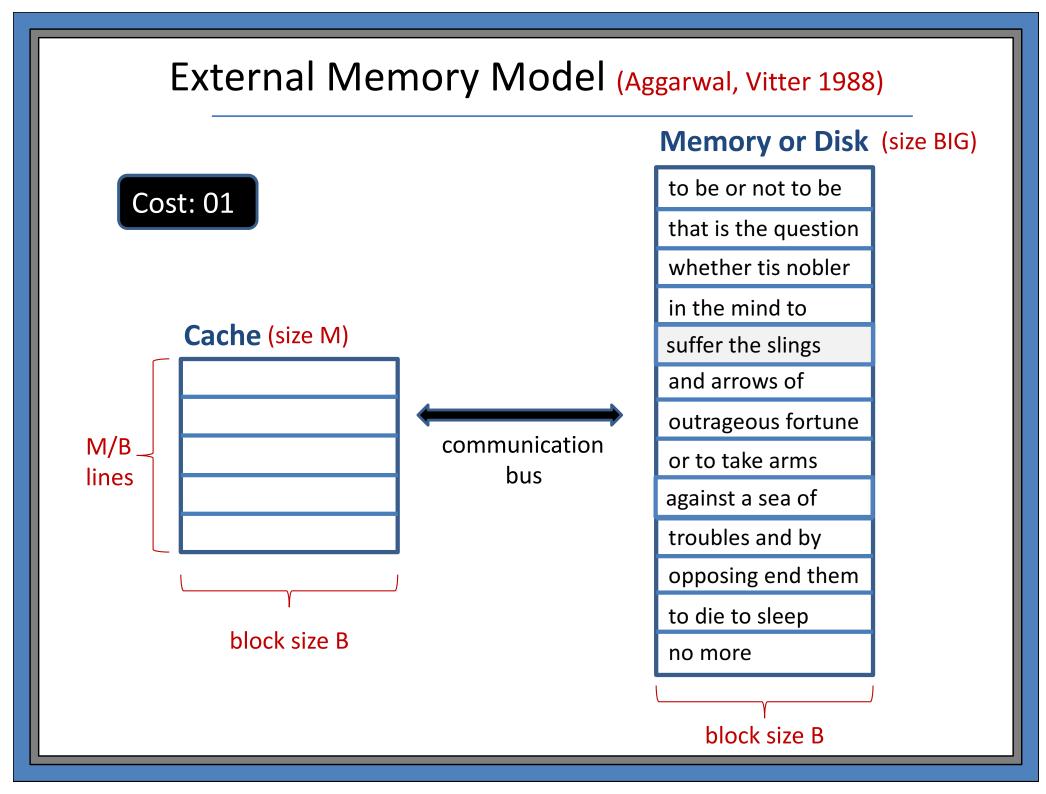
- Small working set data lives in L1/L2 cache → fast.
- Medium working set data lives in main memory
 → bottleneck is memory latency.
- Big data lives on disk
 → bottleneck is disk latency / bandwidth.

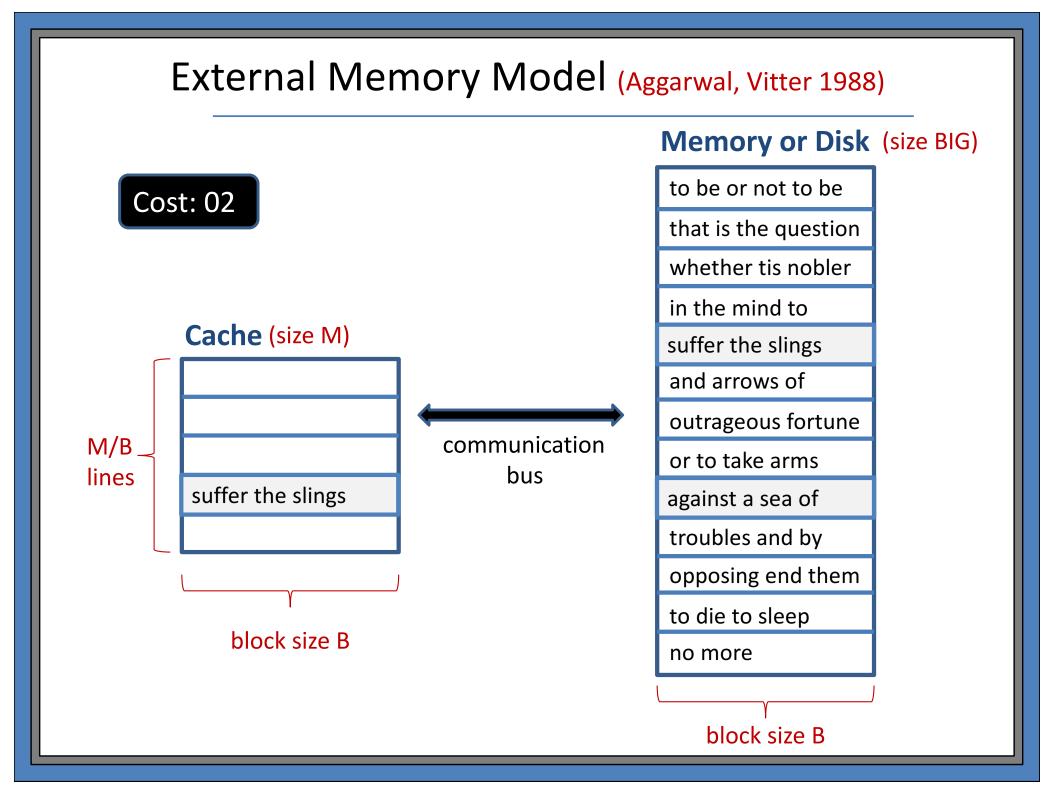


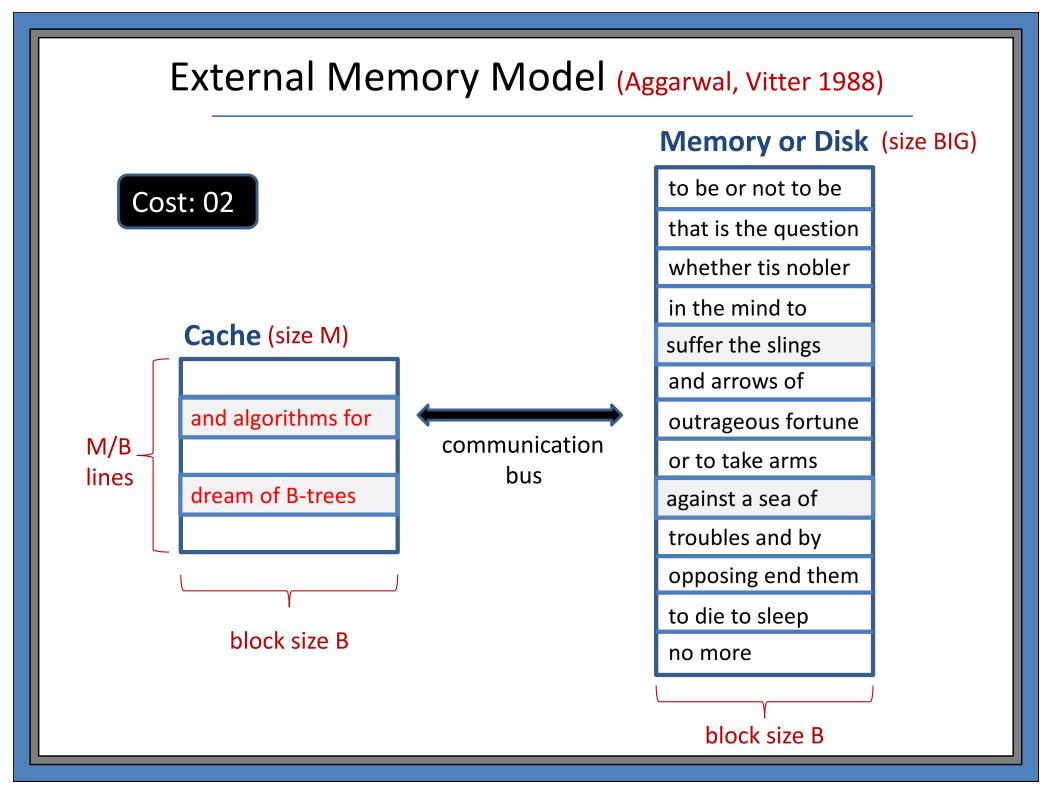
Goal:

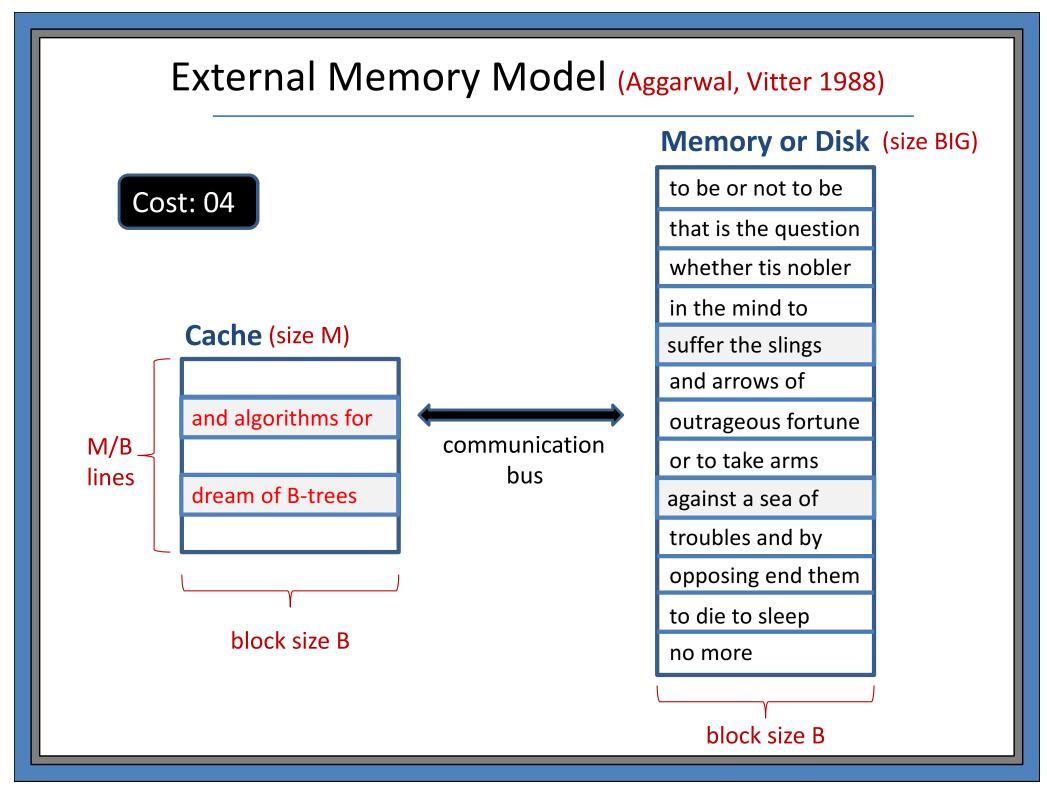
- Simple model (i.e., *tractable*)
- Sufficiently accurate model (i.e., *useful*)











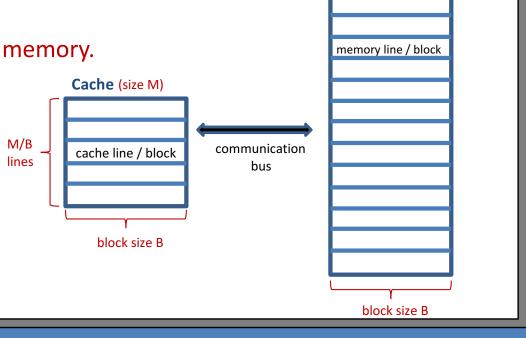
Rules:

On read / write operation:

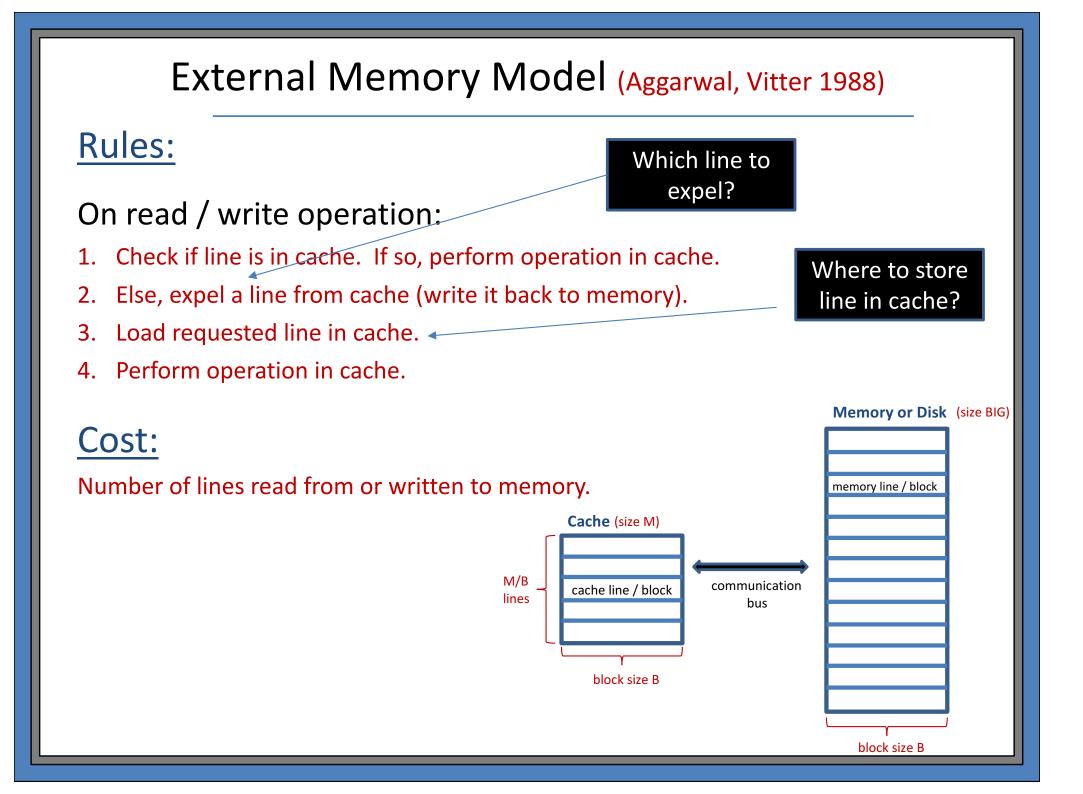
- 1. Check if line is in cache. If so, perform operation in cache.
- 2. Else, expel a line from cache (write it back to memory).
- 3. Load requested line in cache.
- 4. Perform operation in cache.

Cost:

Number of lines read from or written to memory.



Memory or Disk (size BIG)



Rules:

On read / write operation:

- 1. Check if line is in cache. If so, perform operation in cache.
- 2. Else, expel a line from cache (write it back to memory).
- 3. Load requested line in cache.
- 4. Perform operation in cache.

Simplifications:

- 1. Only one level of cache. (Ignores L1, L2, etc.)
- 2. Only charges for memory access. (All other operations are free!)
- 3. Ideal caches. (Can store any line anywhere in the cache!)
- 4. Ideal replacement. (Ejects the line that will be not used for the longest time!)

Rules:

On read / write operation:

- 1. Check if line is in cache. If so, perform oper
- 2. Else, expel a line from cache (write it back to
- 3. Load requested line in cache.
- 4. Perform operation in cache.

Simplifications:

- 1. Only one level of cache. (Ignores L1, L2, etc.)
- 2. Only charges for memory access. (All other operations are free!)
- 3. Ideal caches. (Can store any line anywhere in the cache!)
- 4. Ideal replacement. (Ejects the line that will be not used for the longest time!)

Three reasons:

- Works pretty well in practice.
- Simplifies analysis.
- One level usually dominates.

Rules:

On read / write operation:

- 1. Check if line is in cache. If so, perform operation in cache.
- 2. Else, expel a line from cache (write it back to m
- 3. Load requested line in cache.
- 4. Perform operation in cache.

Simplifications:

- 1. Only one level of cache. (Ignores L1, L2, etc.)
- 2. Only charges for memory access. (All other operations are free!)
- 3. Ideal caches. (Can store any line anywhere in the cache!)
- 4. Ideal replacement. (Ejects the line that will be not used for the longest time!)

Good assumption?

- Usually, memory access dominates costs.
- Not true for compute-limited problems (e.g., TSP).

Rules:

On read / write operation:

1. Check		eration in cache.
2. Else, e	Real caches?	to memory).
3. Load	• E.g., 8-way set associated	
4. Perfo	 Can simulate, lose only a constant factor (with 	
	resource augmentation).	
Simplifi	Cations.	

- 1. Only one level of cache. (Ignores L1, L2, etc.)
- 2. Only charges for memory access. (All other operations are free!)
- 3. Ideal caches. (Can store any line anywhere in the cache!)
- 4. Ideal replacement. (Ejects the line that will be not used for the longest time!)

Rules:

On read / write oper

- 1. Check if line is in cache.
- 2. Else, expel a line from c
- 3. Load requested line in d
- 4. Perform operation in cache.

Simplifications:

- 1. Only one level of cache. (Ignores L1, L2, etc.)
- 2. Only charges for memory access. (All other operations are free!)
- 3. Ideal caches. (Can store any line anywhere in the cache!)
- 4. Ideal replacement. (Ejects the line that will be not used for the longest time!)

For analysis: just let the algorithm decide!

Cannot be better then optimal...

Replacement strategies?

- LRU: least recently used
- Ideal: farthest in the future
- Can simulate ideal with LRU, lose factof of 2 with resource augmentation.

Rules:

On read / write operation:

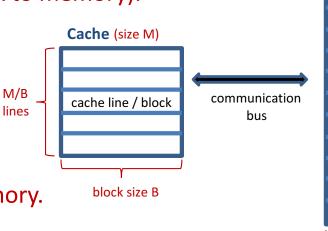
- 1. Check if line is in cache. If so, perform operation in cache.
- 2. Else, expel a line from cache (write it back to memory).
- 3. Load requested line in cache.
- 4. Perform operation in cache.

Cost:

Number of lines read from or written to memory.

Simplifications:

- 1. Only one level of cache. (Ignores L1, L2, etc.)
- 2. Only charges for memory access. (All other operations are free!)
- 3. Ideal caches. (Can store any line anywhere in the cache!)
- 4. Ideal replacement. (Ejects the line that will be not used for the longest time!)



Memory or Disk

memory line / block

block size B

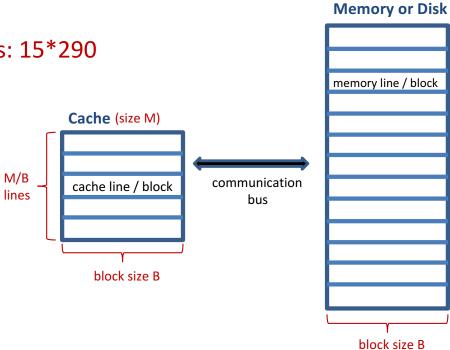
External Memory Model (Aggarwal, Vitter 1988)

When is it useful?

Cache = L1/L2:

- Latency gap: 10 cycles vs. 300 cycles.
- Block size: 64 B.
- At best, every cache hit can save cycles: 15*290

- 1. Latency gap: 300 cycles vs. 20,000,000
- 2. Block size: 16 KB
- 3. At best, every cache hit can save cycles: 16,000*20,000000



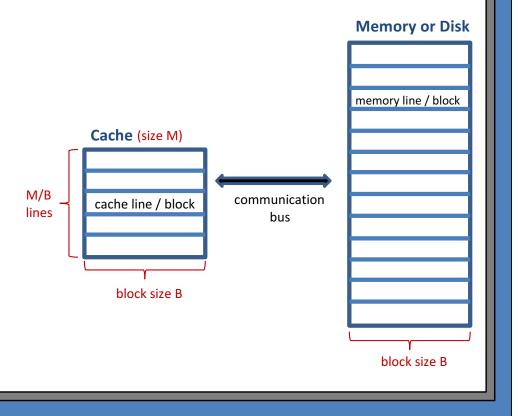
Example: Scanning data (size N)

1) Linked list

- ⇒ Classical analysis: O(N)
- ⇒ External memory: O(N)

2) Array

- ⇒ Classical analysis: O(N)
- ⇒ External memory: O(N/B)



Example: Searching data (size N)

1) Linked list

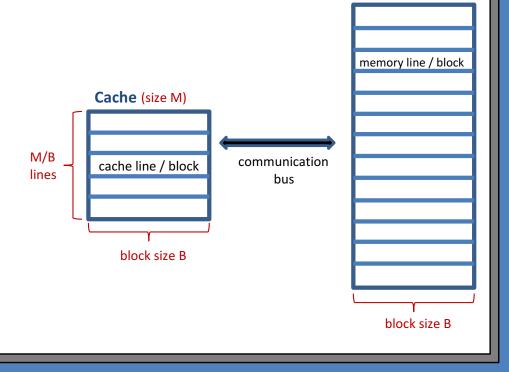
- ⇒ Classical analysis: O(N)
- ⇒ External memory: O(N)

2) Red-black tree

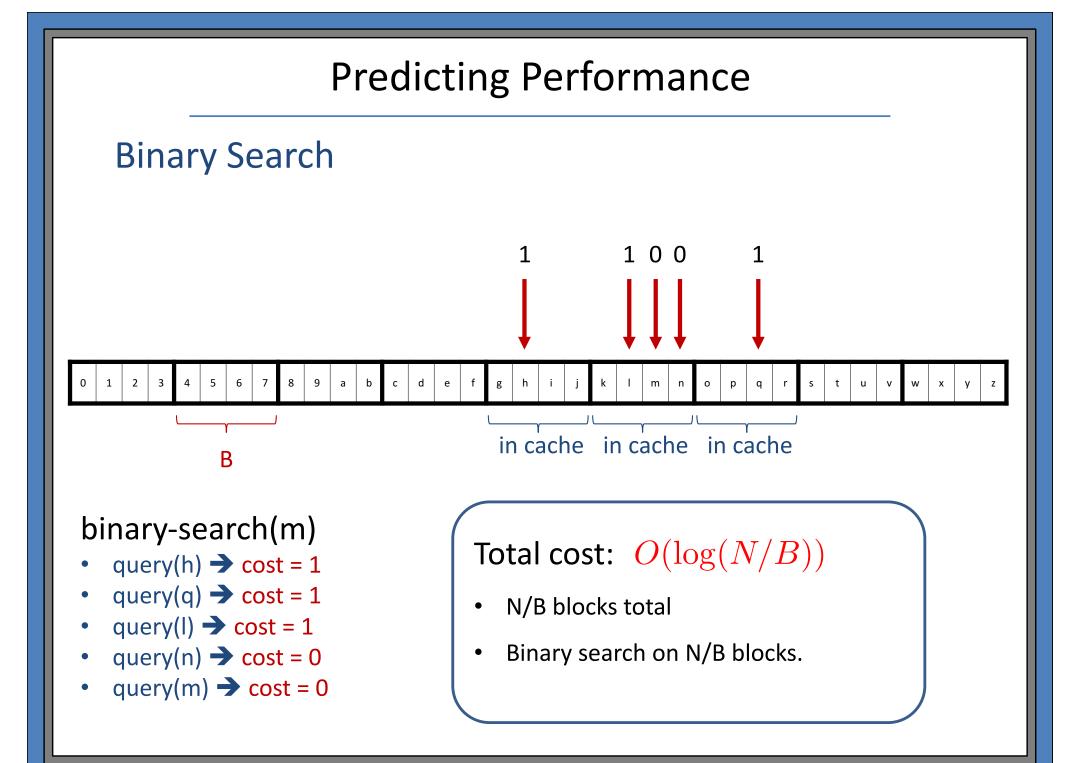
- ⇒ Classical analysis: O(log N)
- ⇒ External memory: O(log N)

