Algorithms at Scale (Week 8)

Summary

Last Week: Caching

External memory model

 How to predict the performance of algorithms?

B-trees

• Efficient searching

Write-optimized data structures

• Buffer trees

Cache-oblivious algorithms

 van Emde Boas memory layout

Today: Graph Algorithms

Breadth-First-Search

Sorting your graph

MIS

- Luby's Algorithm
- Cache-efficient implementation
 MST
- Connectivity
- Minimum Spanning Tree

Announcements / Reminders

Today:

MiniProject "proposal" due today.

Next week:

Midterm exam (in class)

Announcements / Reminders

Midterm info:

- Will post sample from last year.
- In class, here, 2 hours.
- Material up to (and including) today.
 (Lecture, "tutorial", problem sets, etc.)
- One double-sided "cheat sheet" allowed

Note:

- I will be out of town.
- Prof. Diptarka Chakraborty will give the exam.

Midterm Advice

Two types of questions:

1. Algorithms questions

- For example: sublinear connectivity, streaming distinct elements, B-trees, etc.
- Know the algorithms... when they are useful... when they are not useful...
- Understand why they work.

2. Technique questions

- For example: sampling, reservoir sampling, Chernoff/Hoeffding bounds, median-of-means, etc.
- Know the techniques, how to use them, when they work (and when they don't work).

Today's Problem: Connected Components

Assumptions:

Graph G = (V,E)

- Undirected
- n nodes
- m edges
- maximum degree d

Error term: ε

Output: Number of connected components.

Summary

Last Week: Caching

External memory model

 How to predict the performance of algorithms?

B-trees

• Efficient searching

Write-optimized data structures

• Buffer trees

Cache-oblivious algorithms

 van Emde Boas memory layout

Today: Graph Algorithms

Breadth-First-Search

Sorting your graph

MIS

- Luby's Algorithm
- Cache-efficient implementation
 MST
- Connectivity
- Minimum Spanning Tree

Problem: Breadth First Search

Searching a graph:

- undirected graph G = (V,E)
- source node s

Problem: Breadth First Search

Searching a graph:

- undirected graph G = (V,E)
- source node s
- each adjacency list stored as an array (consecutive in memory)

Adjacency List Format:

Example: u : a, b, c, v v : a, e, f w : b, c, d, f

. . .

Problem: Breadth First Search

Algorithm:

- $L_0 = \{s\}$
- Repeat until done: construct L_{i+1} from L_i

Key idea: neighbors of L_i form layer L_{i+1} .

Key idea 2: remove already visited nodes.

 $L_0 = \{1\}$

Construct L_{i+1} :

- L_{i+1} = neighbors of all nodes in L_i
- 2. Sort L_{i+1}.
- 3. Remove duplicates in L_{i+1} .
- Scan L_i, L_{i+1}: remove nodes in both.
- 5. Scan L_{i-1}, L_{i+1}: remove nodes in both.

Invariant: each L_i is sorted.

Cost to construct L_{i+1} :

- 1. L_{i+1} = neighbors of all $2|L_i| + edges(L_i)/B$ nodes in L_i
- 2. Sort L_{i+1}.
- 3. Remove duplicates in L_{i+1} .
- Scan L_i, L_{i+1}: remove nodes in both.
- 5. Scan L_{i-1}, L_{i+1}: remove nodes in both.

Cost to construct L_{i+1} :

- 1. L_{i+1} = neighbors of all $2|L_i| + edges(L_i)/B$ nodes in L_i
- 2. Sort L_{i+1}.

 $sort(L_i)$

- Remove duplicates in L_{i+1}.
- Scan L_i, L_{i+1}: remove nodes in both.
- 5. Scan L_{i-1}, L_{i+1}: remove nodes in both.

 $sort(L_i)$

Cost to construct L_{i+1} :

- 1. L_{i+1} = neighbors of all $2|L_i| + edges(L_i)/B$ nodes in L_i
- 2. Sort L_{i+1}.
- 3. Remove duplicates in $edges(L_i)/B$ L_{i+1} .
- Scan L_i, L_{i+1}: remove nodes in both.
- 5. Scan L_{i-1}, L_{i+1}: remove nodes in both.

 $sort(L_i)$

Cost to construct L_{i+1} :

- 1. L_{i+1} = neighbors of all $2|L_i| + edges(L_i)/B$ nodes in L_i
- 2. Sort L_{i+1} .
- 3. Remove duplicates in $edges(L_i)/B$ L_{i+1} .
- 4. Scan L_i , L_{i+1} : remove nodes in both.

 $|L_i|/B + edges(L_i)/B$

5. Scan L_{i-1}, L_{i+1}: remove $|L_{i-1}|/B + edges(L_i)/B$ nodes in both.

 $sort(L_i)$

Cost to construct L_{i+1} :

1. L_{i+1} = neighbors of all nodes in L_i

 $2|L_i| + edges(L_i)/B$

Sums to |V| over all levels.

(Every node is in one level.)

- 2. Sort L_{i+1} .
- 3. Remove duplicates in $edges(L_i)/B$ L_{i+1} .
- 4. Scan L_i , L_{i+1} : remove nodes in both.