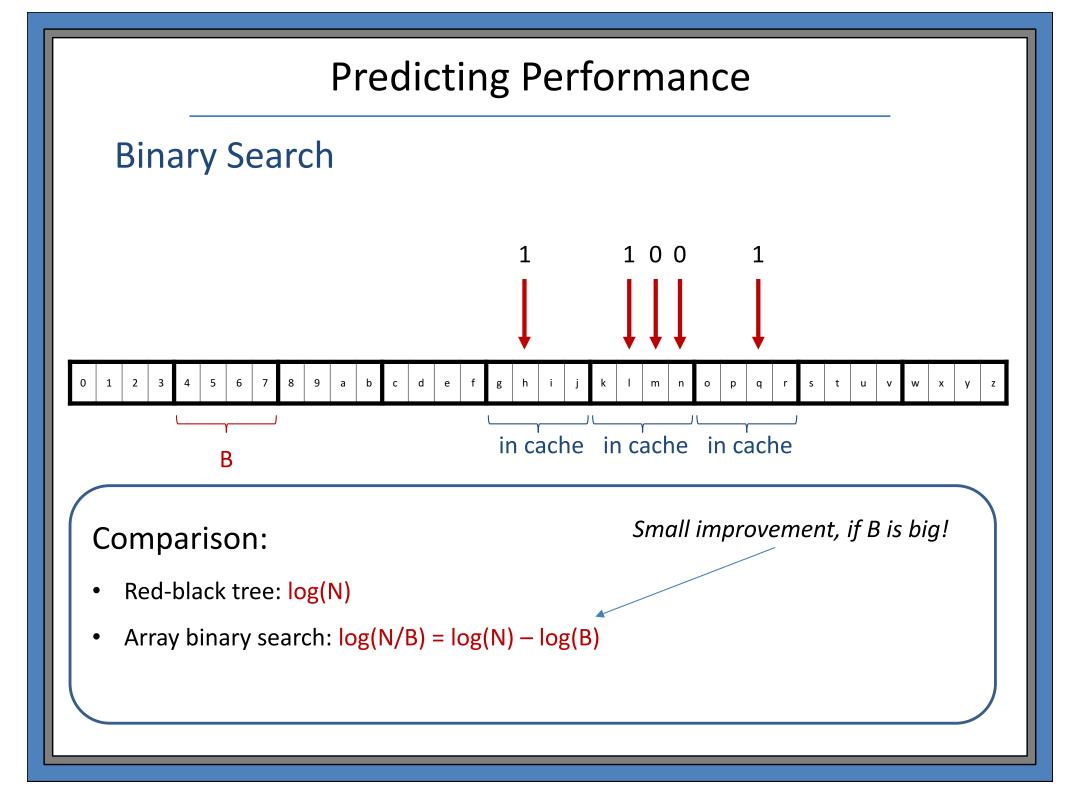
3) Array

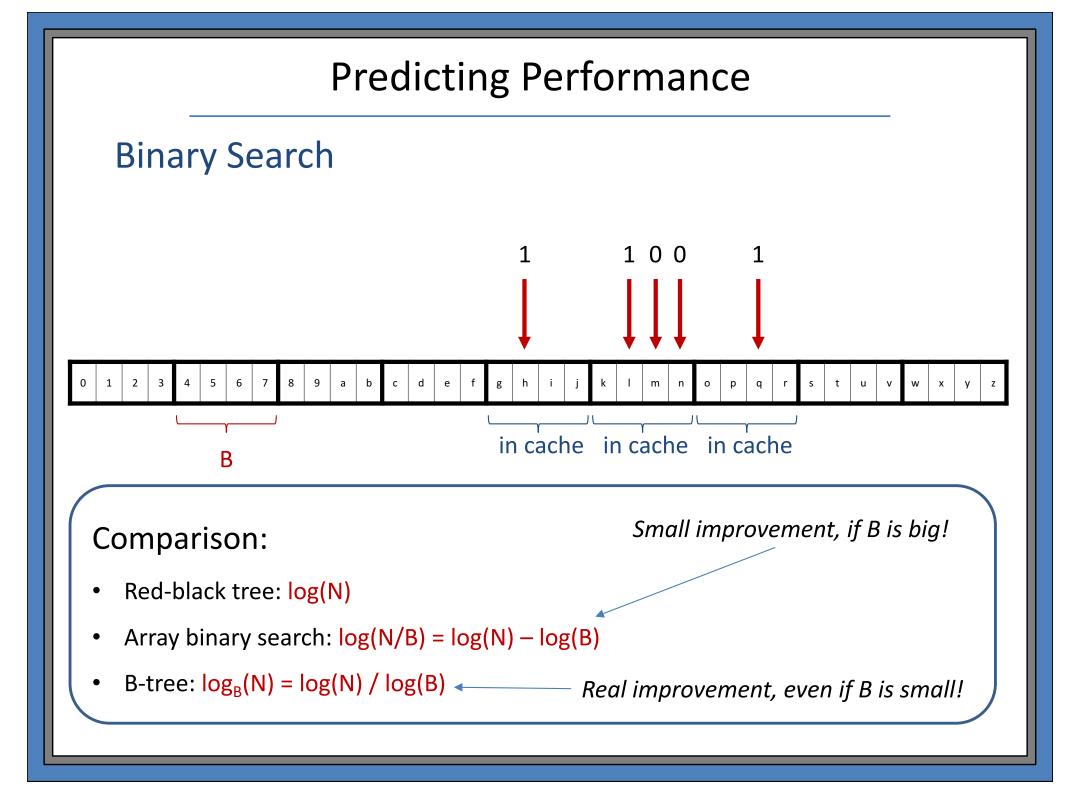
- ⇒ Classical analysis: O(log N)
- ⇒ External memory: O(log (N/B))



Memory or Disk





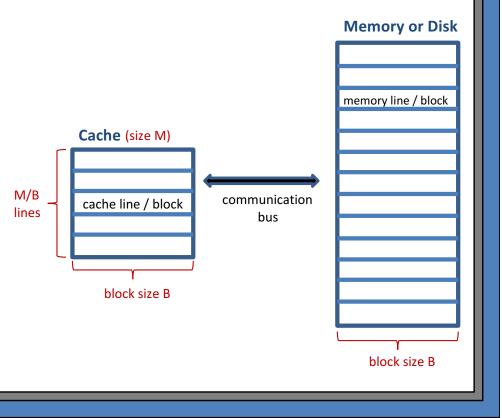


Example: Sorting data (size N)

1) QuickSort? MergeSort?

2) B-tree

- ⇒ Classical analysis: O(N log N)
- \Rightarrow External memory: O(N log_B N)

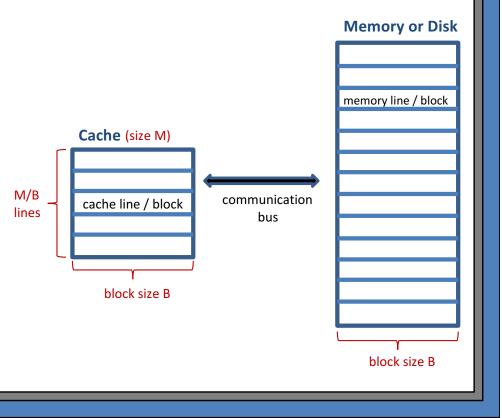


Example: Sorting data (size N)

1) QuickSort? MergeSort?

2) B-tree

- ⇒ Classical analysis: O(N log N)
- \Rightarrow External memory: O(N log_B N)

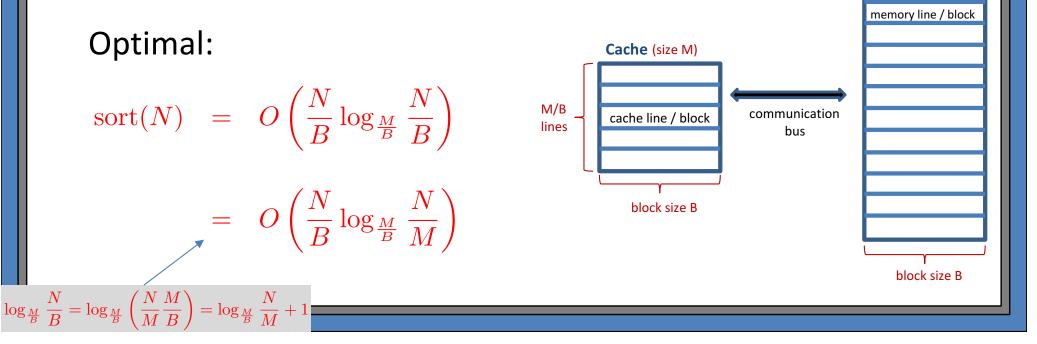


Example: Sorting data (size N)

1) QuickSort? MergeSort?

2) B-tree

- ⇒ Classical analysis: O(N log N)
- \Rightarrow External memory: O(N log_B N)



Memory or Disk

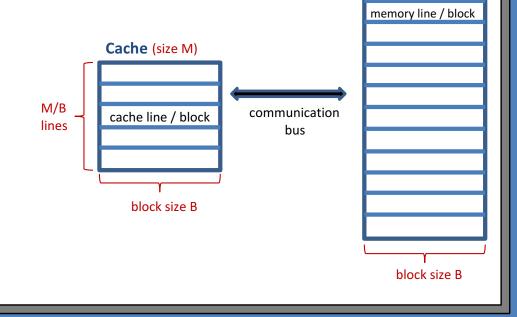
Example: Sorting data (size N)

Optimal: sort(N) = $O\left(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{B}\right)$

$$= O\left(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{M}\right)$$

Notes:

- Size of cache (M) matters.
- 3 standard solutions
 - External MergeSort
 - External QuickSort
 - BufferTree Sort
- One "cache oblivious" solution
 - FunnelSort



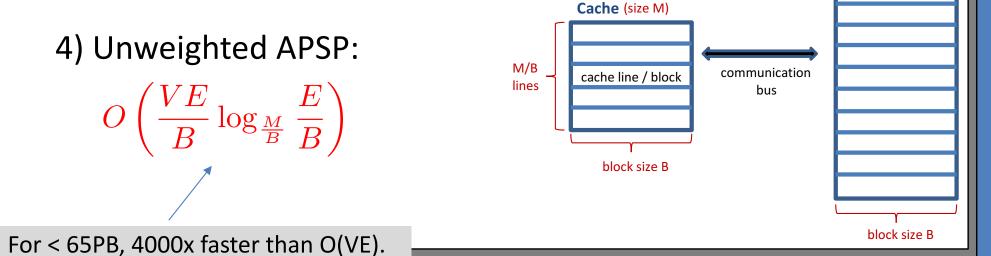
Memory or Disk

Example: Graphs (V nodes, E edges)

1) Priority Queue: $O\left(\frac{1}{B}\log_{M/B}\frac{V}{B}\right)$

2) Unweighted shortest paths: $O\left(V + \frac{E}{B}\log_{M/B}\frac{E}{B}\right)$

3) Dijkstra's:
$$O\left(V + \frac{E}{B}\log\frac{E}{M}\right)$$



Memory or Disk

memory line / block

Today's Plan

Searching and Sorting

1. B-trees

- \Rightarrow Algorithm
- ⇒ Amortized analysis

2. Buffer trees

- ⇒ Write-optimized data structures
- ⇒ Buffered data structures
- \Rightarrow Amortized analysis

3. van Emde Boas Search Tree

- ⇒ Cache-oblivious algorithms
- ⇒ van Emde Boas memory layout

B-trees

Basic facts

- One of the most important data structures out there today. (Variants used in all major databases.)
- Very fast. (Not just asymptotic analysis, but in practice nearly impossible to beat a well-implemented B-tree.)
- Benefit comes both from good cache performance, low overhead, good parallelization, etc.

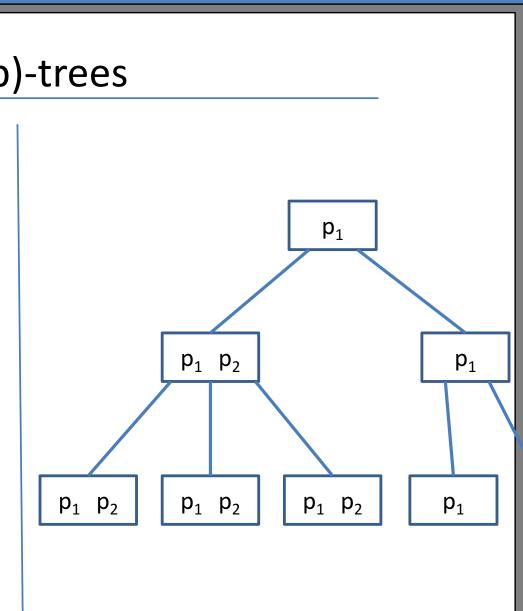
B-trees

Basic facts

- One of the most important data structures out there today. (Variants used in all major databases.)
- Very fast. (Not just asymptotic analysis, but in practice nearly impossible to beat a well-implemented B-tree.)
- Benefit comes both from good cache performance, low overhead, good parallelization, etc.

Basics:

- Tree structure.
- Satisfies search property.
- b ≥ 2a (e.g., a = B, b = 2B)
- All keys stored in leaves ullet
- Internal nodes store *pivots* • to guide search.

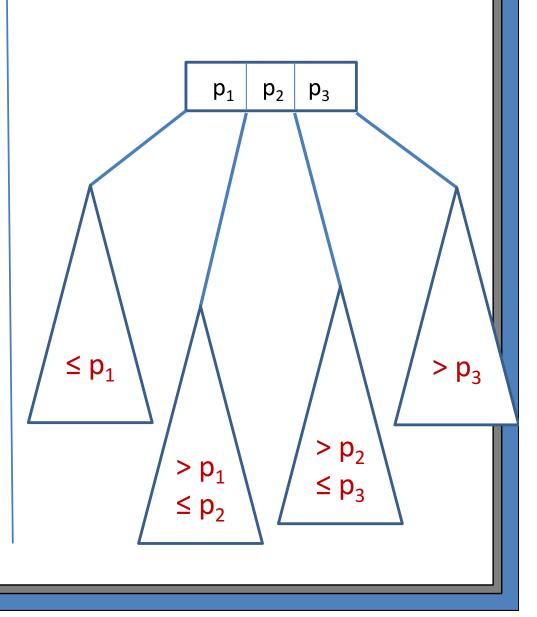


Each node stores:

- parent
- set of *pivots* p_1 , p_2 , ...
- pointers to *sub-trees* T₁, T₂, ...

Search property:

For subtree T_j : all the keys in T_j have values in the range (p_{j-1}, p_j)

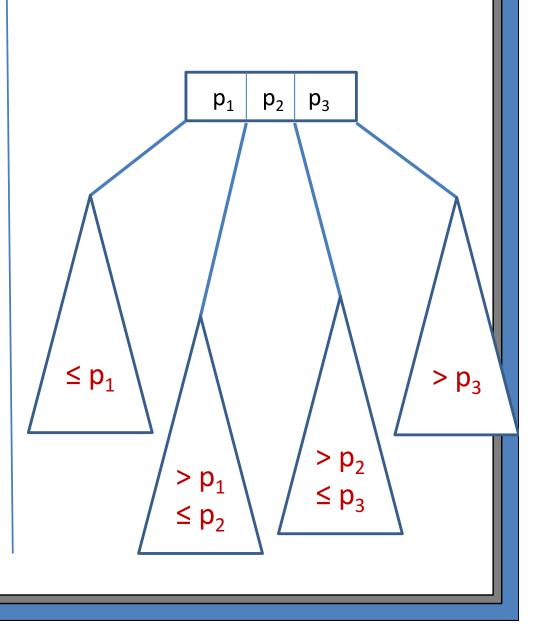


Each node stores:

- parent
- set of *pivots* **p**₁, **p**₂, ...
- pointers to *sub-trees* T₁, T₂, ...

Question:

How should a node store its keys and sub-tree pointers?



Each node stores:

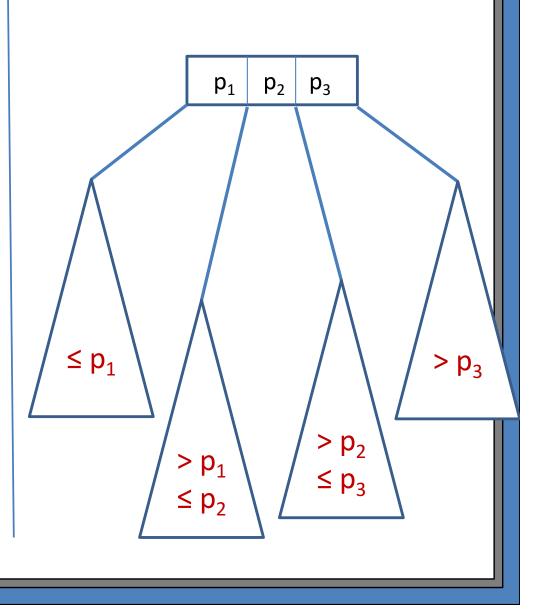
- parent
- set of *pivots* p₁, p₂, ...
- pointers to *sub-trees* T₁, T₂, ...

Question:

How should a node store its keys and sub-tree pointers?

Possible answers:

- 1. In this model, does not matter.
- 2. In practice, use a small tree.
- Can use a recursive B-tree, optimized for a different level cache!



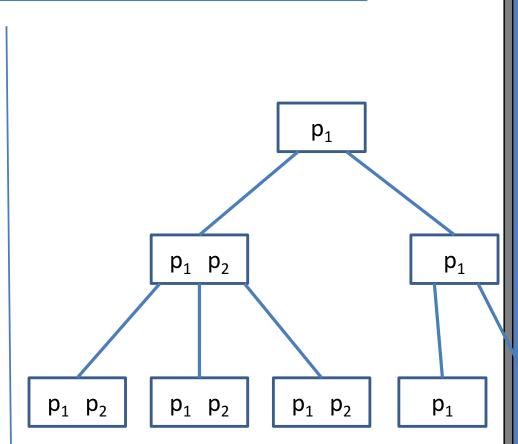
Basics:

- tree structure
- satisfies search property
- b≥2a

(e.g., a = B, b = 2B)

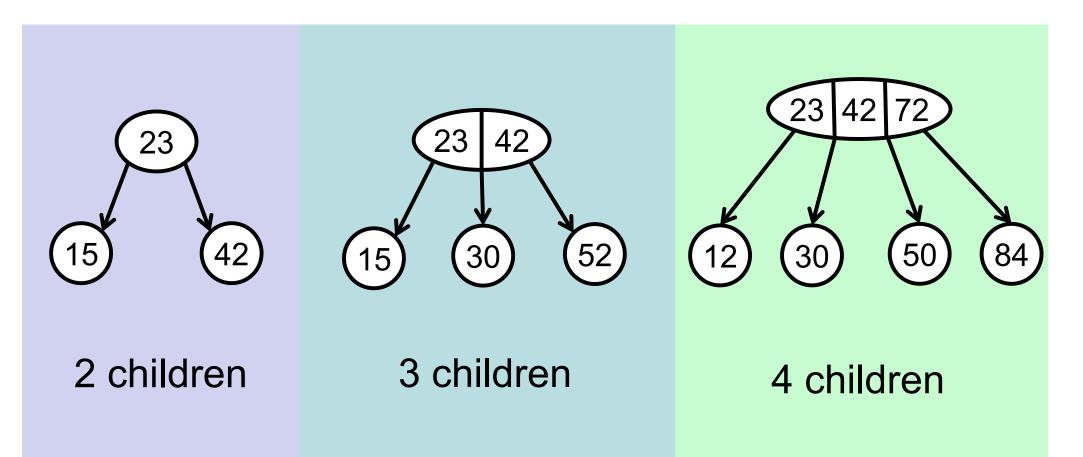
Rules:

- 1. Root has \geq 2 children.
- Non-root nodes have ≥ a children.
- 3. All nodes have $\leq b$ children.
- 4. All leaves have the same depth.
- 5. For all leaves: $a \le \#keys \le b$

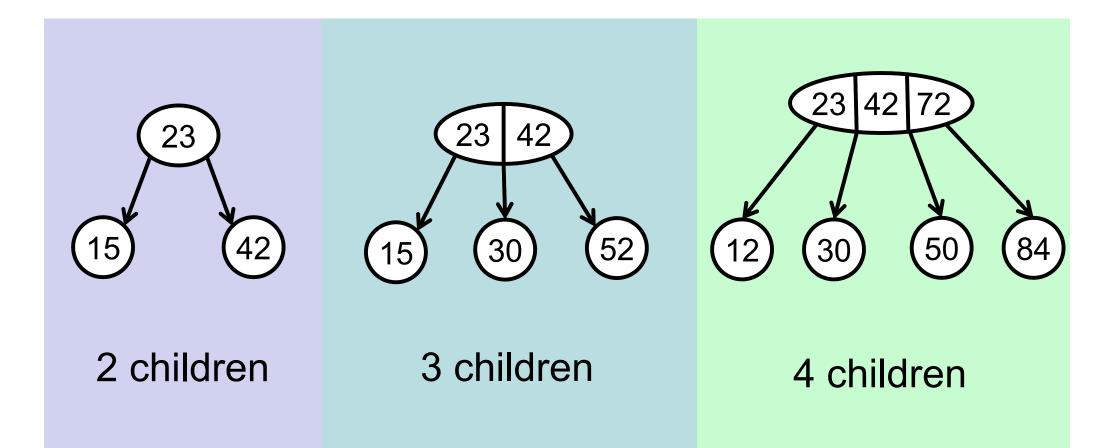


Rules #1--3:

Every non-leaf node has either:
2 or 3 or 4 children

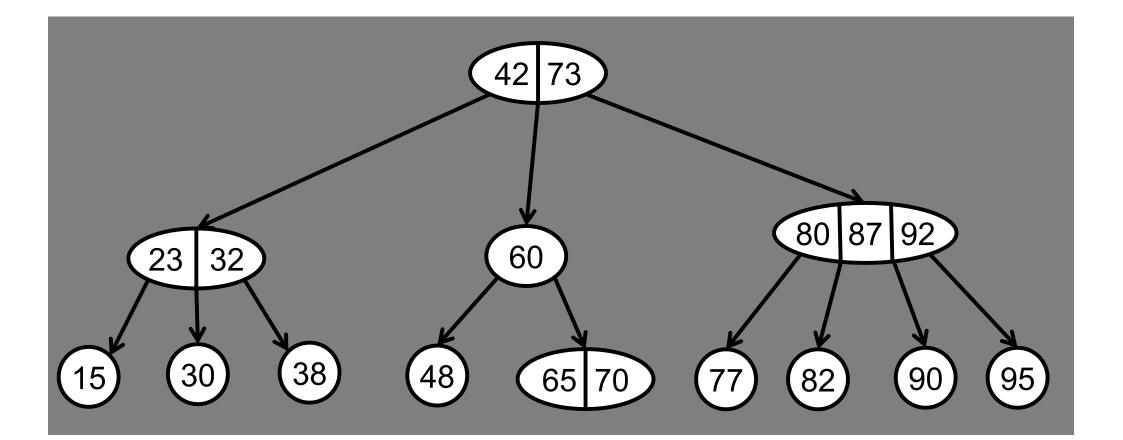


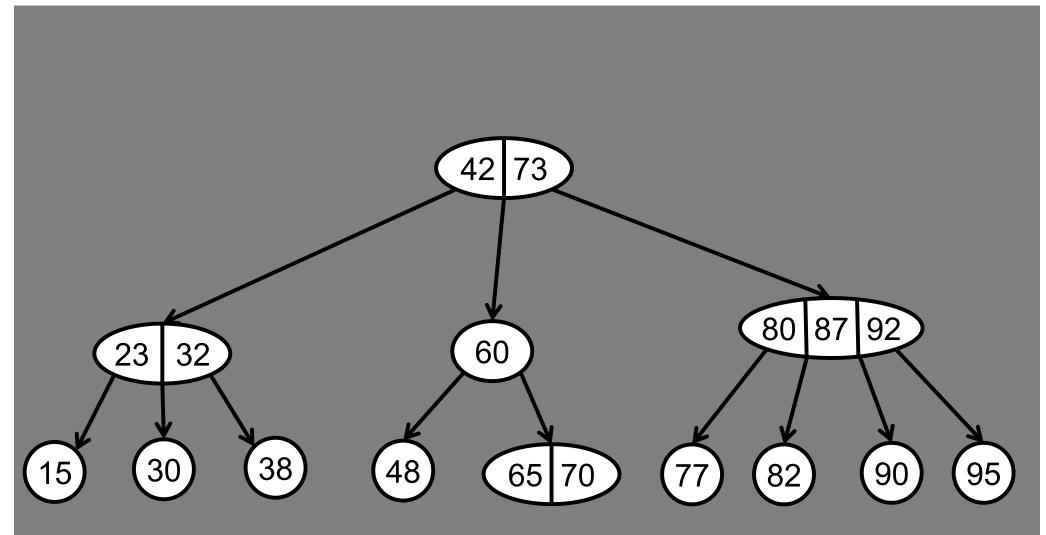
Search property:

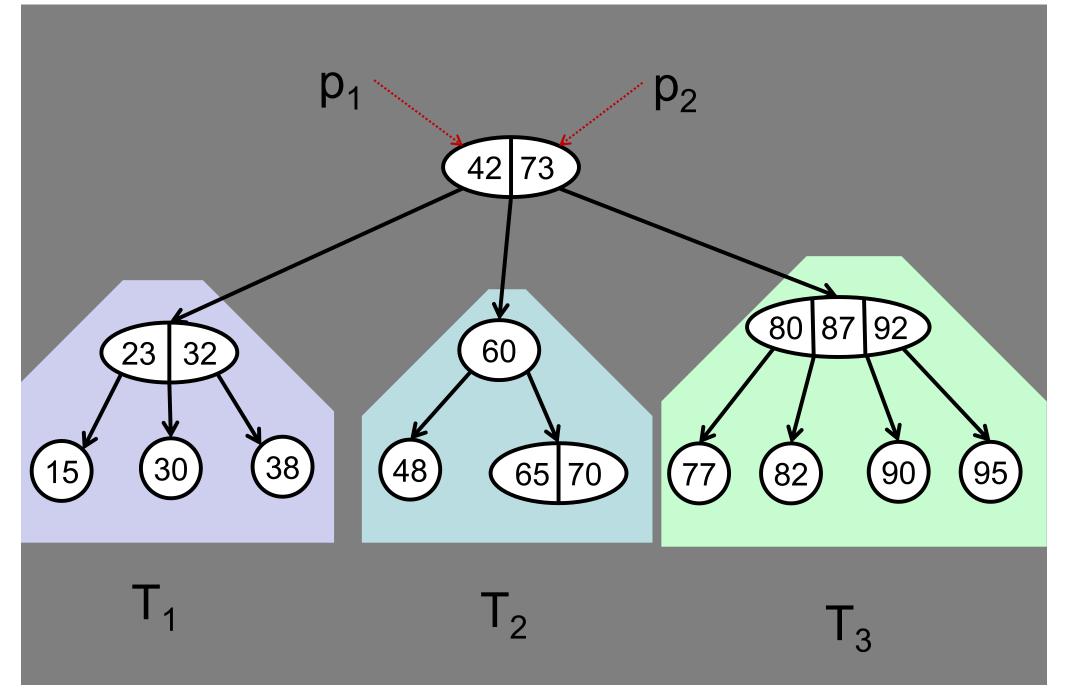


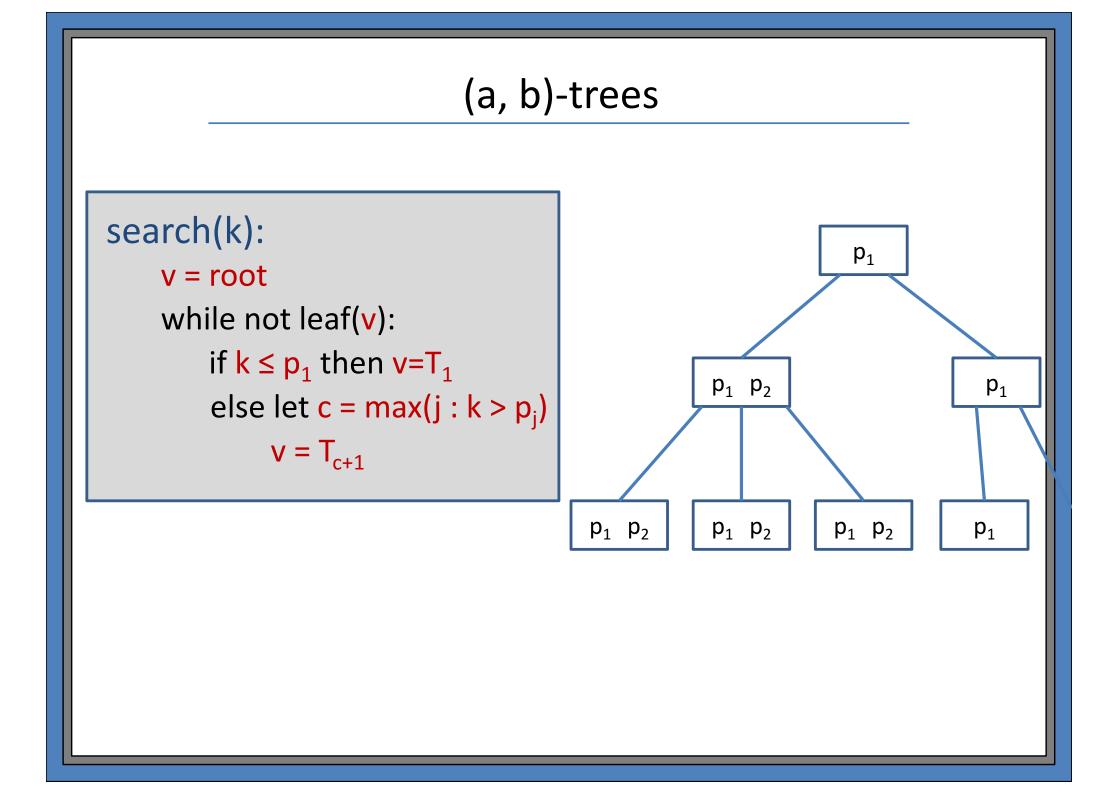
Rule 4: Every leaf has the same depth.

Every path from root->leaf is the same length.

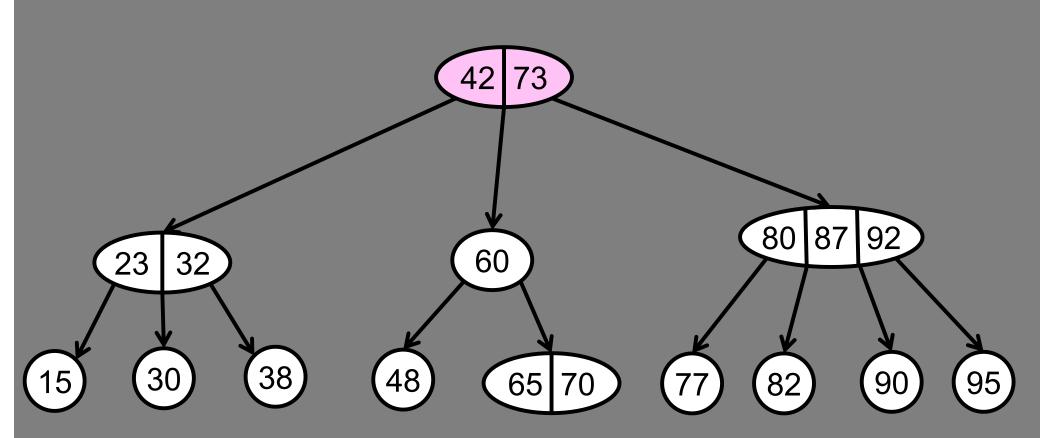




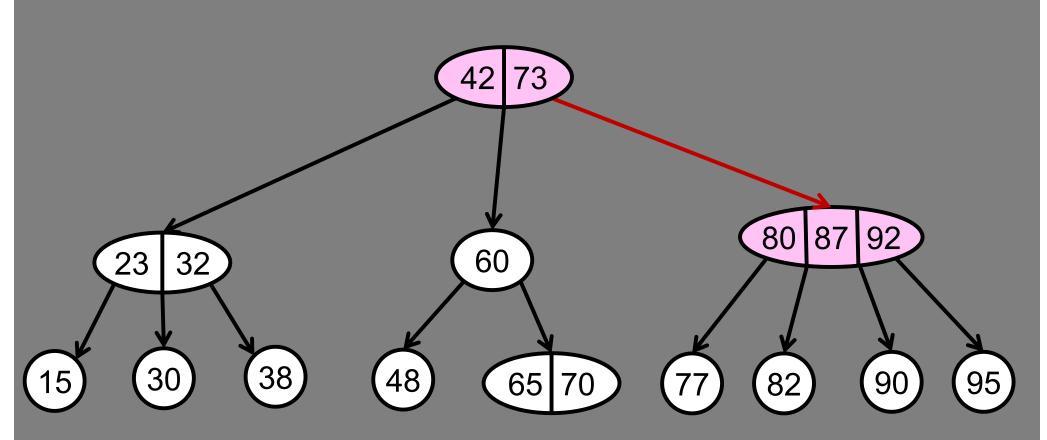




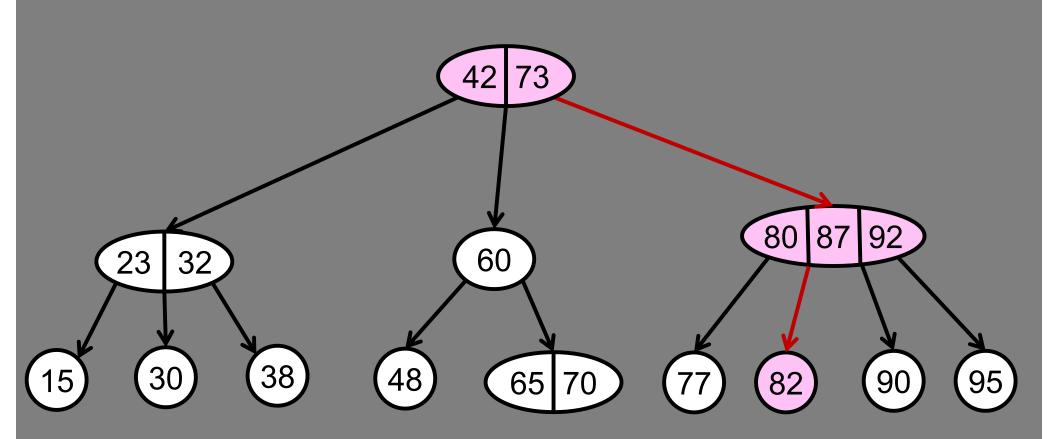
search(82)



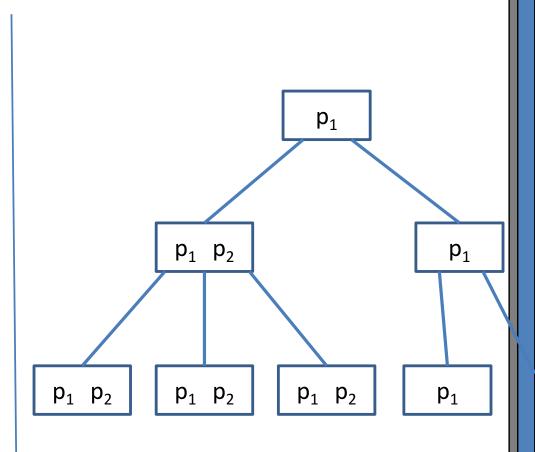
search(82)



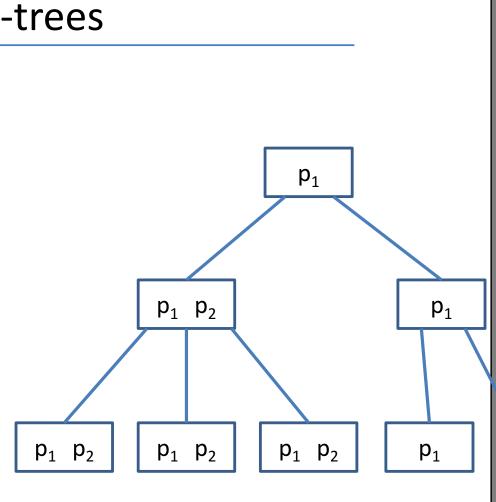
search(82)



Claim: Search works.



Claim: An (a,b)-tree with n keys has height: $\leq \log_a \left(\frac{n}{a}\right) + 1$



Claim: An (a,b)-tree with n keys has height: $\leq \log_a \left(\frac{n}{a}\right) + 1$

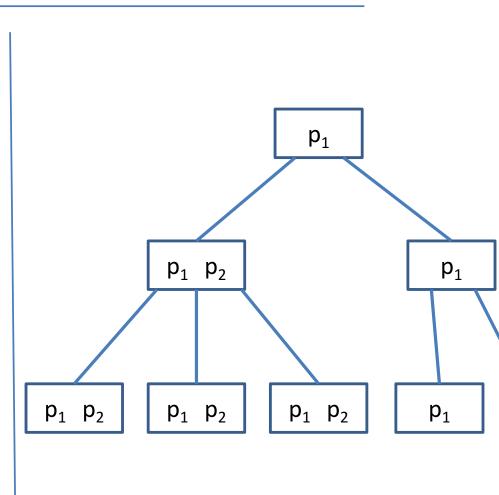
Proof:

- At most (n/a) leaves.
- Every node except the root has degree at least **a**.
- So a node at height $\log_a\left(\frac{n}{a}\right)$ has at least:

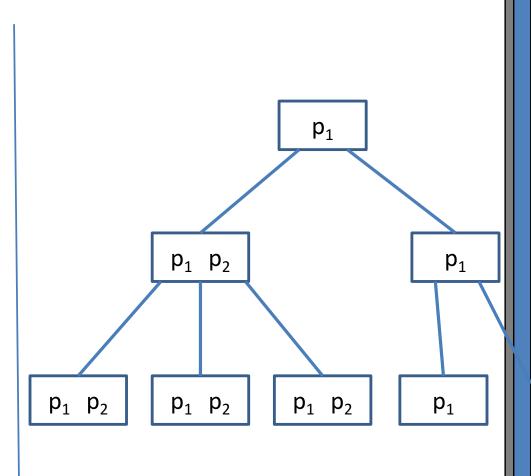
$$\geq a^{\log_a\left(\frac{n}{a}\right)} \geq \frac{n}{a}$$

leaves.

• So the children of the root have maximum height: $\log_a \left(\frac{n}{a}\right)$



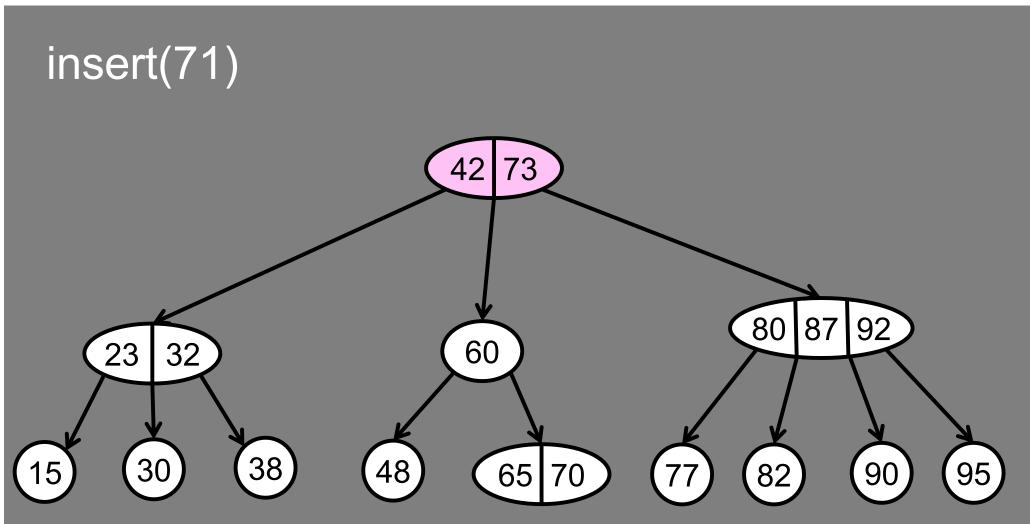
Claim: An (a,b)-tree with n keys has height: $\leq \log_a \left(\frac{n}{a}\right) + 1$ Corollary: If a≥B, then an (a,b)-tree with n keys has height: $O(\log_B n)$



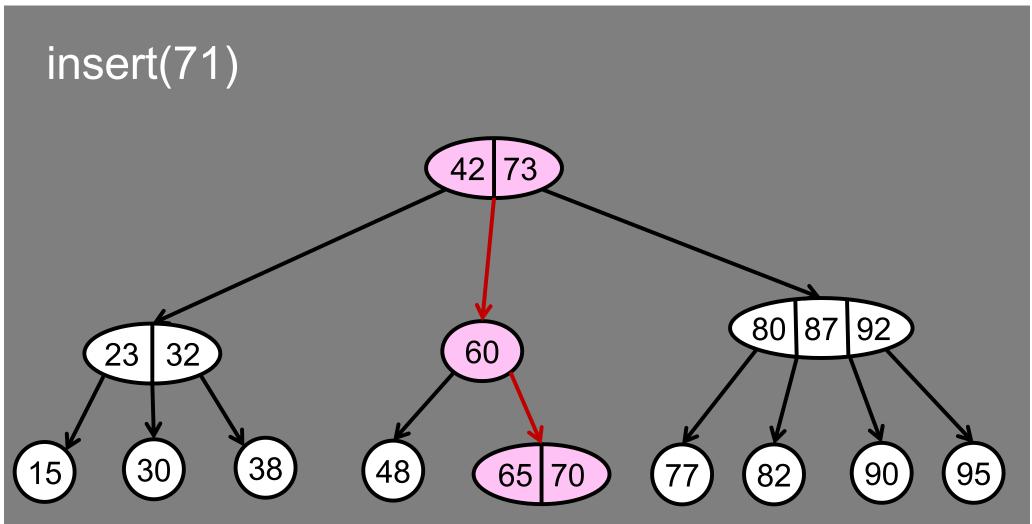
insert(k):

- 1. Search for leaf node v containing key k
- 2. Add key k to leaf node v.
- 3. If node v has > b keys:
 - Split node v into two.
 Each piece has > b/2 ≥ a keys.
 - Call new nodes x and y.
 - k = max element in x. (If v is not a leaf, remove k from node v.)
 - Recursively insert k into parent(v).
 - Update parent/child pointers of x, y, parent(v).

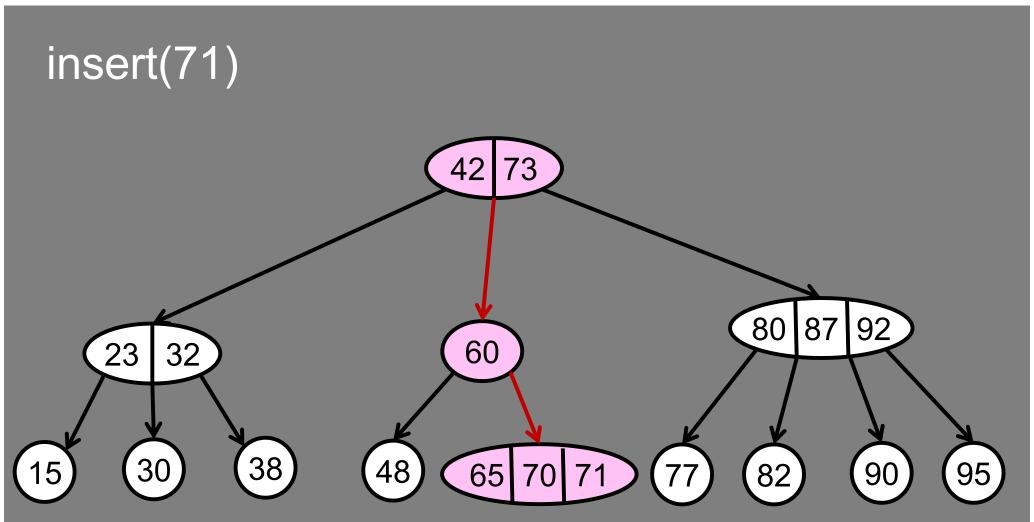
(2,4) Trees: Inserting



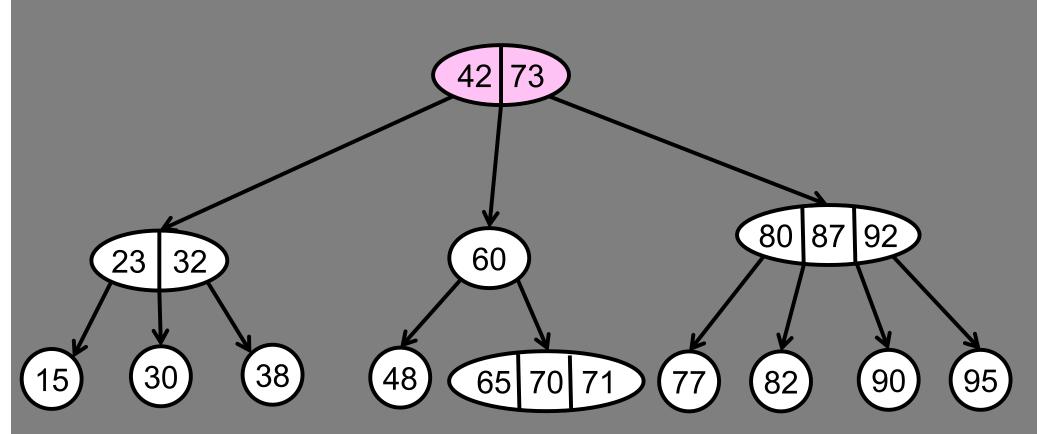
(2,4) Trees: Inserting



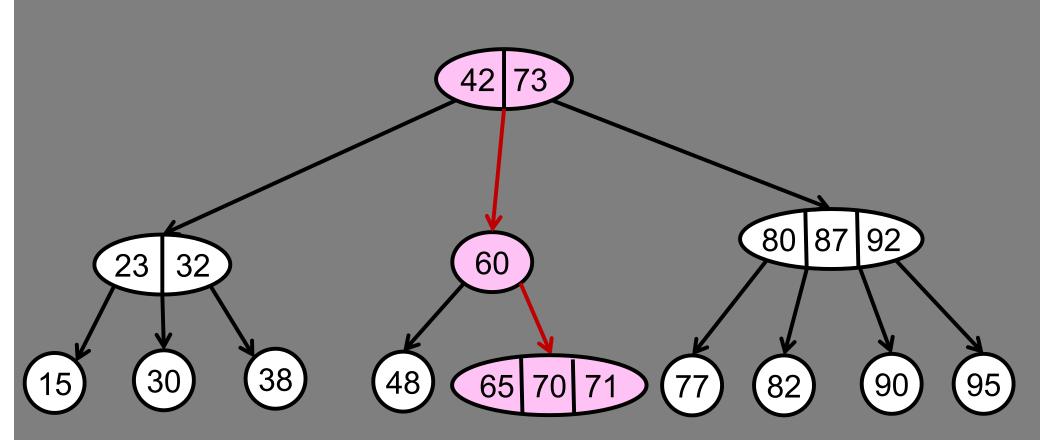
(2,4) Trees: Inserting



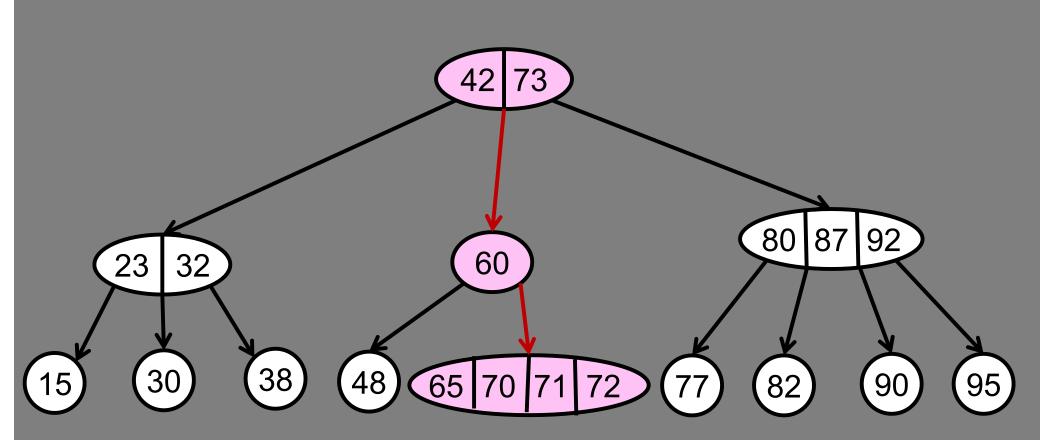
insert(72)



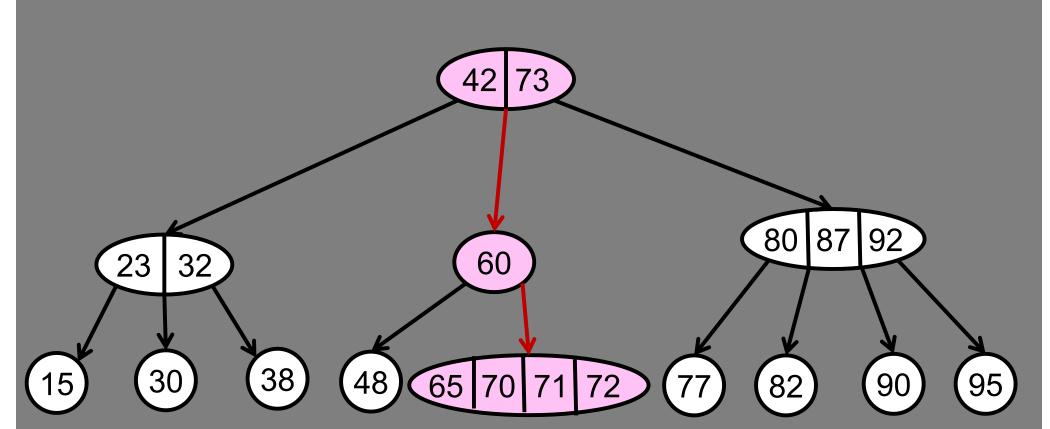
insert(72)



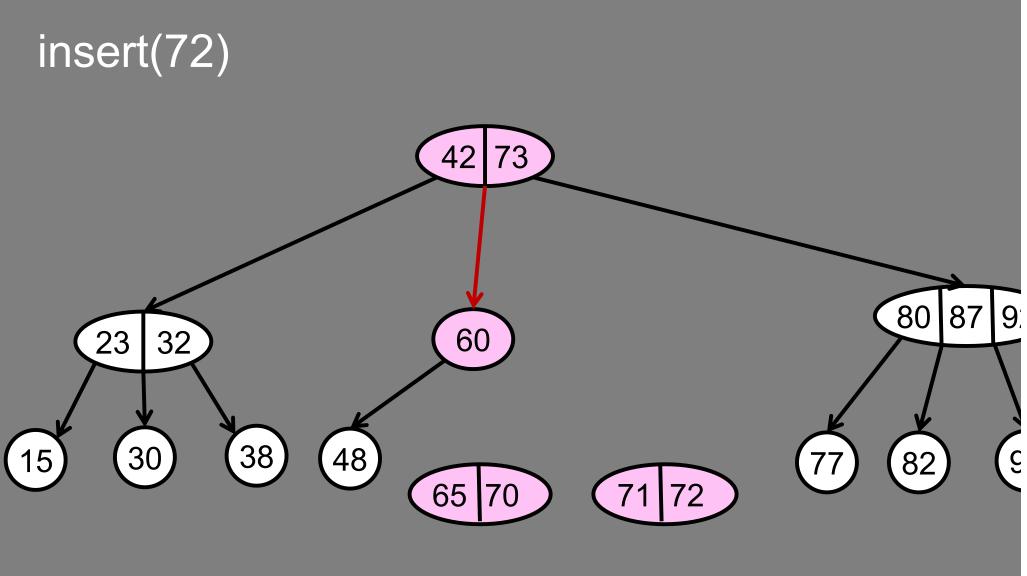
insert(72)



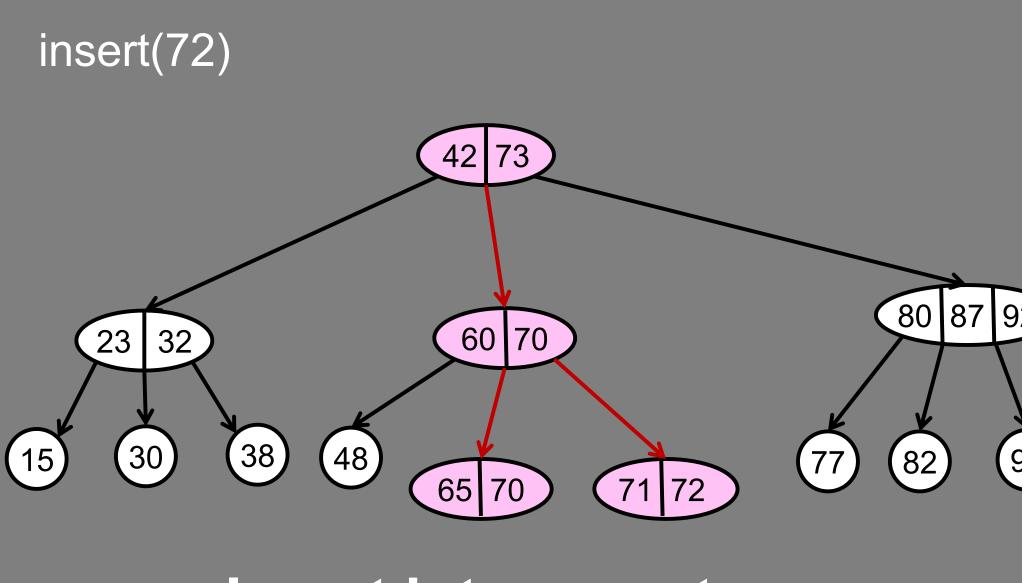
insert(72)



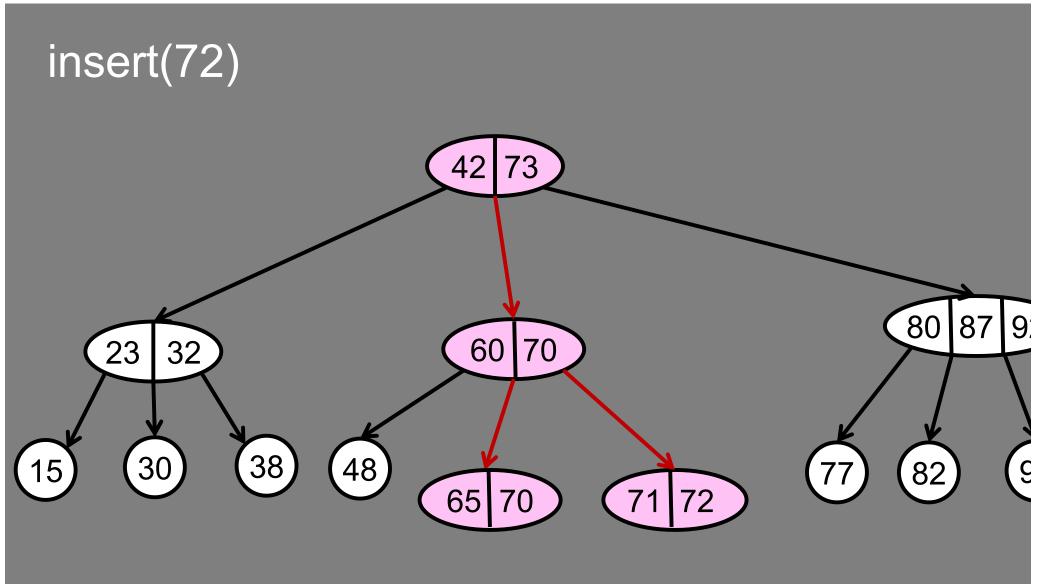
Too many (4) pivots... Too many (5) children.



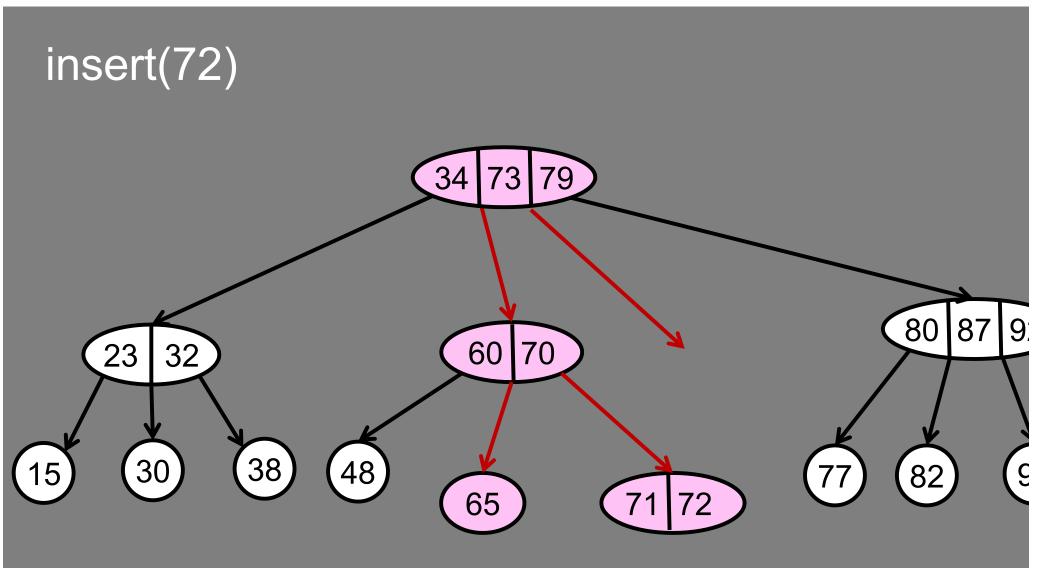
Split the node in two.



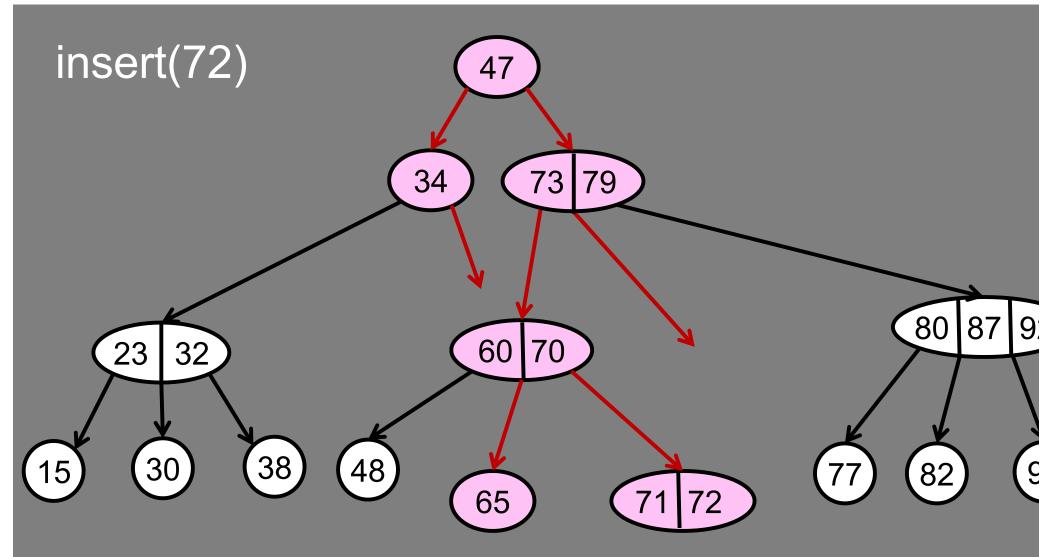
Insert into parent.



Recurse (if parent is full).



What if the root is full?



Split and create a new root.

(2,4) Trees

Key claim: preserves all properties:

- 1. Every node has [a,b] children.
- 2. Search tree property.
- 3. All leaves have the same depth.

Lazy option: do splitting when needed. Proactive option: split in advance.

One pass insertion:

- If root contains b keys, split root and create new root.
- While searching for the leaf, split any node that is full (i.e., contains b keys).
- On arrival at leaf, there is enough space in the leaf to add the key!

(a, b)-trees

delete(k):

- 1. Search for leaf node v containing key k
- 2. Delete key k from leaf node v.
- 3. If v is root and has only one child, delete root.

4. If |v|<a:

- Let u be a sibling of v.
- Case 1: |u| + |v| > b-1

Divide keys evenly between u and v.

Each gets at least $b/2 \ge a$.

• Case 2: $|u| + |v| \le b-1$

Merge u and v.

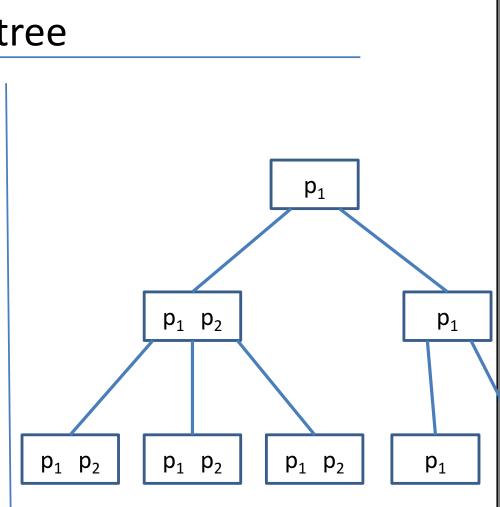
Recursively delete pivot from parent.

Update parent/child pointers.

Fix a and b: Set a = B, b = 2B.

Performance:

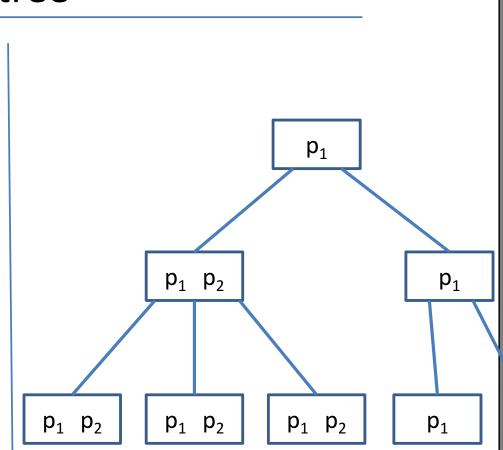
- Reading/writing each node of the tree takes O(1) block transfers.
- Insert/delete requires reading/writing O(1) nodes at each level of the tree.
- Thus the total cost of each read/write operation is: $O(\log_B n)$



Fix a and b: Set a = B, b = 2B.

Some numbers:

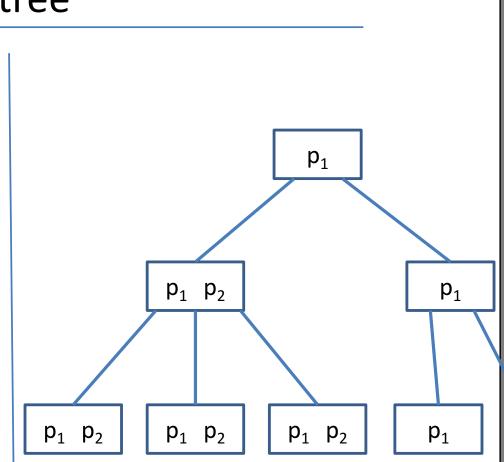
- Assume your disk has 16 KB sized blocks.
- Assume you have 10 TB database.
- Then your B-tree has 3 levels.
- Since the root and first level are always in cache (e.g., 256 MB), each operation requires 1 cache miss.



Fix a and b: Set a = B, b = 2B.

Some numbers:

- Assume your disk has 16 KB sized blocks.
- Assume you have 1000 TB database.
- Then your B-tree has 4 levels.
- Since the root and first level are always in cache (e.g., 256 MB), each operation requires 2 cache miss.



Fix a and b: Set a = B, b = 5B.

How often does a node split or merge?

About to split:

 $p_1 \ p_2 \ p_3 \ \dots \ p_{b-1} \ p_b$

About to merge:

Fix a and b: Set a = B, b = 5B.

Claim: After each split, a node has:

> ≥ 2B-1 keys ≤ 4B keys

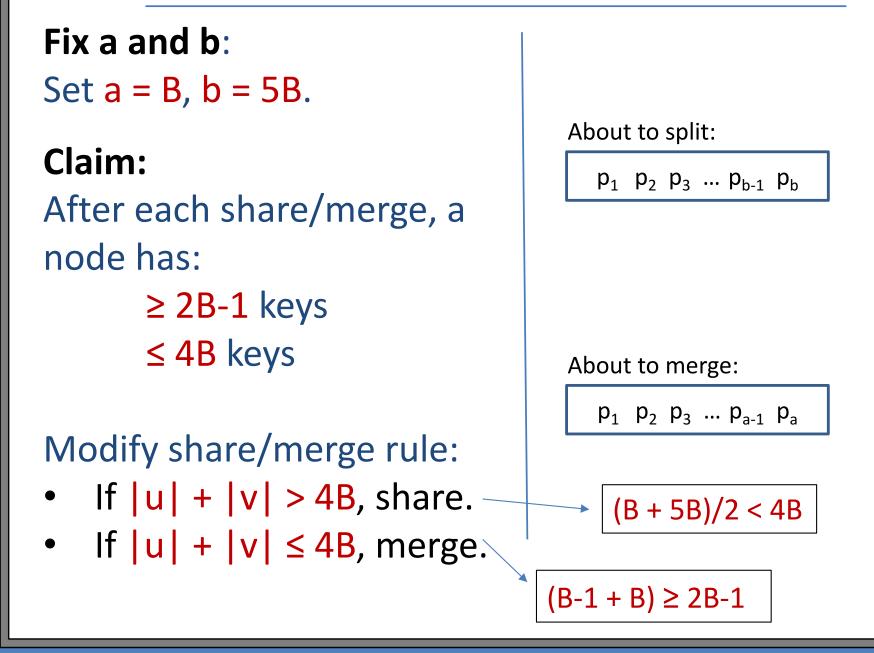
Because:

- b/2 = (5/2)B > 2B
- b/2 = (5/2)B < 5B

About to split:

 $p_1 \ p_2 \ p_3 \ \dots \ p_{b-1} \ p_b$

About to merge:



Fix a and b: Set a = B, b = 5B.

Claim: After each split/share/merge, a node has: ≥ 2B-1 keys ≤ 4B keys About to split:

 $p_1 \ p_2 \ p_3 \ \dots \ p_{b-1} \ p_b$

About to merge:

 $p_1 \ p_2 \ p_3 \ \dots \ p_{a-1} \ p_a$

Fix a and b: Set a = B, b = 5B.

Claim: After each split/share/merge, a node has: ≥ 2B-1 keys ≤ 4B keys

How long until next split/share/merge?

About to split:

 $p_1 \ p_2 \ p_3 \ \dots \ p_{b-1} \ p_b$

About to merge:

Fix a and b: Set a = B, b = 5B.

Claim: After each split/share/merge, a node has: ≥ 2B-1 keys ≤ 4B keys

How long until next split/share/merge? At least B-1 more operations. About to split:

 $p_1 \ p_2 \ p_3 \ \dots \ p_{b-1} \ p_b$

About to merge:

Fix a and b: Set a = B, b = 5B.

Claim:

After each split/share/merge, at least B-1 more operations before the next split/share merge.

Claim:

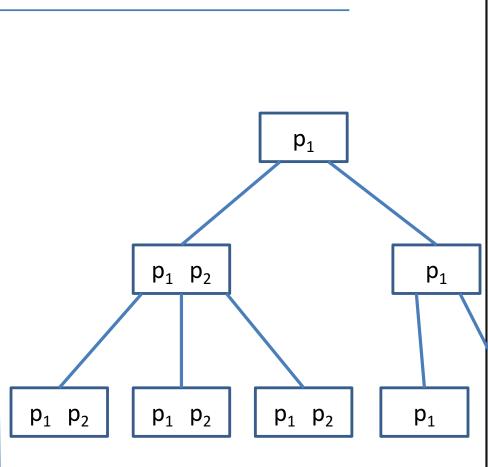
The amortized cost of split/share/merge is O(1/B) per node, and O((1/B)log_B(B)) per operation.

About to split:

 $p_1 \ p_2 \ p_3 \ \dots \ p_{b-1} \ p_b$

About to merge:

What changes if each node stores a parent pointer?

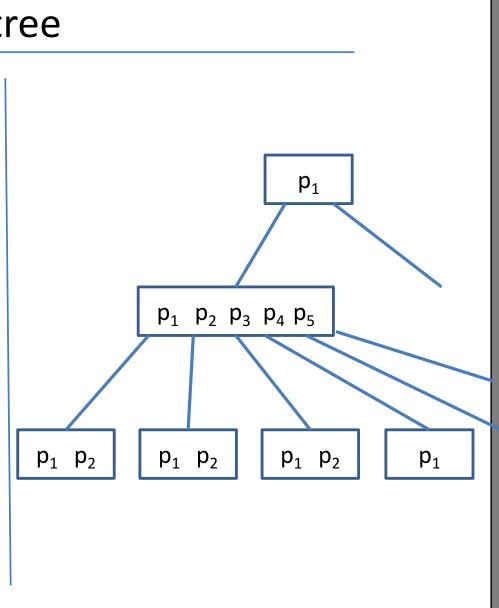


What changes if each node stores a parent pointer?

On every split, need to update the parent pointer for $\theta(B)$ children!

Very expensive!

Insert may cost $\theta(B \log_{B} n)$ if every level needs to be split!



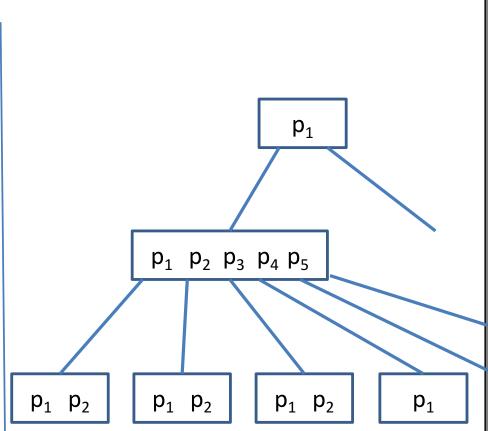
What changes if each node stores a parent pointer?

On every split, need to update the parent pointer for $\theta(B)$ children!

NOT very expensive (amortized)!

Splitting/merging may cost $\theta((1/B)B \log_B n)$ amortized, if every level needs to be split!

Same for merging... Also helps with concurrency and locking...



Today's Plan

Searching and Sorting

1. B-trees

- \Rightarrow Algorithm
- ⇒ Amortized analysis

2. Buffer trees

- ⇒ Write-optimized data structures
- ⇒ Buffered data structures
- ⇒ Amortized analysis

3. van Emde Boas Search Tree

- ⇒ Cache-oblivious algorithms
- ⇒ van Emde Boas memory layout

Can you do better than a B-tree?

 \Rightarrow Is $O(\log_B n)$ optimal or can you do better?

Can you do better than a B-tree?

 \Rightarrow Is $O(\log_B n)$ optimal or can you do better?

For searching, $O(\log_B n)$ is optimal.

(in the comparison-based model)

Exercise: prove it.

Can you do better than a B-tree?

 \Rightarrow Is $O(\log_B n)$ optimal or can you do better?

For searching, $O(\log_B n)$ is optimal.

(in the comparison-based model)

For inserting/deleting, it is <u>NOT</u> optimal.

(Example: linked list has O(1) inserts.)

Goal:

A external memory data structure with <u>fast</u> searches, and <u>super-fast</u> insertions/deletions.

"Write-optimized data structure."

Why?

- 1) Some applications have more update operations than query operations (e.g., logs).
- 2) Some applications have *a lot* of update operations, so it pays to make them faster.
- 3) Some applications have expensive updates, e.g., a multi-index database.

Multi-index database:

Database may have more than one index, e.g.:

• Employee database: name, age, salary, position

Advantage: search by any index in $O(\log_B n)$ time.

Disadvantage: cost of an update?

Multi-index database:

Database may have more than one index, e.g.:

• Employee database: name, age, salary, position

Advantage: search by any index in $O(\log_B n)$ time.

Disadvantage: cost of an update: O(klog_Bn) time for k indices.

Ideal trade-off: update should be k-times faster than searches!

Streaming a Graph

Data arrives in a stream: $S = s_1, s_2, ..., s_T$

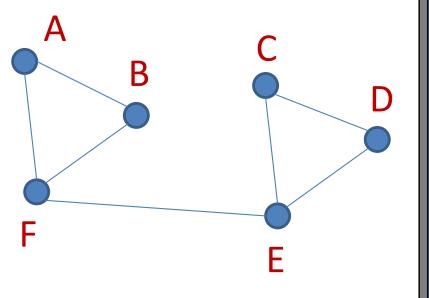
Each s_i is an edge in the graph.

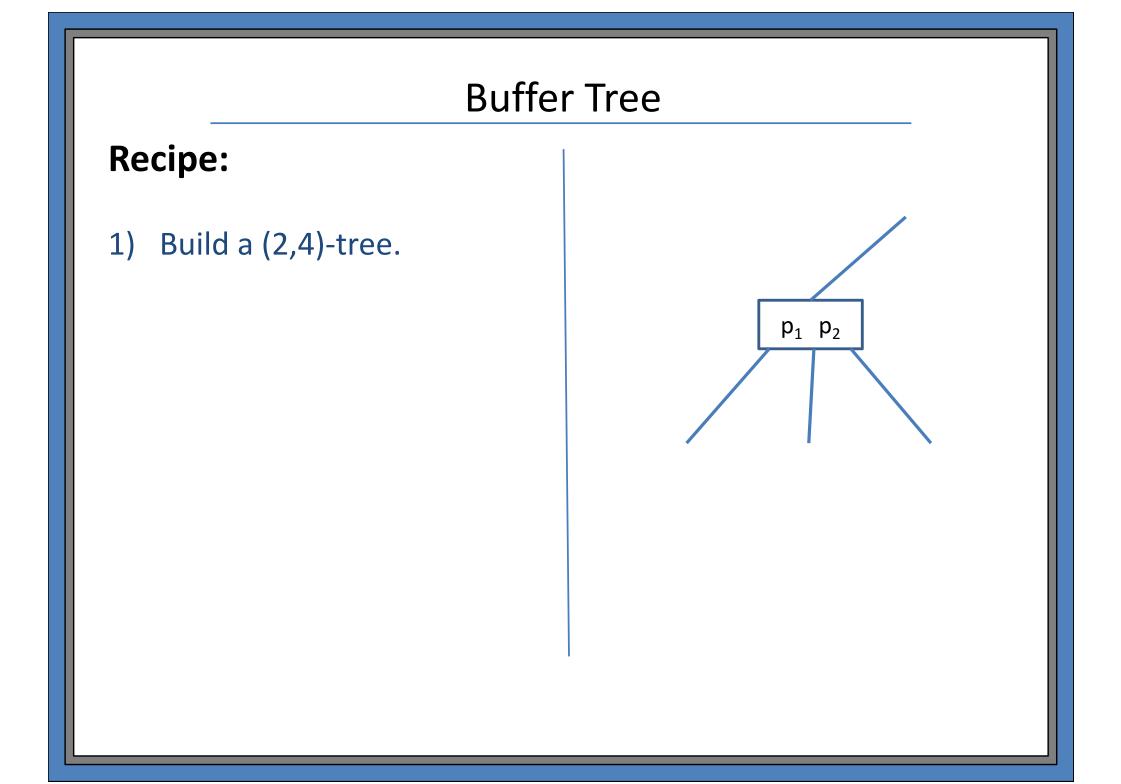
- \Rightarrow Each edge shows up exactly once.
- ⇒ Edges show up in an arbitrary (worst-case) order.

Example: S = (A,B), (C,D), (F,E), (C,E), (E,D), (A,F), (B,F)

Goal: minimize space

- \Rightarrow Sublinear space is often impossible.
- \Rightarrow Best possible: O(n log n) space.
- \Rightarrow Focus on dense graphs.

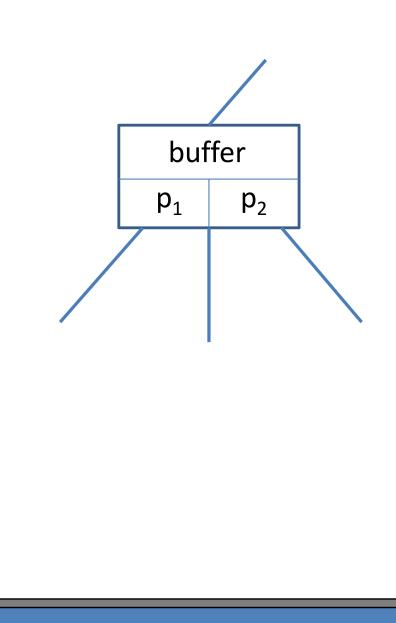




Buffer Tree

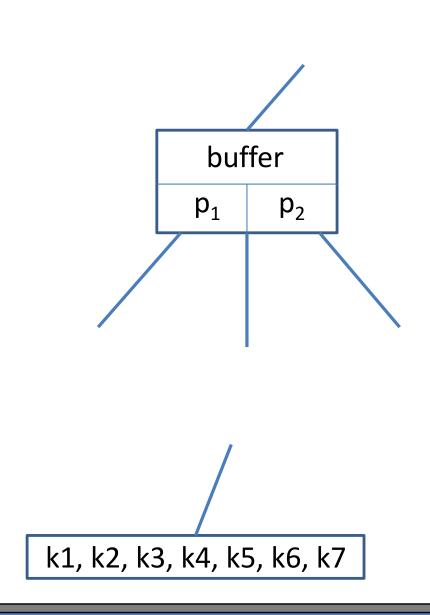
Recipe:

- 1) Build a (2,4)-tree.
- 2) Add a buffer of size 2B to every node in the tree.



Recipe:

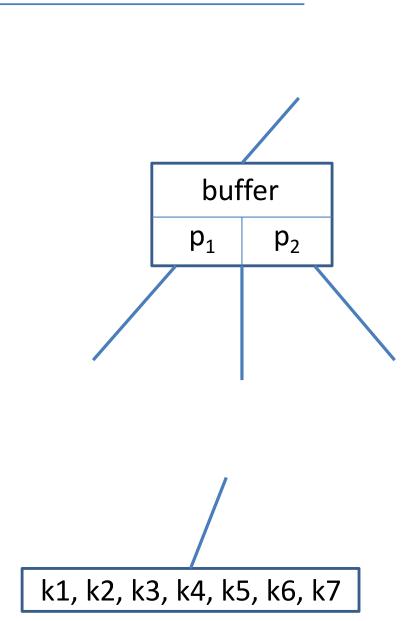
- 1) Build a (2,4)-tree.
- 2) Add a buffer of size 2B to every node in the tree.
- 3) For each leaf, ensure it has
 ≥ B keys and ≤ 5B keys



insert(key):

- 1) Add ins[key] to root buffer.
- 2) Stop.

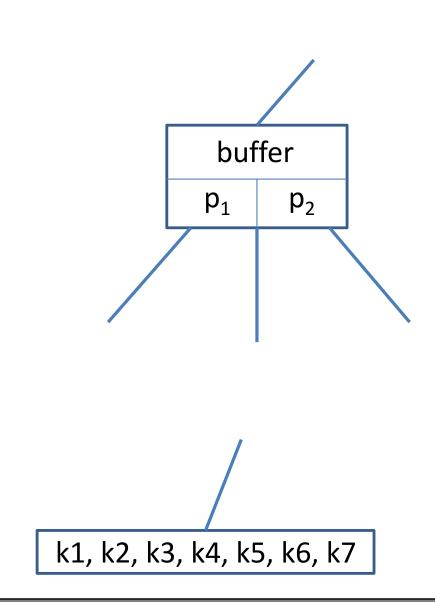
Cost: 0(1)



insert(key):

- 1) Add ins[key] to root buffer.
- 2) Clean buffer:
 - If del[key] is in buffer, remove it.
 - Remove duplicate ins[key] operations.
- 3) Stop.

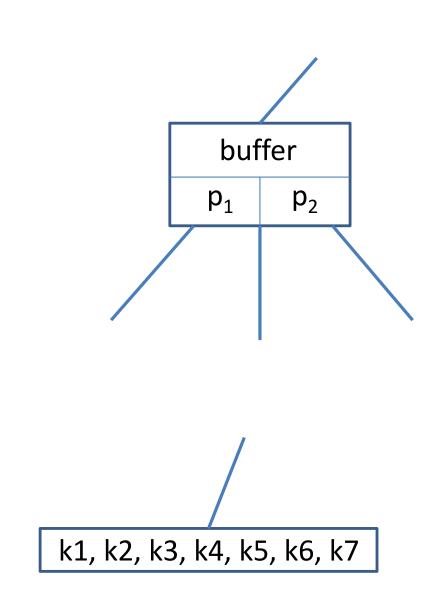
Cost: 0(1)



insert(key):

- 1) Add ins[key] to root buffer.
- 2) Clean buffer:
 - If del[key] is in buffer, remove it.
 - Remove duplicate ins[key] operations.
- 3) If |buffer| > B, then flush the buffer.

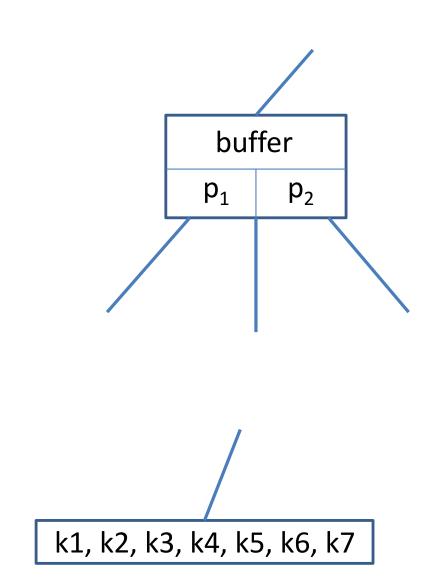
Cost: O(1) + buffer flush



delete(key):

- 1) Add del[key] to root buffer.
- 2) Clean buffer:
 - If ins[key] is in buffer, remove it and del[key].
 - Remove duplicate del[key] operations.
- 3) If |buffer| > B, then flush the buffer.

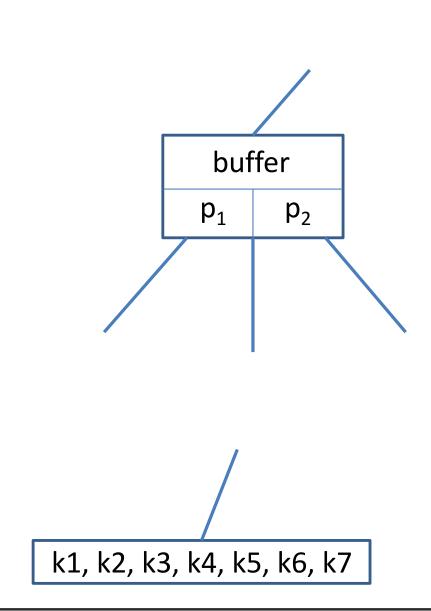
Cost: O(1) + buffer flush



search(key):

- 1) Perform a tree walk from root to leaf.
- 2) At every node on the walk, search the buffer for the key.
- 3) When you get to a leaf, search the leaf for the key.

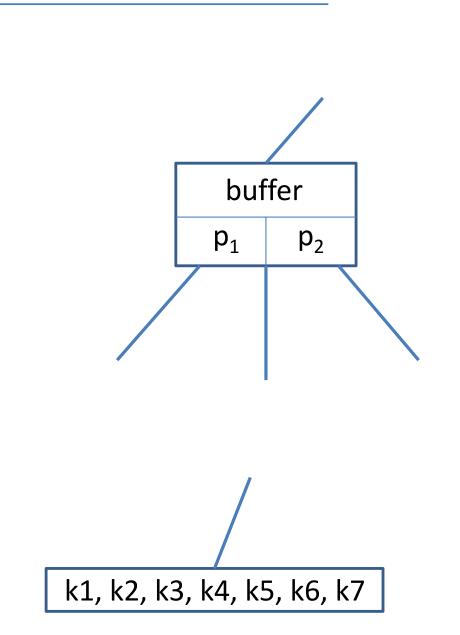
Cost?



search(key):

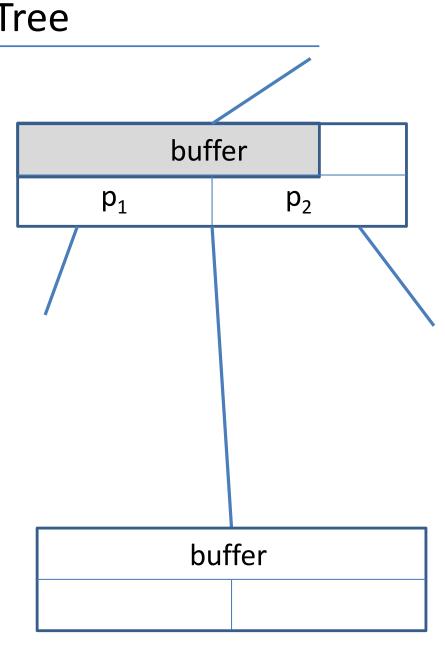
- 1) Perform a tree walk from root to leaf.
- 2) At every node on the walk, search the buffer for the key.
- 3) When you get to a leaf, search the leaf for the key.

Cost: $O(\log n)$



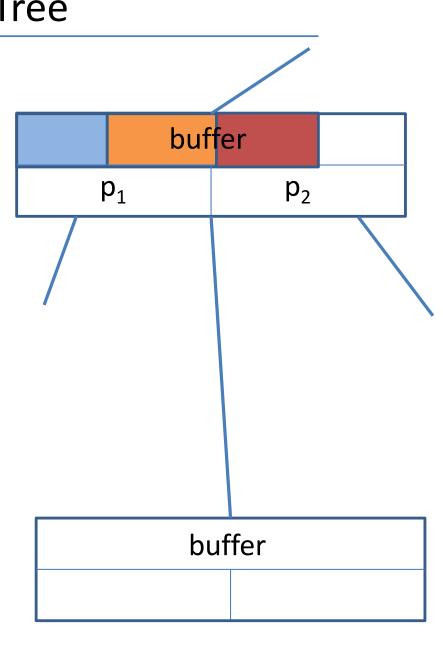
flush(node v):

- 1) Sort the buffer.
- 2) Move every operation to its proper child.
- 3) Clean child buffer (e.g., remove duplicates).
- 4) Recursively flush child buffer, if necessary.



flush(node v):

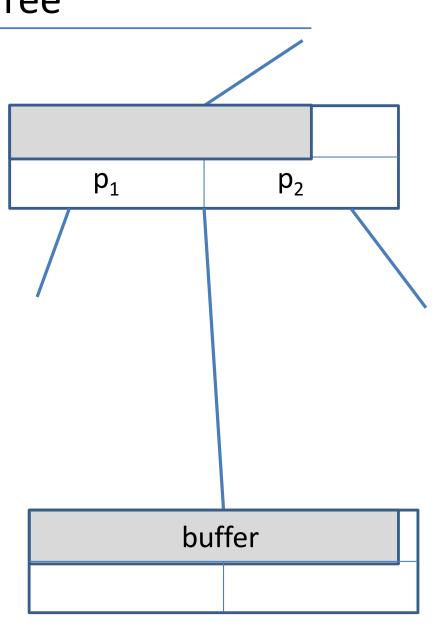
- 1) Sort the buffer.
- 2) Move every operation to its proper child.
- 3) Clean child buffer (e.g., remove duplicates).
- 4) Recursively flush child buffer, if necessary.



One special case:

If child buffer gets full, then pause, flush it, and then continue flushing the parent.

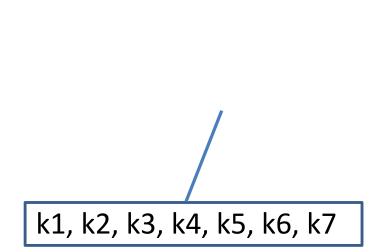
- Each flush is size at most 2B.
- So only need to pause for flushing each child once.



At a leaf

When flushing to a leaf:

- A leaf has no buffer.
- All keys stored at leaves.



k1, k2, k3, k4, k5, k6, k7

At a leaf

When flushing to a leaf:

- A leaf has no buffer.
- All keys stored at leaves.
- First perform all delete operations at leaf.

At a leaf

When flushing to a leaf:

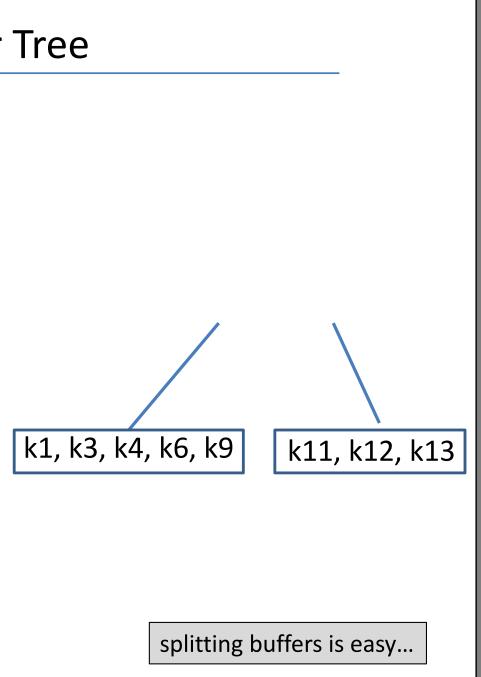
- A leaf has no buffer.
- All keys stored at leaves.
- First perform all delete operations at leaf.
- Then perform inserts, and do splits as needed.

k1, k3, k4, k6, k9, k11, k12, k13

At a leaf

When flushing to a leaf:

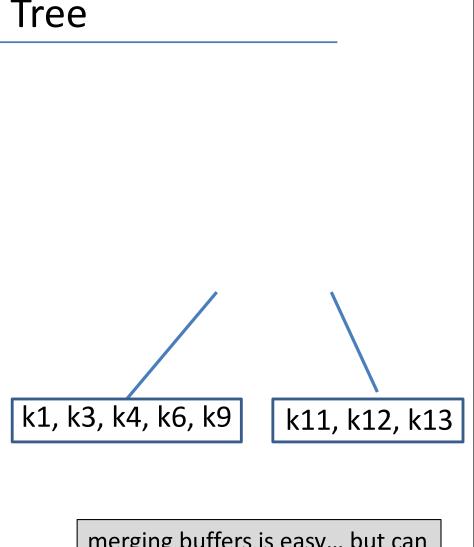
- A leaf has no buffer.
- All keys stored at leaves.
- First perform all delete operations at leaf.
- Then perform inserts, and do splits as needed.



At a leaf

When flushing to a leaf:

- A leaf has no buffer.
- All keys stored at leaves.
- First perform all delete operations at leaf.
- Then perform inserts, and do splits as needed.
- At end, do merges.



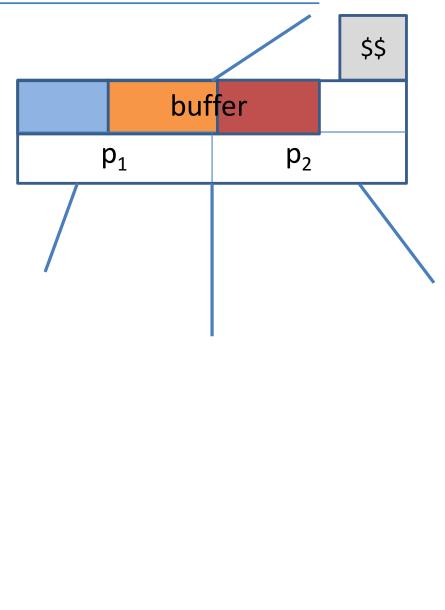
merging buffers is easy... but can result in flush operations

Amortized Analysis

Each node has a bank account.

Every operation:

If root-to-leaf path for a key touches a node, it adds
 θ(1/B) dollars to the bank account for that node.



Amortized Analysis

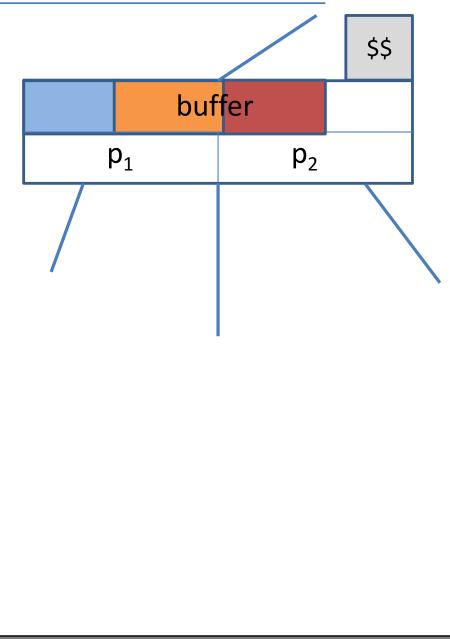
Each node has a bank account.

Every operation:

If root-to-leaf path for a key touches a node, it adds
 θ(1/B) dollars to the bank account for that node.

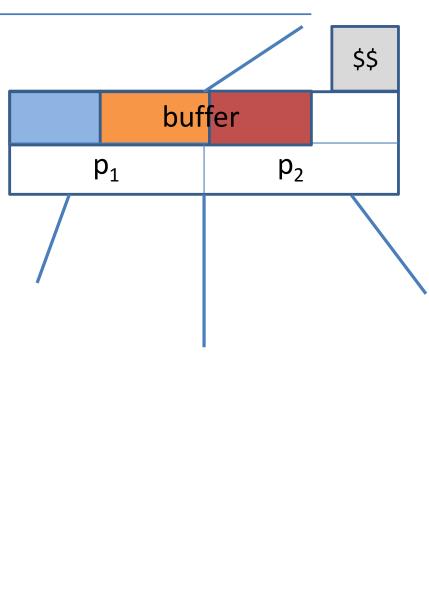
Cost: O(1) + buffer flush costs

Pay for buffer flush from bank account.



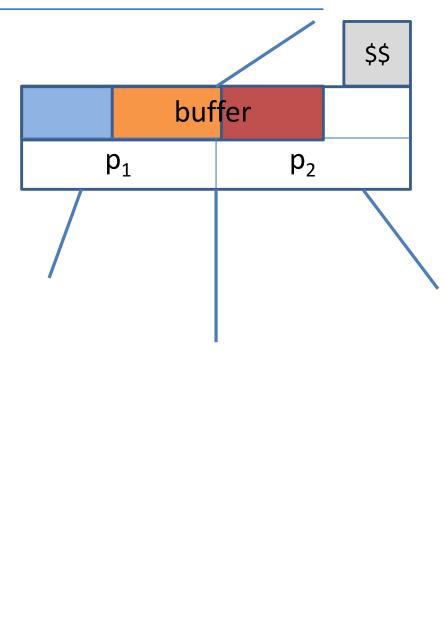
Amortized Analysis

Cost of flush at node v: 1. Load the buffer and pointers: O(1)



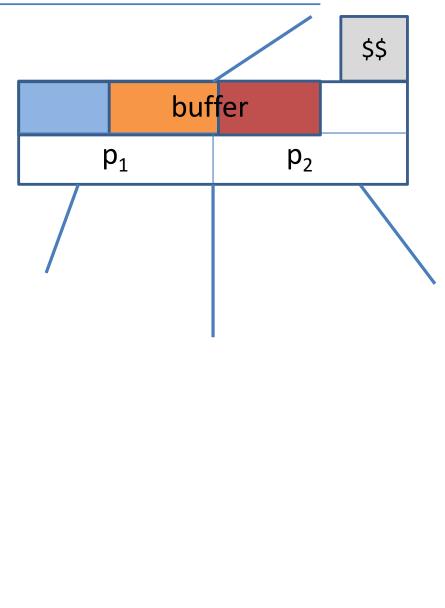
Amortized Analysis

- Load the buffer and pointers: O(1)
- 2. Sort the buffer: free.



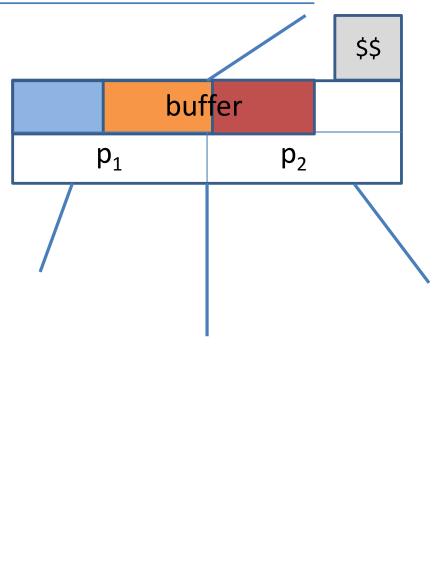
Amortized Analysis

- Load the buffer and pointers: O(1)
- 2. Sort the buffer: free.
- 3. Partition the keys among the children: free.



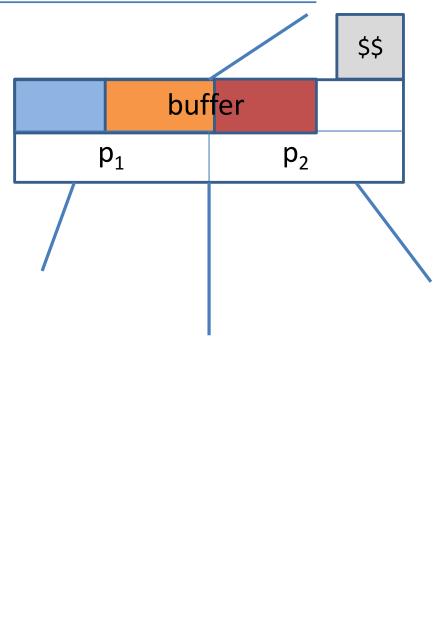
Amortized Analysis

- Load the buffer and pointers: O(1)
- 2. Sort the buffer: free.
- 3. Partition the keys among the children: free.
- 4. Load the buffers of the child nodes: O(1)
- 5. Move keys to child buffers: free.



Amortized Analysis

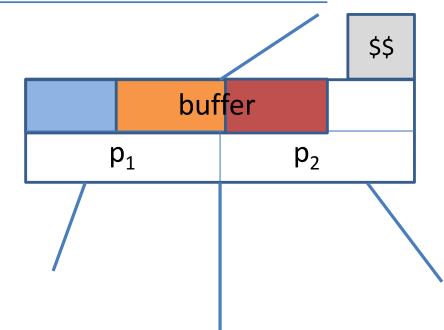
- Load the buffer and pointers: O(1)
- 2. Sort the buffer: free.
- 3. Partition the keys among the children: free.
- 4. Load the buffers of the child nodes: O(1)
- 5. Move keys to child buffers: free.
- 6. Recursive flushing charged to child nodes.



Amortized Analysis

Cost of flush at node v:

- 1. Load the buffer and pointers: O(1)
- 2. Sort the buffer: free.
- 3. Partition the keys among the children: free.
- 4. Load the buffers of the child nodes: O(1)
- 5. Move keys to child buffers: free.
- 6. Recursive flushing charged to child nodes.



Each flush costs O(1).

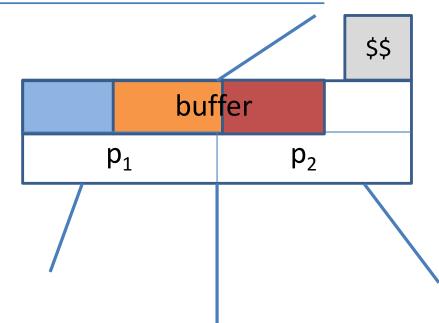
A flush only occurs when buffer contains at least **B** items.

Each item contributes θ(1/B) to the bank account is enough!

Amortized Analysis

Cost of splitting/merging buffers:

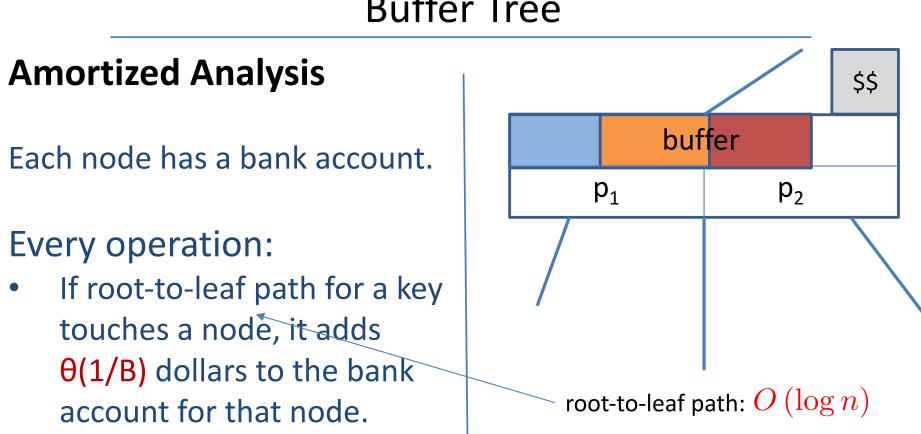
- Each split/merge costs O(1).
- By previous analysis of (a,b)-tree, a split/merge only occurs (at most) once every B-1 operations.
- Thus each operation is charge O(1/B) per split/merge.



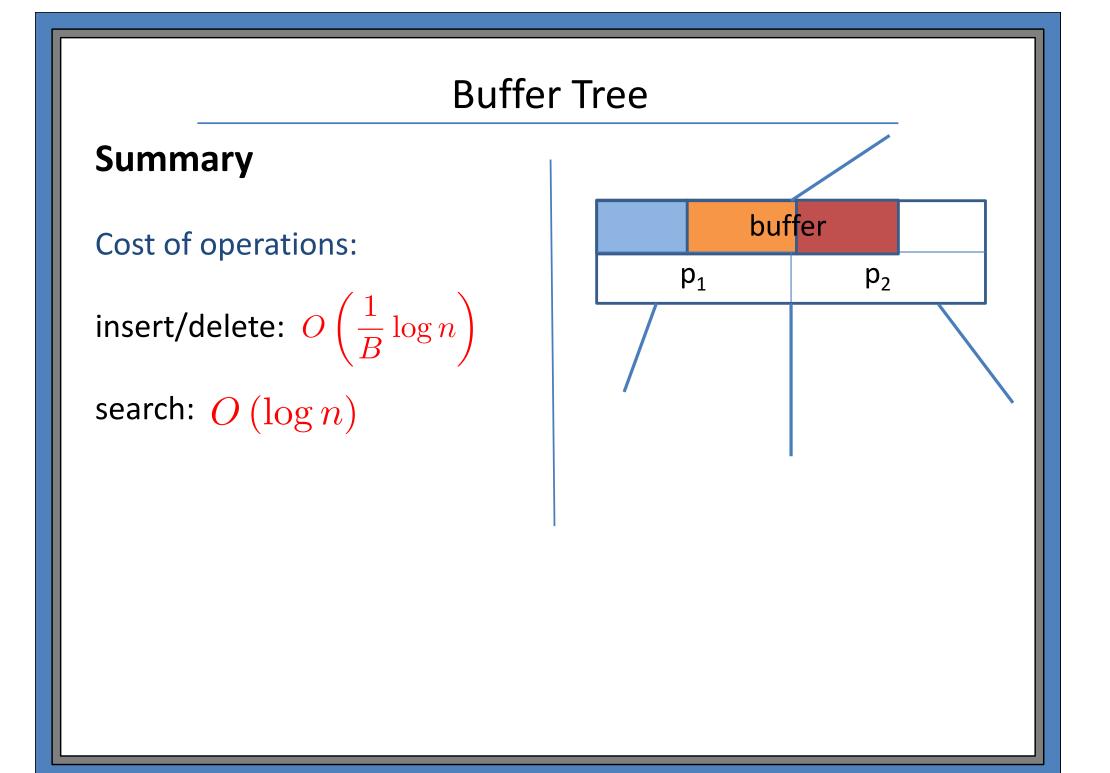
Each split/merge costs O(1).

A split/merge only occurs when at least B-1 operations occur.

Each item contributes θ(1/B) to the bank account is enough!



Conclusion: Cost of insert/delete is: $O\left(\frac{1}{B}\log n\right)$

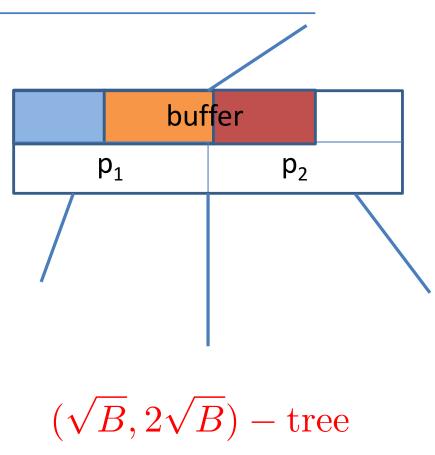


Better trade-off:

What if degree of each node is increased to: \sqrt{B}

insert/delete: ??

search: ??



Better trade-off:

What if degree of each node is increased to: \sqrt{B}

What if degree of each node is increased to: B^{ϵ}

 $\begin{array}{c|c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

insert/delete: ??

search: ??

Today's Plan

Searching and Sorting

1. B-trees

- \Rightarrow Algorithm
- ⇒ Amortized analysis

2. Buffer trees

- ⇒ Write-optimized data structures
- ⇒ Buffered data structures
- ⇒ Amortized analysis

3. van Emde Boas Search Tree

- ⇒ Cache-oblivious algorithms
- ⇒ van Emde Boas memory layout

What if you do not know the value of **B** or **M**?

Cache size differ on every machine, on every architecture, and at different levels of the caching hierarchy. Without knowing the specific hardware, how do you optimize properly?

Idea:

Design an algorithm that does not know B or M.

Analyze the algorithm in the external memory model (where B and M are known).

Example: an array

An algorithm for scanning an array from beginning to end does not depend on B or M.

The running time for an algorithm to scan an array of size n is O(n/B).

Today:

Static cache-oblivious search tree.

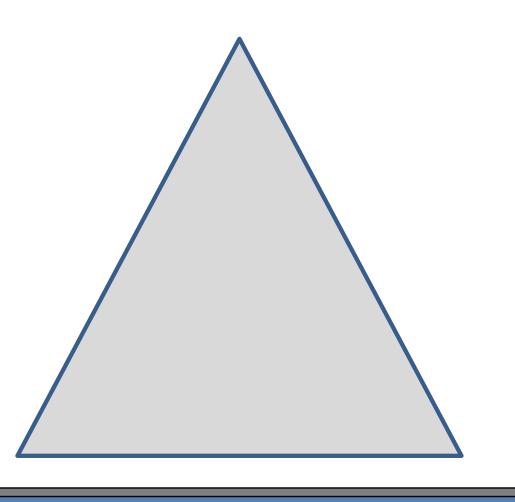
Goal: build a tree that supports efficient search operations.

(We will not support insert and delete. See research papers.)

Recursive Memory Layout: van Emde Boas

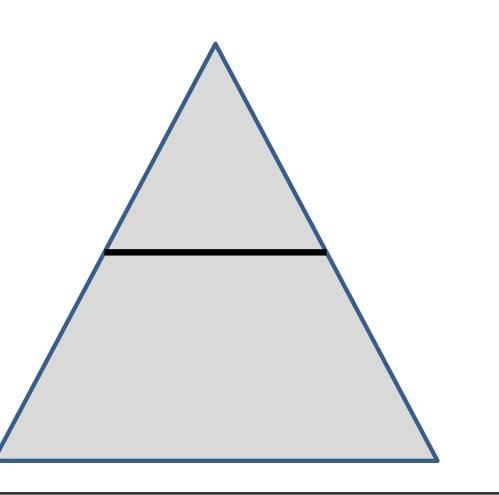
Recursive Memory Layout: van Emde Boas

1. Start with a (perfectly) balanced binary search tree.

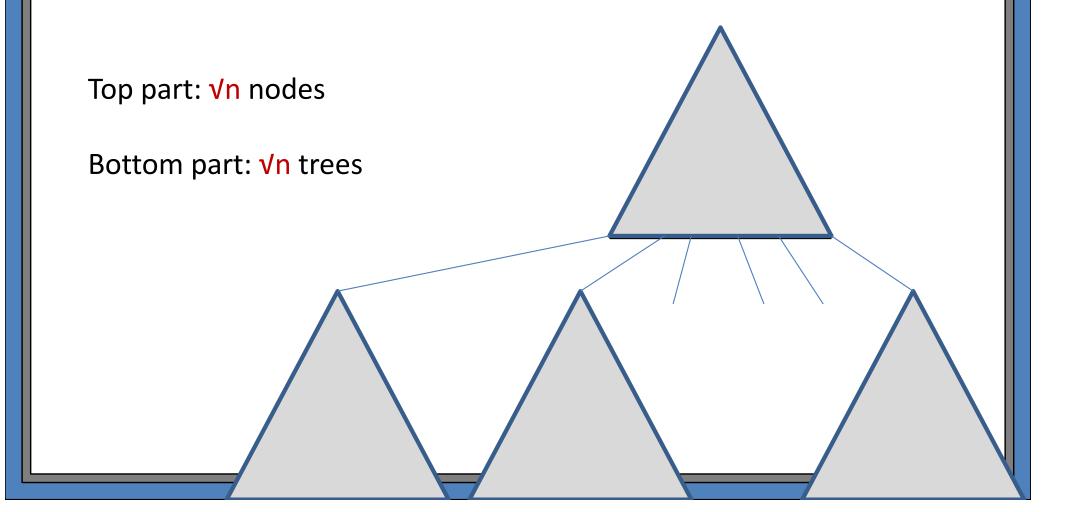


Recursive Memory Layout: van Emde Boas

- 1. Start with a (perfectly) balanced binary search tree.
- 2. Divide it in half, from top to bottom.

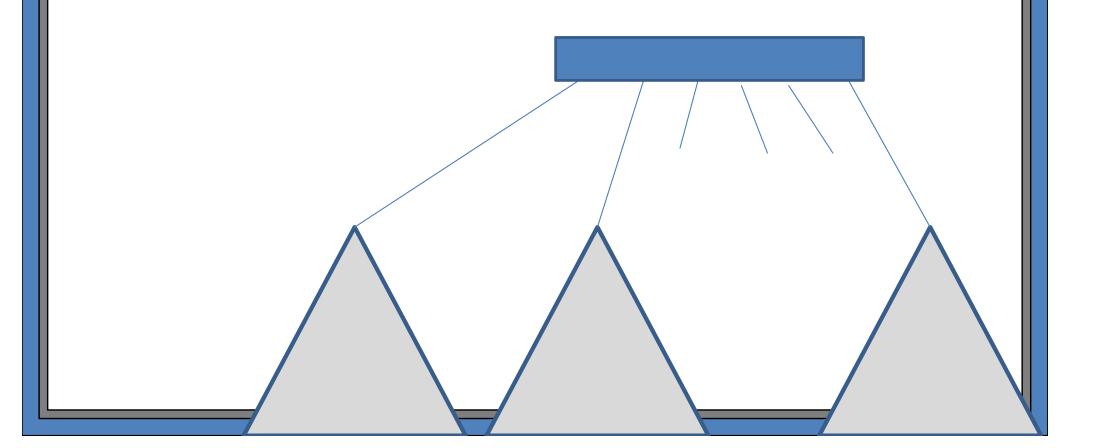


- 1. Start with a (perfectly) balanced binary search tree.
- 2. Divide it in half, from top to bottom.

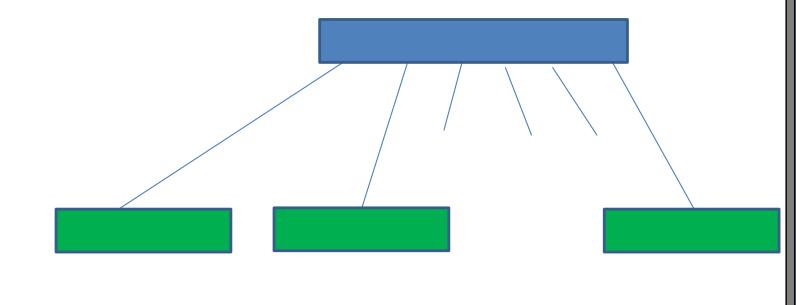


- 1. Start with a (perfectly) balanced binary search tree.
- 2. Divide it in half, from top to bottom.
- 3. Recursively layout each of the $\sqrt{n + 1}$ trees.

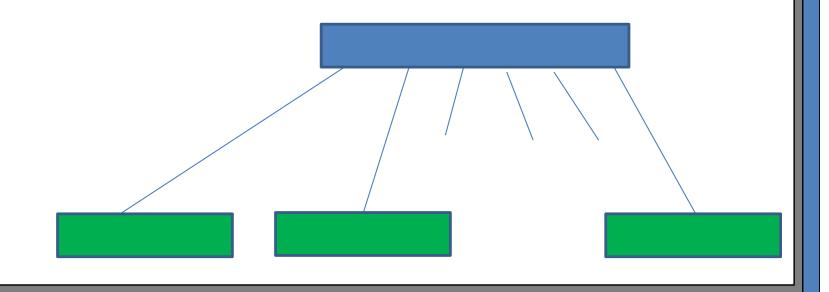
- 1. Start with a (perfectly) balanced binary search tree.
- 2. Divide it in half, from top to bottom.
- 3. Recursively layout each of the $\sqrt{n + 1}$ trees.



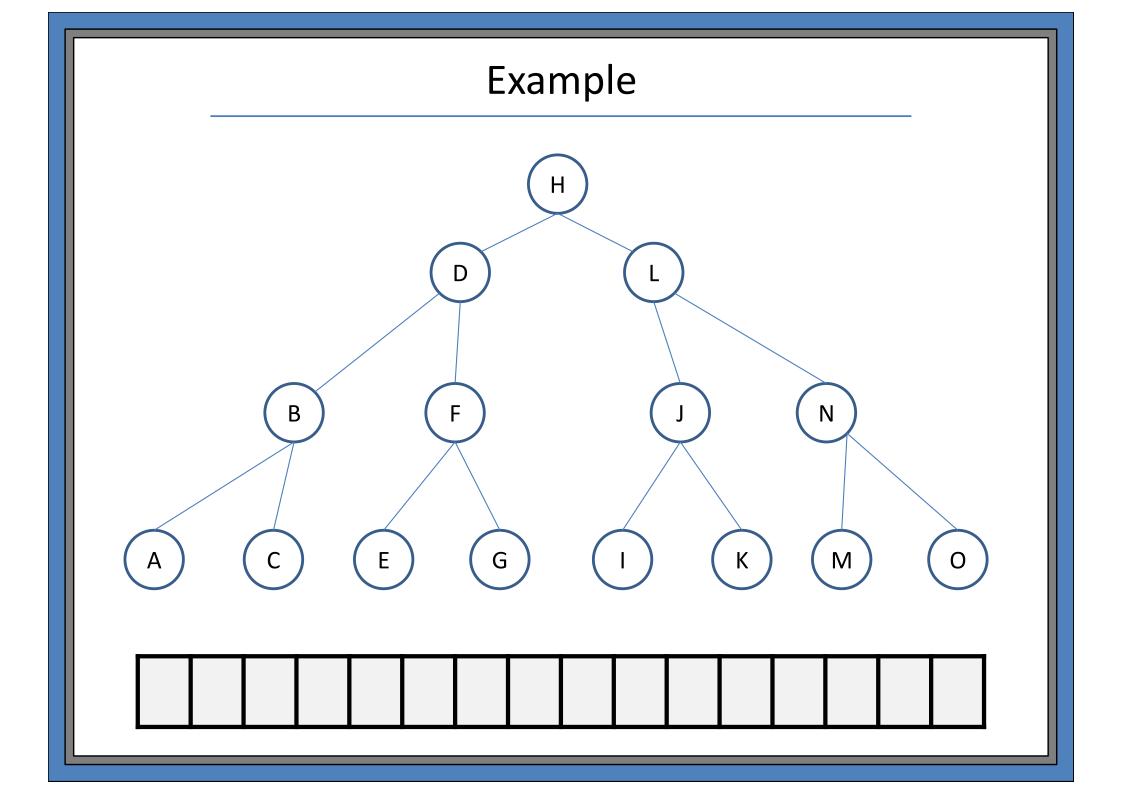
- 1. Start with a (perfectly) balanced binary search tree.
- 2. Divide it in half, from top to bottom.
- 3. Recursively layout each of the $\sqrt{n + 1}$ trees.

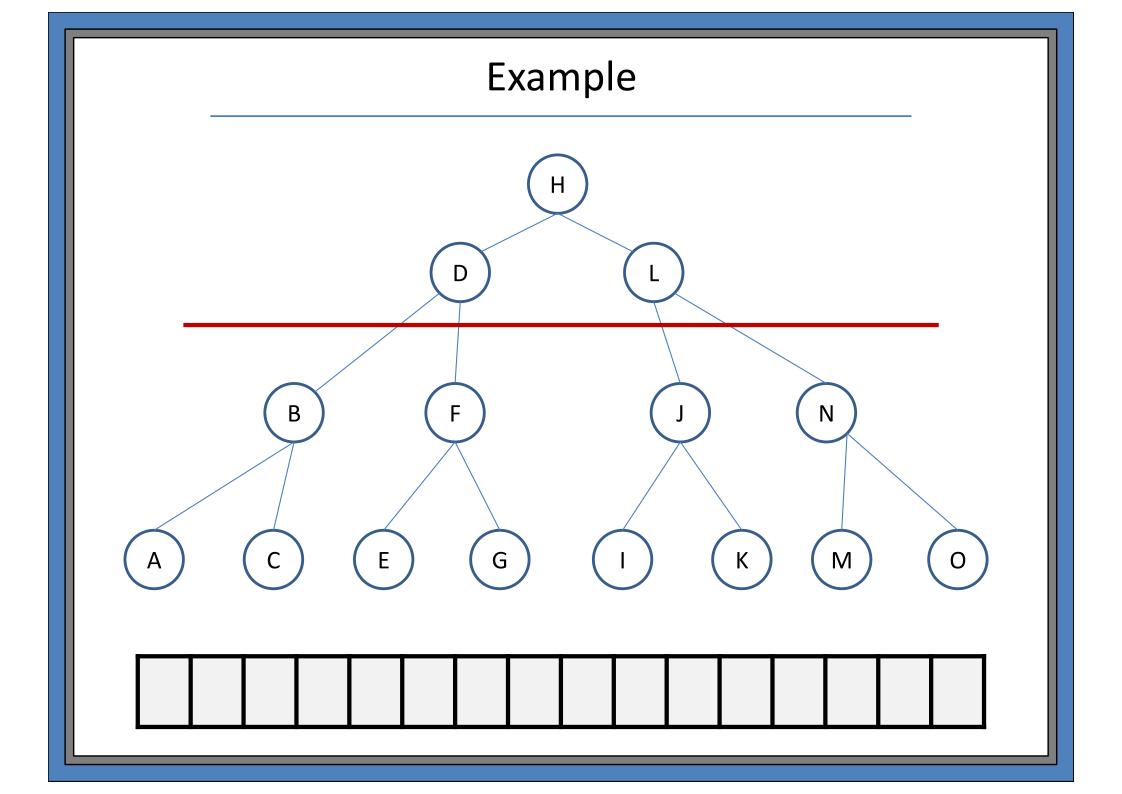


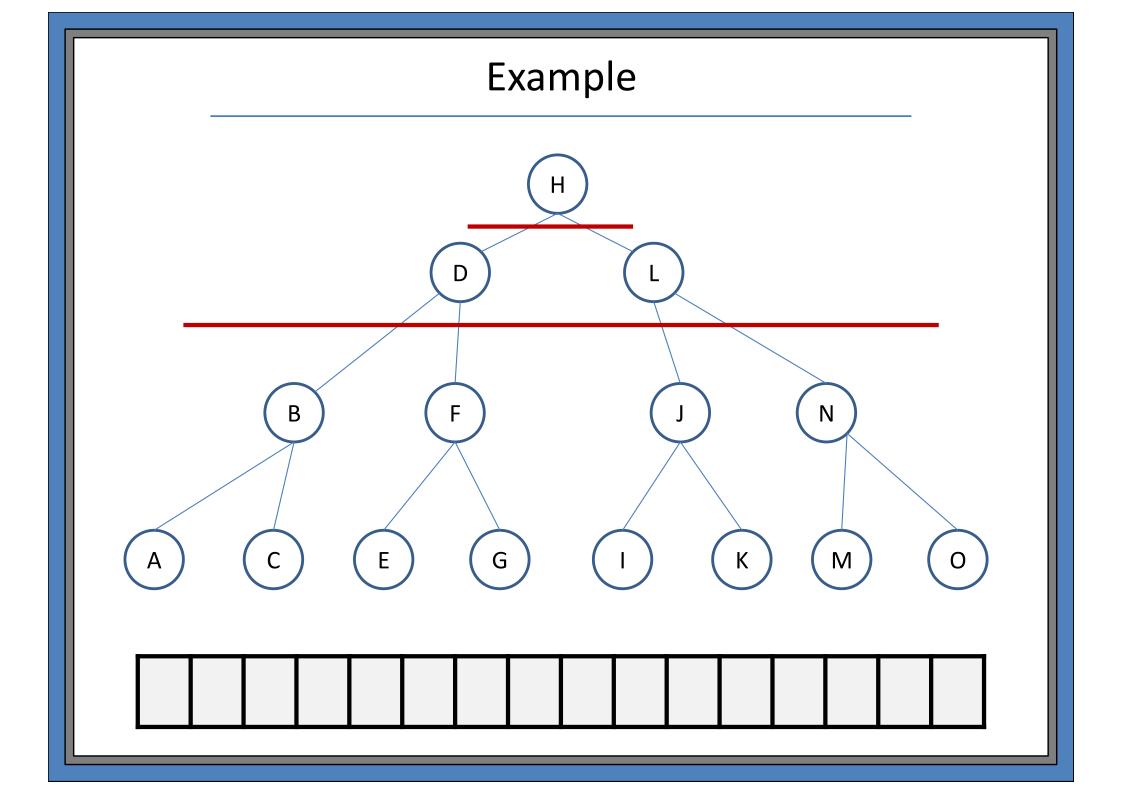
- 1. Start with a (perfectly) balanced binary search tree.
- 2. Divide it in half, from top to bottom.
- 3. Recursively layout each of the $\sqrt{n + 1}$ trees.
- 4. Layout: root, followed by children in order.

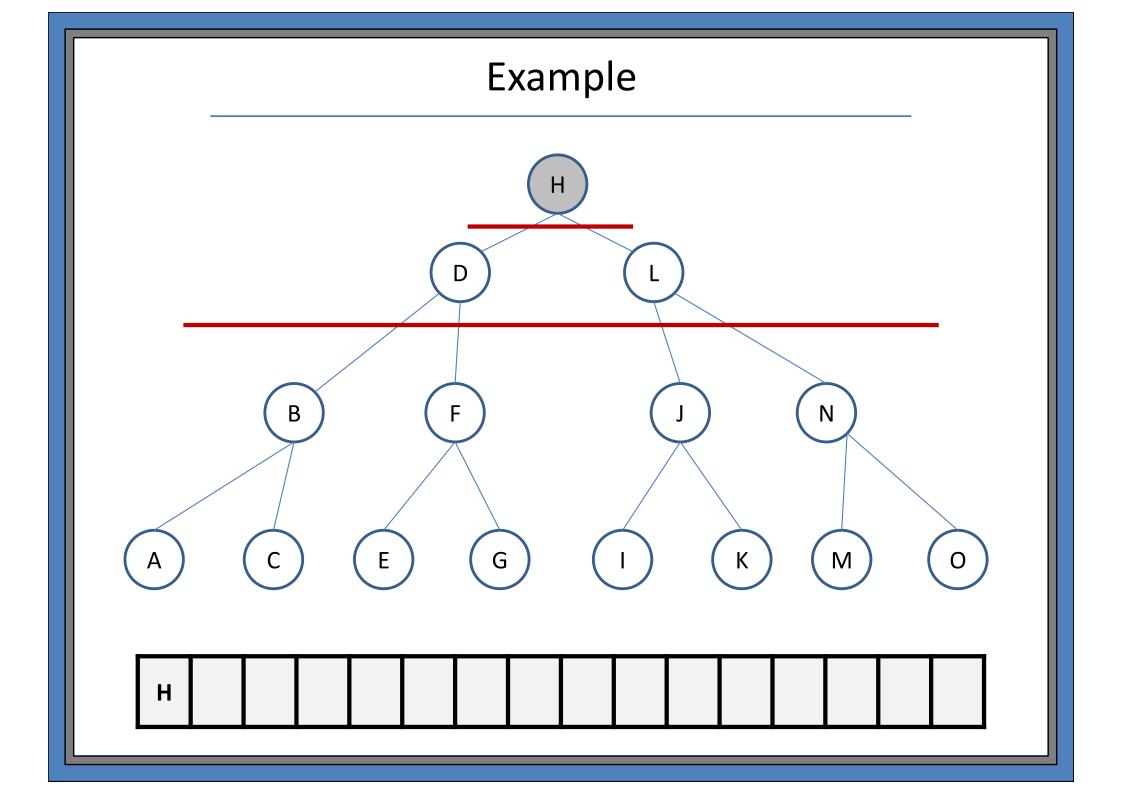


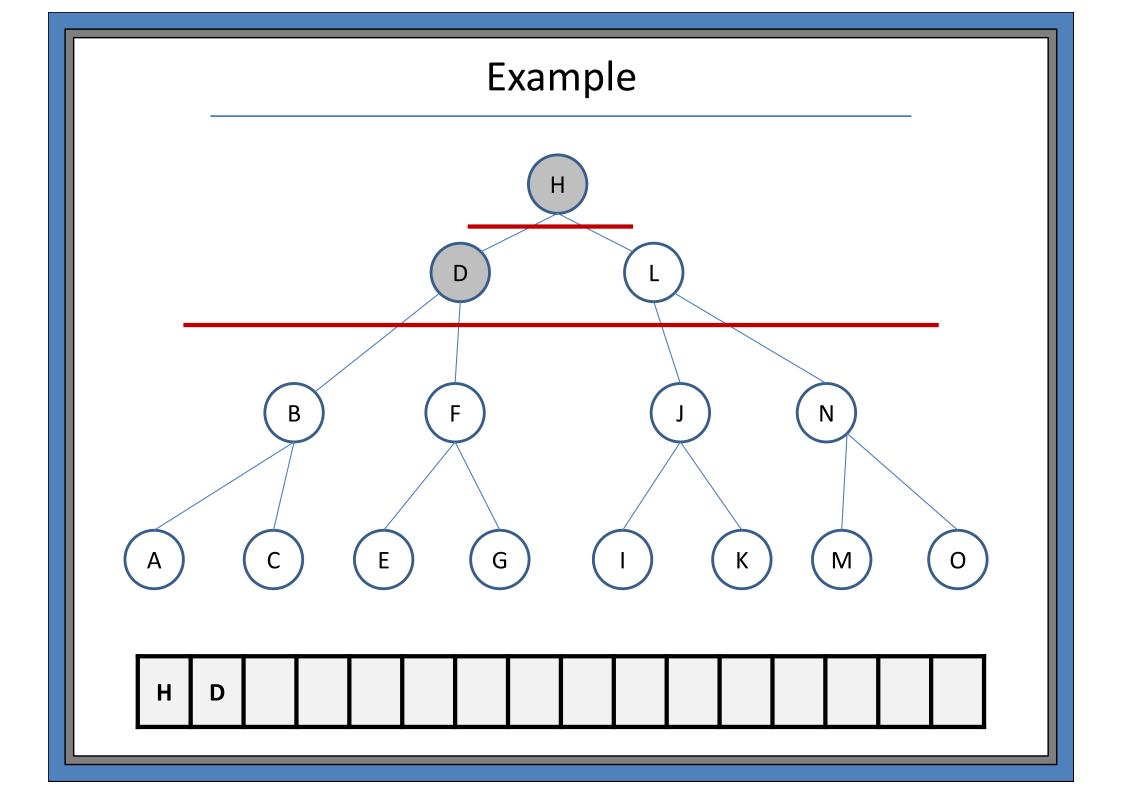
- 1. Start with a (perfectly) balanced binary search tree.
- 2. Divide it in half, from top to bottom.
- 3. Recursively layout each of the $\sqrt{n + 1}$ trees.
- 4. Layout: root, followed by children in order.

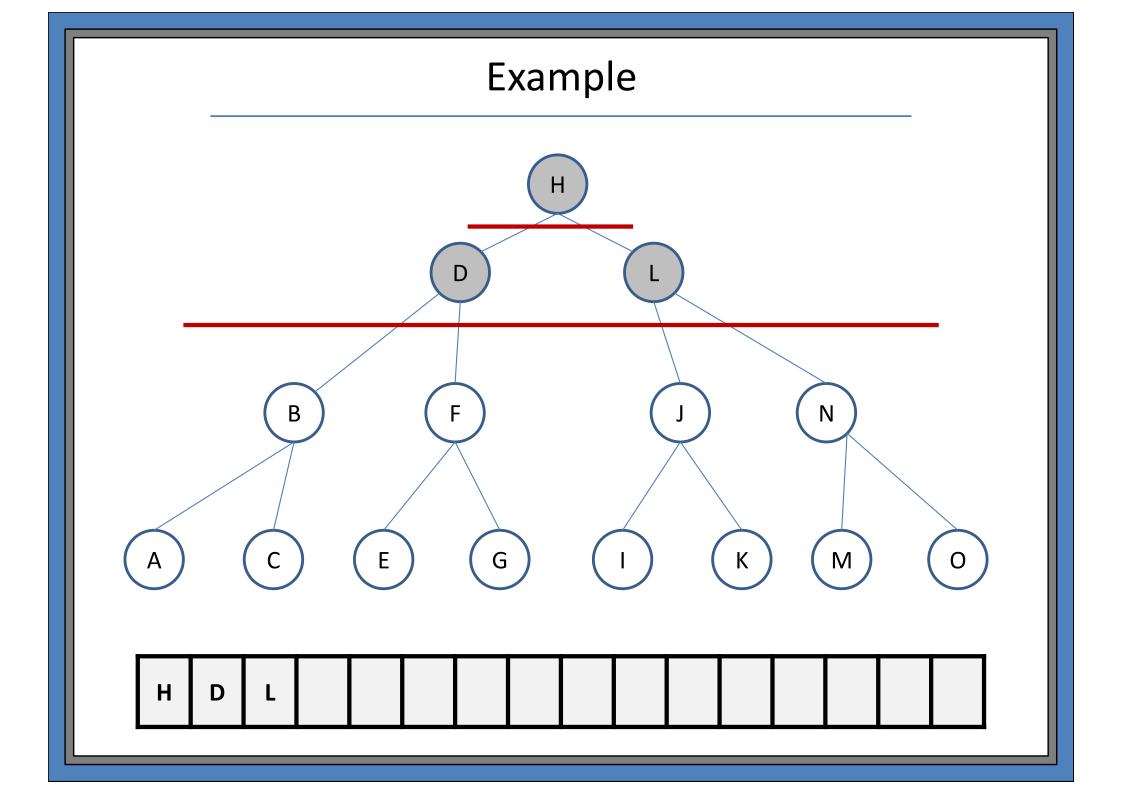


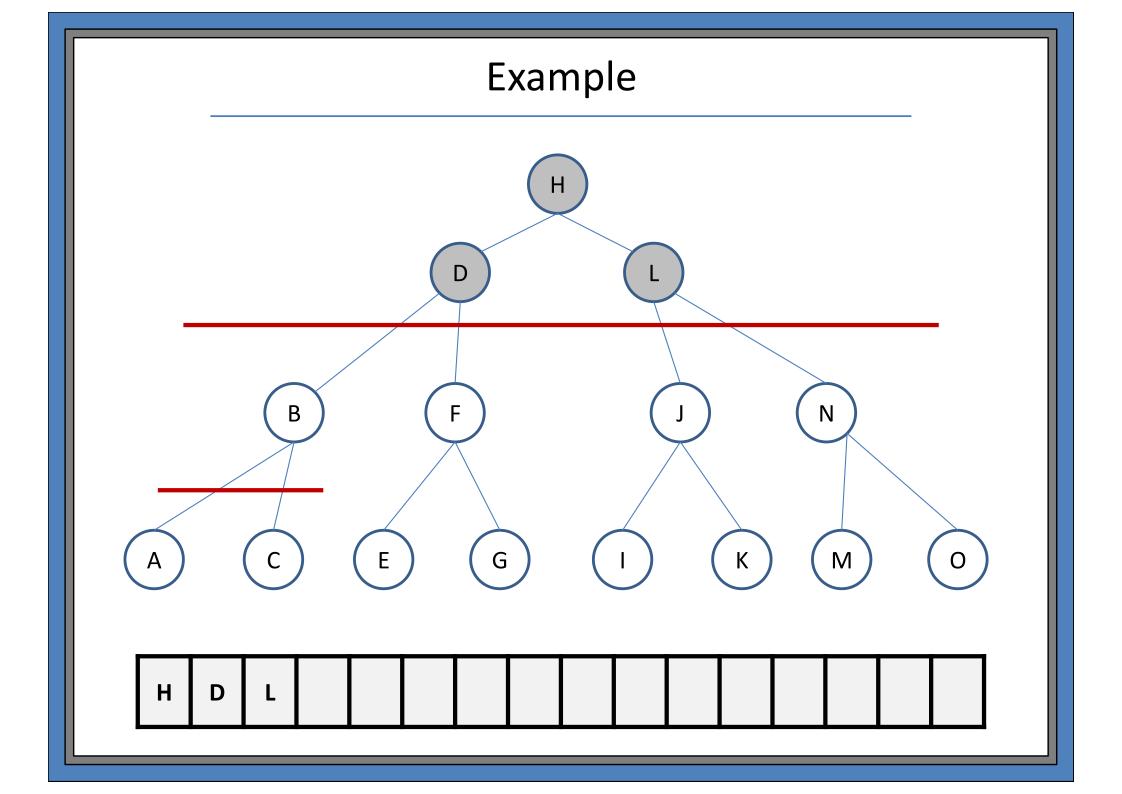


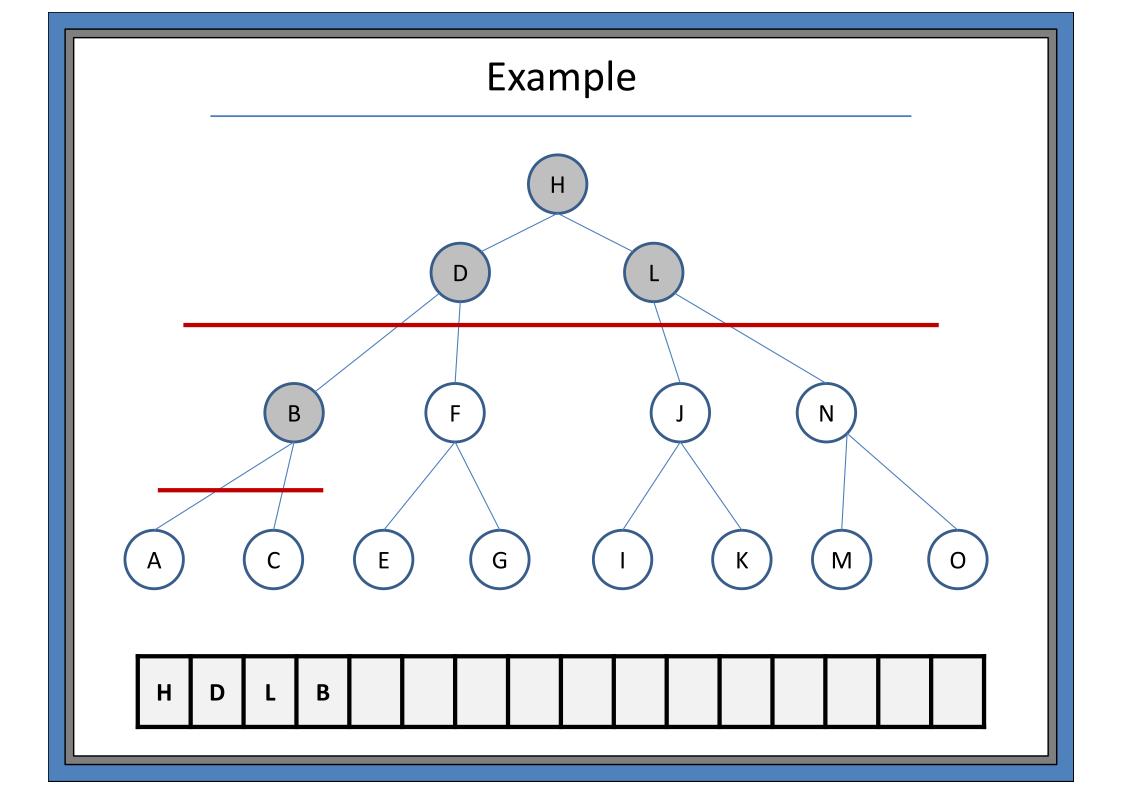


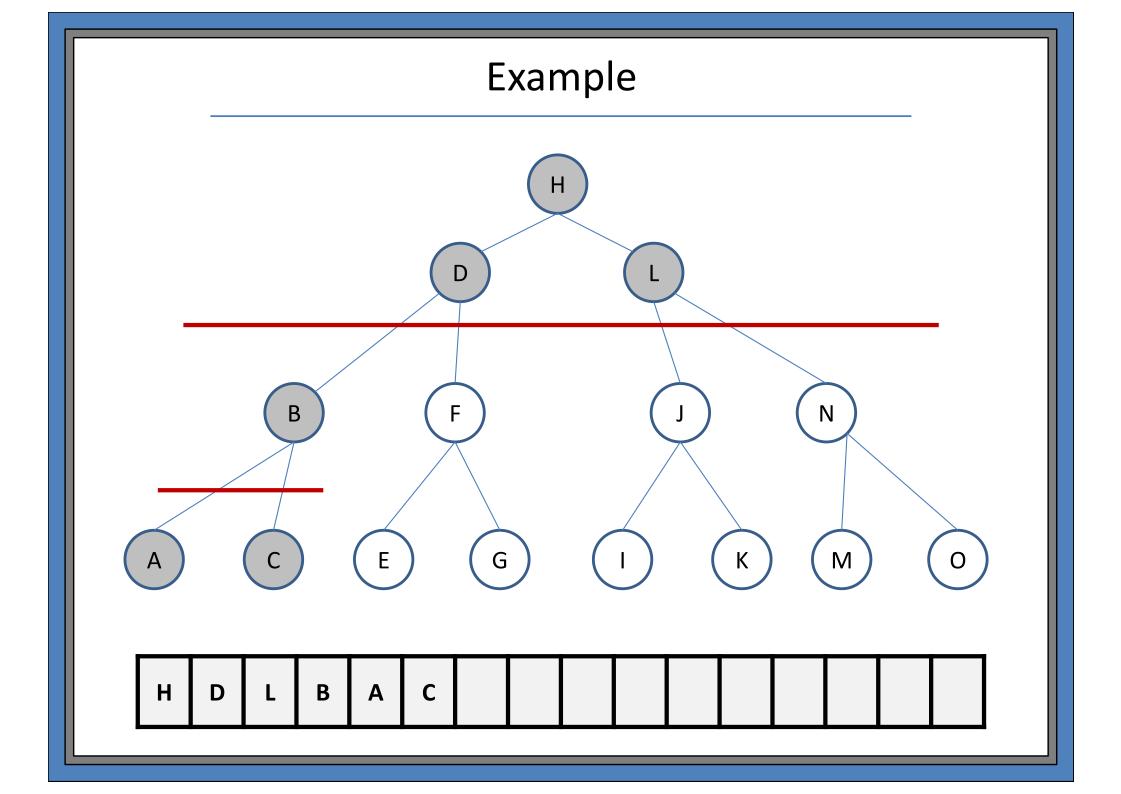




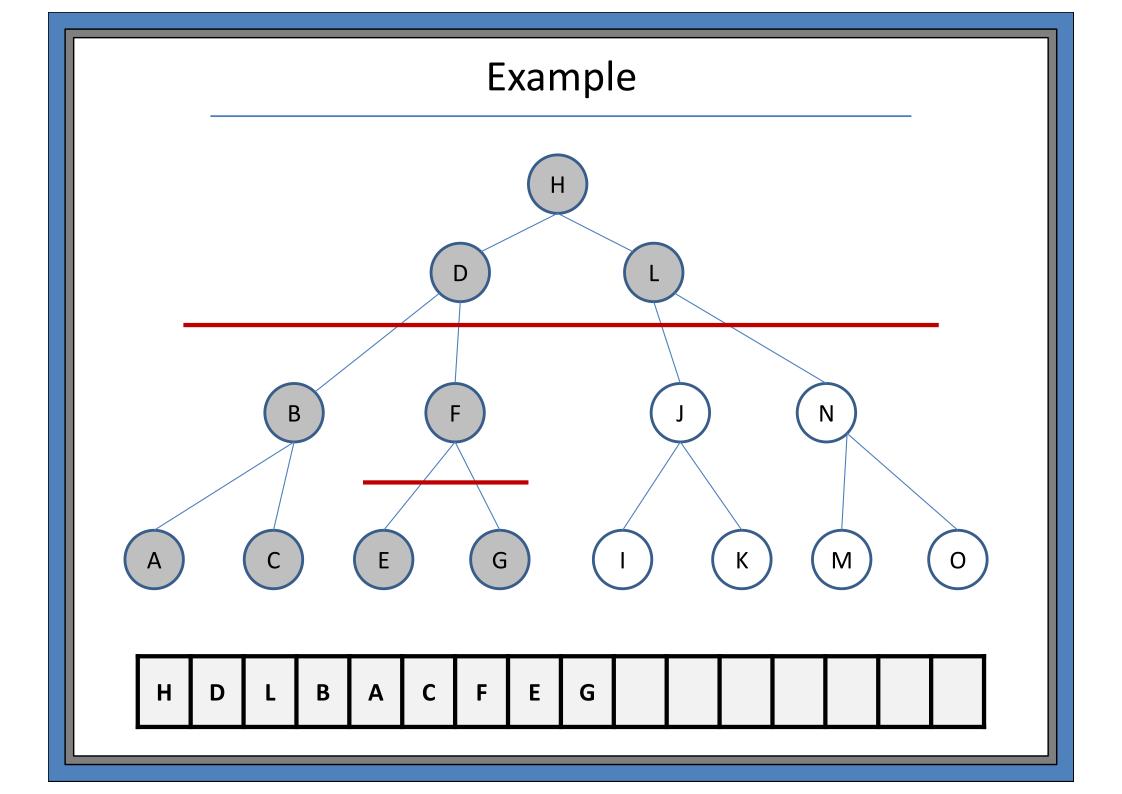


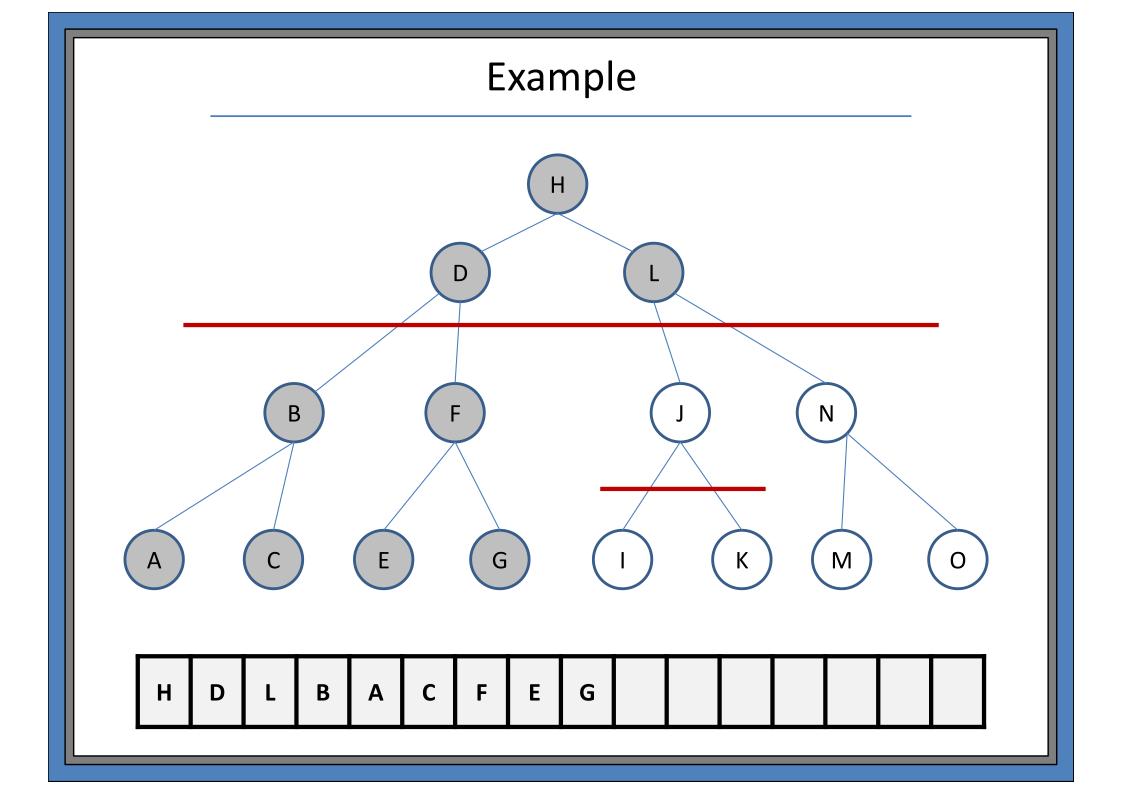


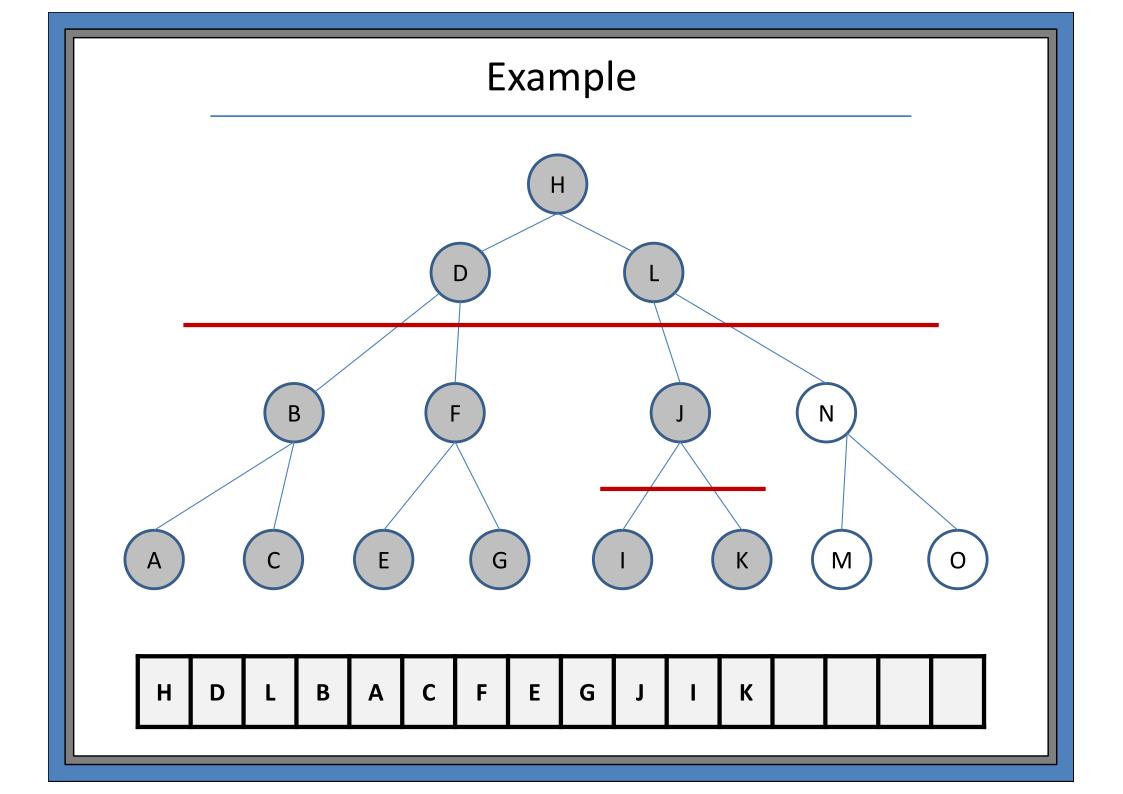


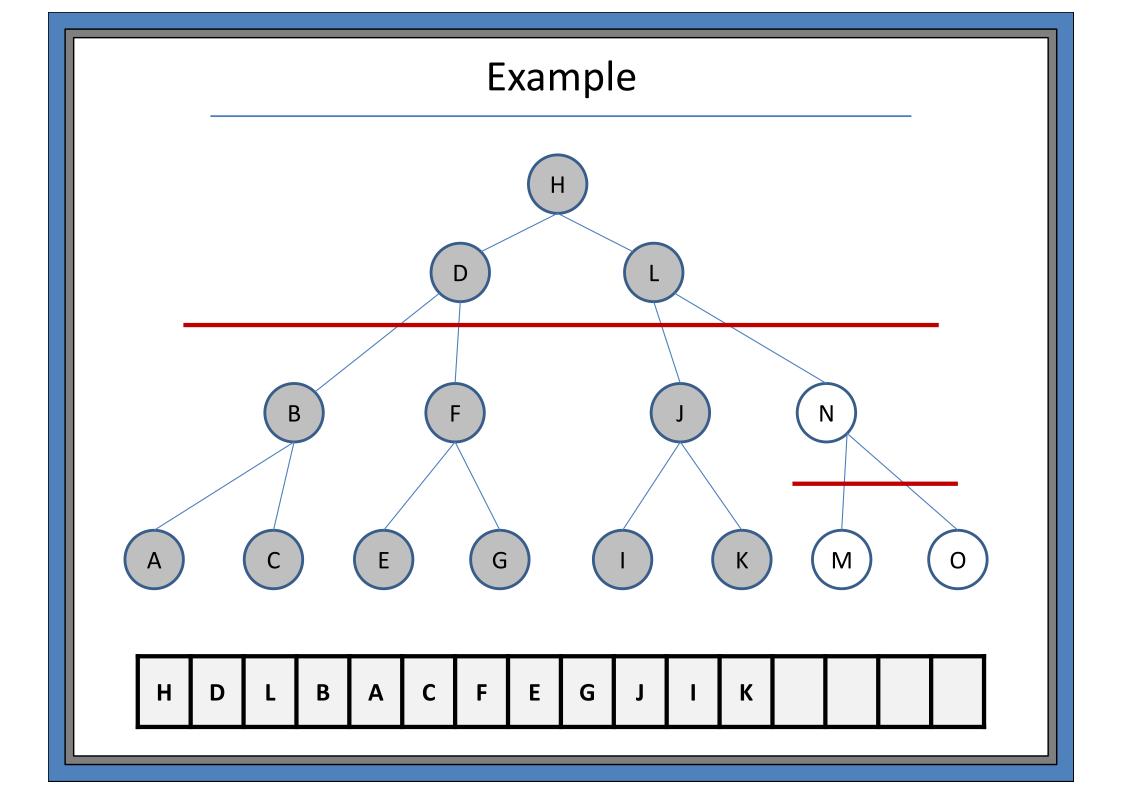


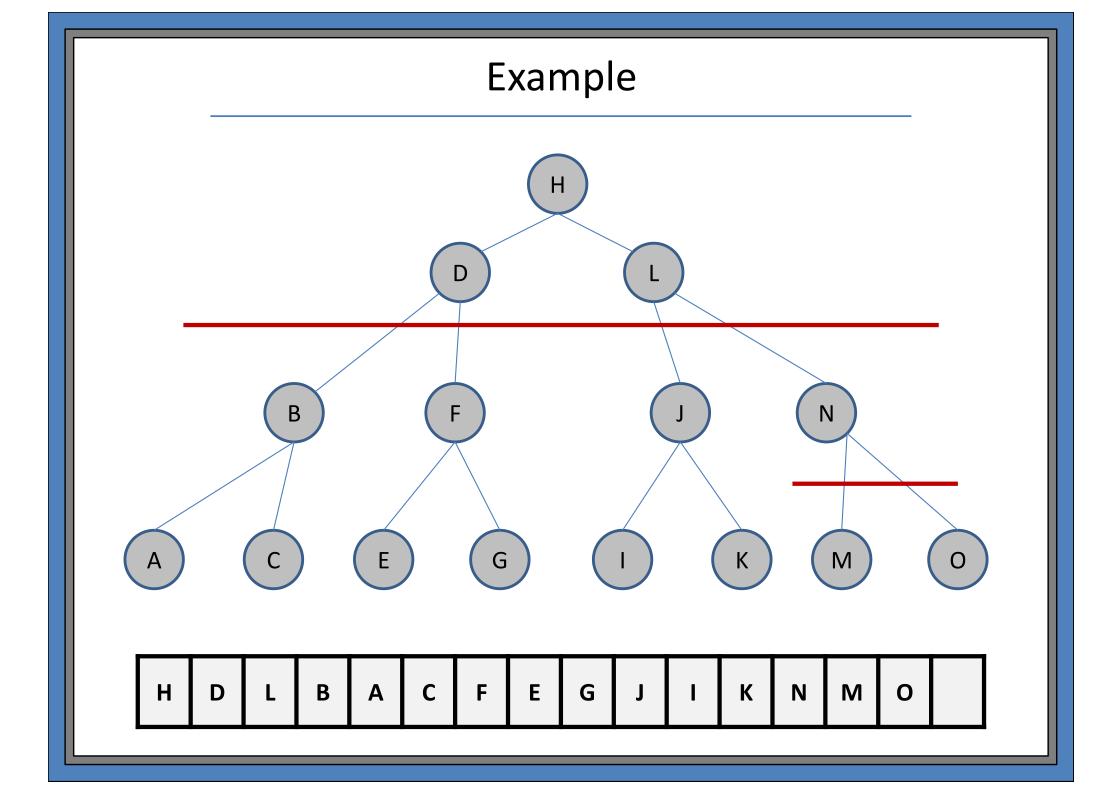


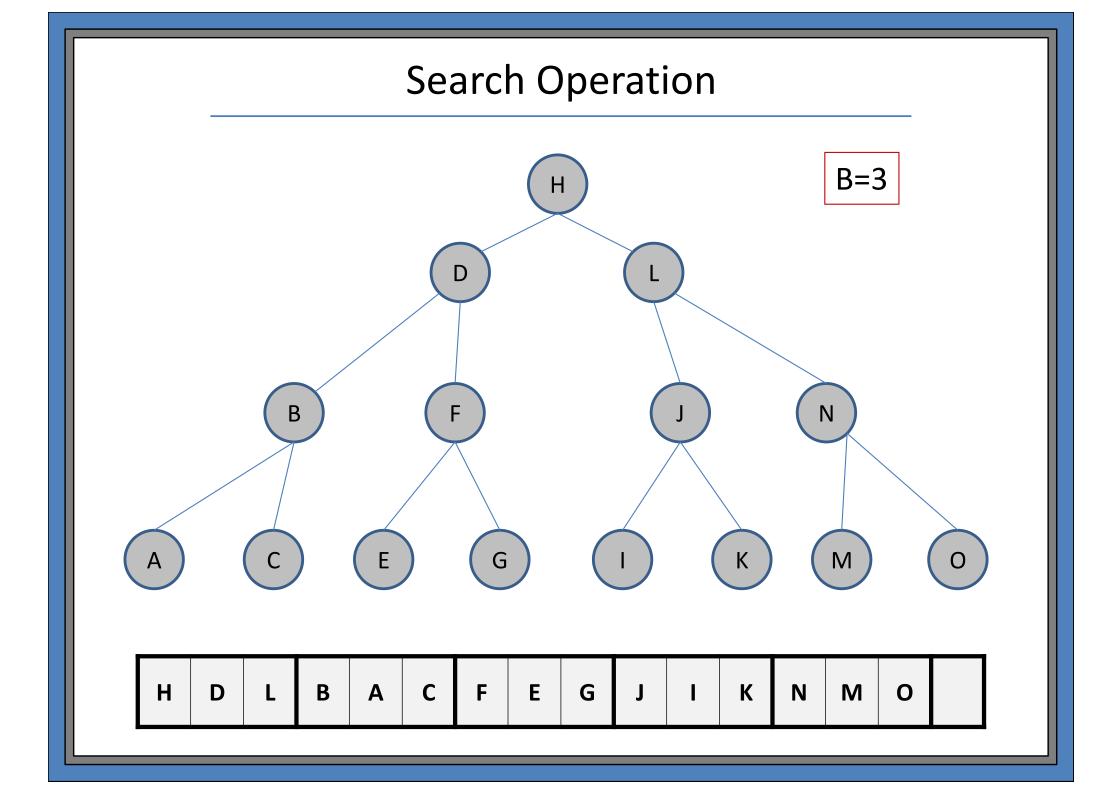


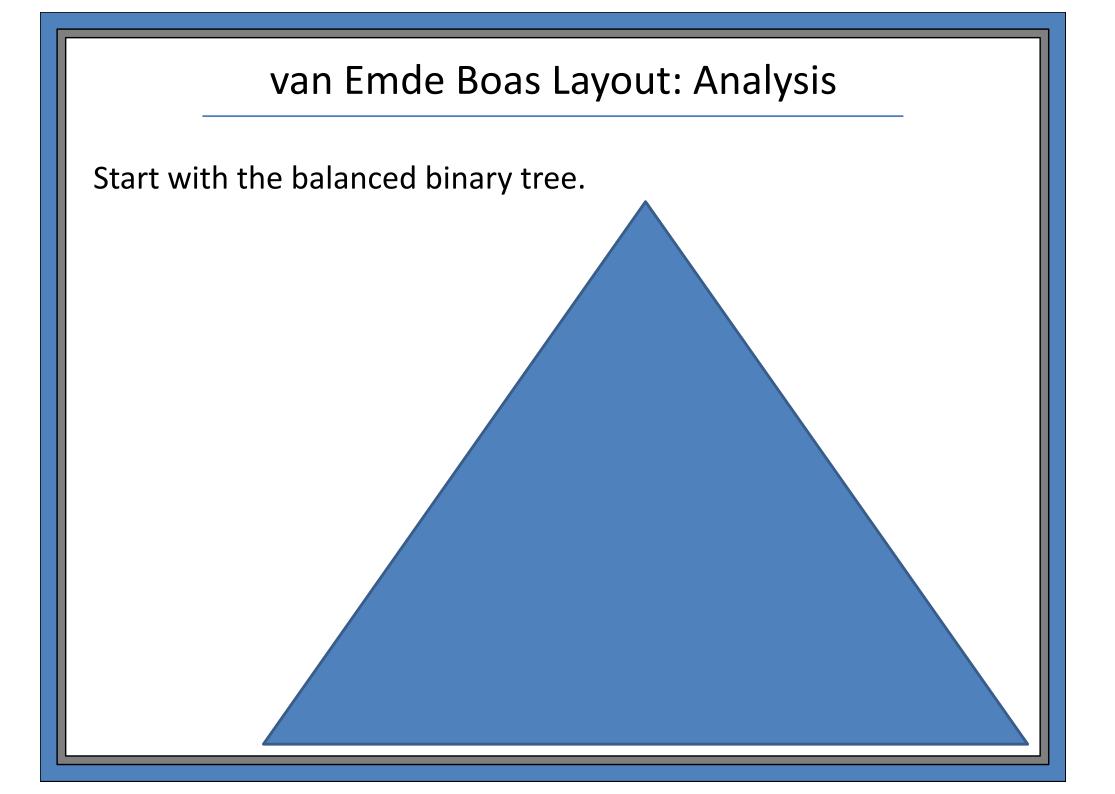


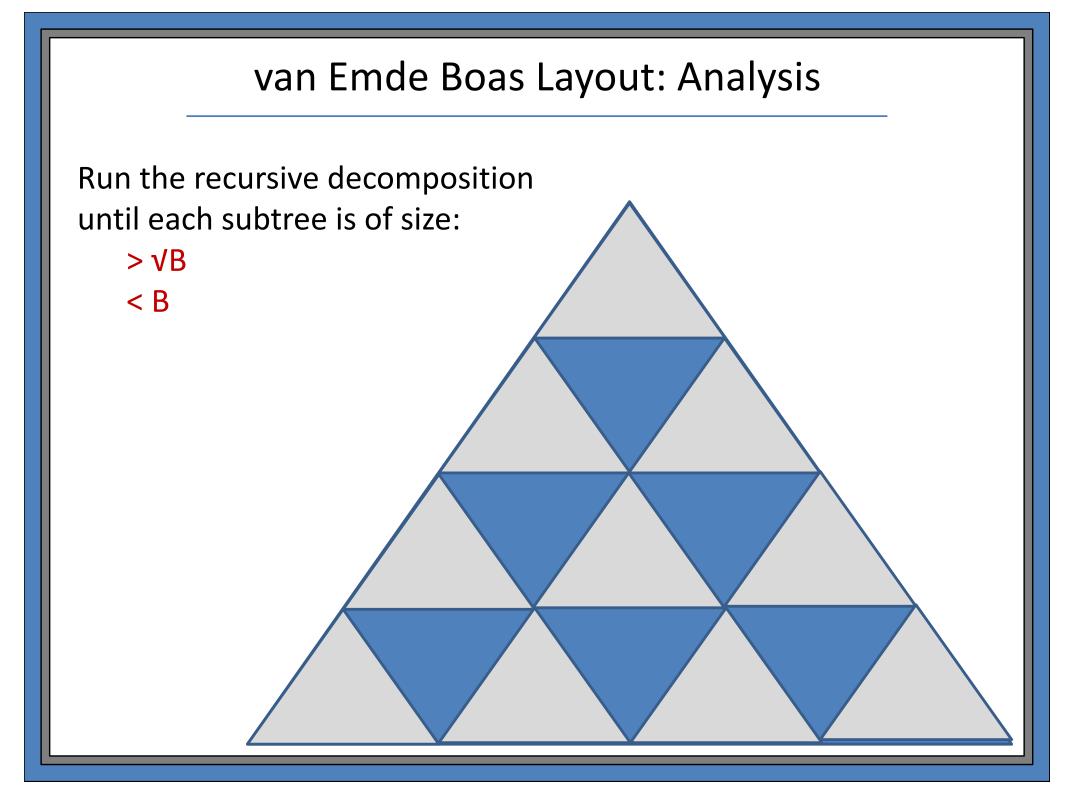


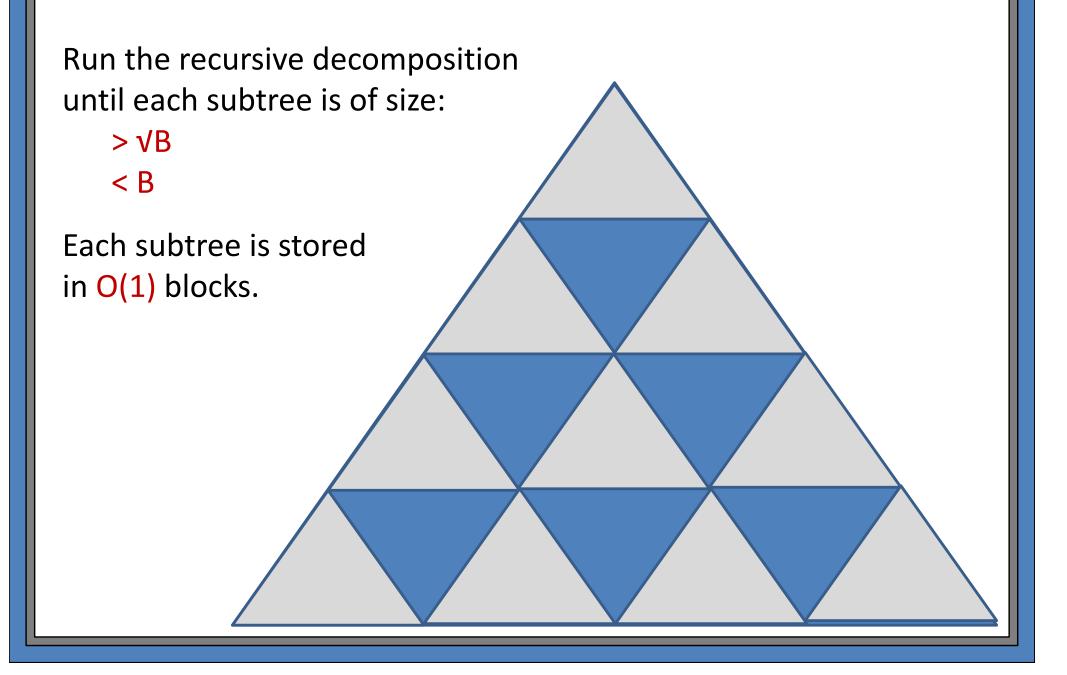


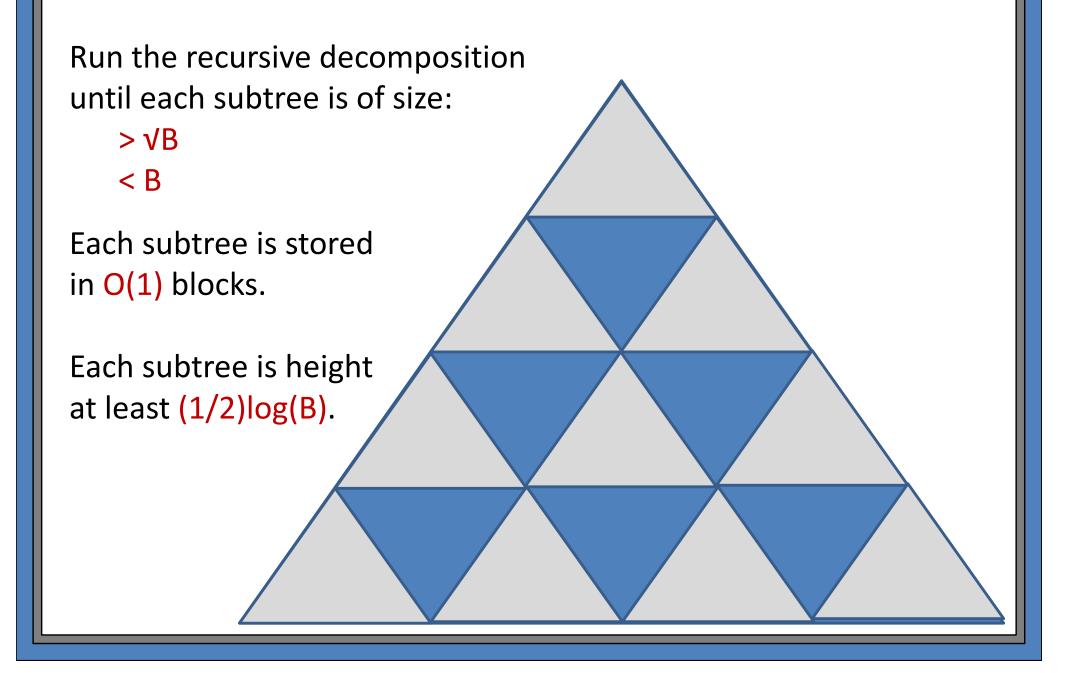


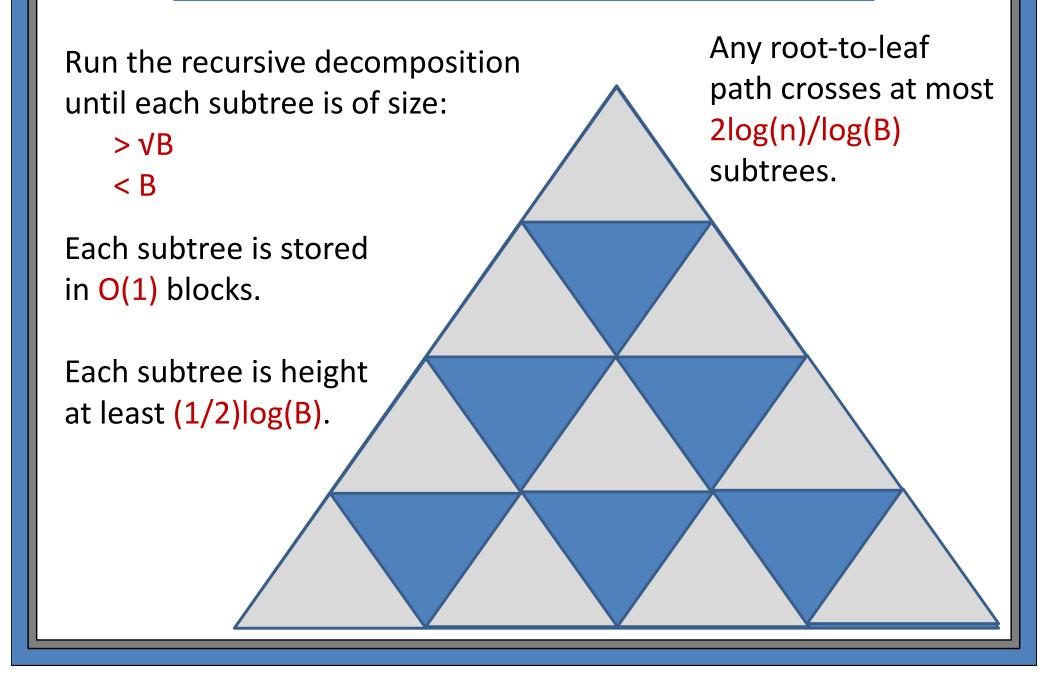


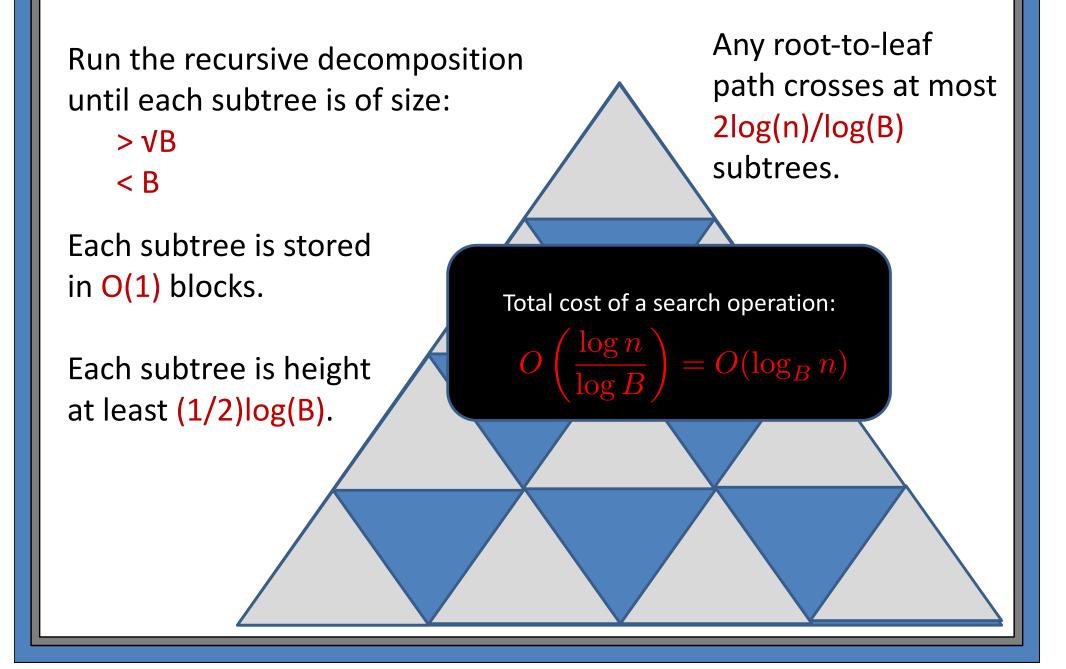












Today's Plan

Searching and Sorting

1. B-trees

- \Rightarrow Algorithm
- ⇒ Amortized analysis

2. Buffer trees

- ⇒ Write-optimized data structures
- ⇒ Buffered data structures
- ⇒ Amortized analysis

3. van Emde Boas Search Tree

- ⇒ Cache-oblivious algorithms
- ⇒ van Emde Boas memory layout

Questions

Buffer tree:

What if degree of each node is increased to: \sqrt{B}

What if degree of each node is increased to: B^ϵ

Sorting:

Design a Buffer Tree that is good for sorting. (Hint: you can make the degree bigger, the buffer bigger, and/or the leaves bigger.)

Goal:
$$O\left(\frac{n}{B}\log_{M/B}\frac{n}{B}\right)$$

More sorting:

Design an external memory MergeSort algorithm.

(Hint: you need to merge more efficiently.)

(Hint 2: you will need to do a multiway merge.)

Goal:
$$O\left(\frac{n}{B}\log_{M/B}\frac{n}{B}\right)$$