 $|L_i|/B + edges(L_i)/B$

5. Scan L_{i-1}, L_{i+1}: remove $|L_{i-1}|/B + edges(L_i)/B$ nodes in both.

 $sort(L_i)$

Cost to construct L_{i+1} :

- 1. L_{i+1} = neighbors of all nodes in L_i
- 2. Sort L_{i+1} .
- 3. Remove duplicates in $edges(L_i)/B$ L_{i+1} .
- 4. Scan L_i , L_{i+1} : remove nodes in both.

 $|L_i|/B + edges(L_i)/B$

 $2|L_i| + edges(L_i)/B$

5. Scan L_{i-1}, L_{i+1}: remove $|L_{i-1}|/B + edges(L_i)/B$ nodes in both.

Sums to 2|E|/B over all levels.

Sums to |V| over all levels.

(Every node is in one level.)

 $2|L_i|$

 $sort(L_i)$

 $(edges(L_i)/B)$

Cost to construct L_{i+1} :

- 1. L_{i+1} = neighbors of all nodes in L_i
- 2. Sort L_{i+1} .
- 3. Remove duplicates in L_{i+1} .
- 4. Scan L_i , L_{i+1} : remove nodes in both.
- 5. Scan L_{i-1}, L_{i+1}: remove $|L_{i-1}|/B + (edges(L_i)/B)$ nodes in both.

Sums to |V| over all levels. (Every node is in one level.)

Sums to 8|E|/B over all levels.

 $|L_i|/B + edges(L_i)/B$

 $(edges(L_i)/B)$

Sums to 2|V|/B over all levels.

Problem: Breadth First Search

Unlikely in dense graph.

Problem: Breadth First Search

Problem: Breadth First Search

Summary

Today: Graph Algorithms

Breadth-First-Search

• Sorting your graph

MIS

- Luby's Algorithm
- Cache-efficient implementation

MST

- Connectivity
- Minimum Spanning Tree

Independent Set:

A set of nodes **S** so that no two neighbors are in **S**.

Independent Set:

A set of nodes **S** so that no two neighbors are in **S**.

Maximal Independent Set:

An independent set **S** where no node can be added.

(Every node has a neighbor in the independent set S.)

Independent Set:

A set of nodes **S** so that no two neighbors are in **S**.

Maximal Independent Set:

An independent set S where no node can be added.

Maximum Independent Set:

An independent set **S** of maximum size.

Independent Set:

A set of nodes **S** so that no two neighbors are in **S**.

Maximal Independent Set:

An independent set S where no node can be added.

Maximum Independent Set:

An independent set **S** of maximum size.

Greedy MIS Algorithm:

- **S** = empty set
- for every node **v**:
 - If no neighbor of v is in S, then add v to S.

Greedy MIS Algorithm:

- S = empty set
- for every node **v**:
 - If no neighbor of v is in S, then add v to S.

Cost: O(|V| + |E|)

(every access is a cache miss)

Luby's Algorithm:

- **S** = Ø
- Repeat until V is empty:
 - 1. Mark each node u with probability 1/2d(u).
 - 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.
 - 3. Add all marked nodes to S.
 - 4. Delete from V every marked node.
 - 5. Delete from V every neighbor of marked node.
 - 6. Delete from E every edge that no longer exists.

degree of node u

Luby's Algorithm:

- **S** = Ø
- Repeat until V is empty:
 - 1. Mark each node u with probability 1/2d(u).
 - 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.
 - 3. Add all marked nodes to S.
 - 4. Delete from V every marked node.
 - 5. Delete from V every neighbor of marked node.
 - 6. Delete from E every edge that no longer exists.

[Example on the board]

degree of node u

Luby's Algorithm

Claim 1:

The set **S** is a maximal independent set.

Luby's Algorithm

Claim 1:

The set S is a maximal independent set.

independent:

- only add marked nodes to S
- unmark if two neighbors are marked
- delete all neighbors of every node added to S

Luby's Algorithm

Claim 1:

The set **S** is a maximal independent set.

maximal:

- only delete a node if added to S, or a neighbor is added to S
- algorithm terminates when all nodes are deleted → all are in S or have a neighbor in S.

Luby's Algorithm:

- **S** = Ø
- Repeat until V is empty:
 - 1. Mark each node u with probability 1/2d(u).
 - 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.
 - 3. Add all marked nodes to S.
 - 4. Delete from V every marked node.
 - 5. Delete from V every neighbor of marked node.
 - 6. Delete from E every edge that no longer exists.

fraction in each iteration.

Claim: If v is good, then: $\Pr[\text{nbr of } v \text{ marked}] \ge (1 - e^{-1/6}) = 2\alpha$

 $\Pr[\text{no nbr of } v \text{ marked}] \leq \Pr[\text{no nbr of } v \text{ with smaller degree marked}]$

Show at least one neighbor of v with smaller degree is marked!

The probability that a node w is marked is 1/2d(w).

At least d(v)/3 neighbors with smaller degree because v is good.

Claim: If w is marked, then: $\Pr[\text{unmark } w \mid w \text{ marked}] \leq 1/2$

 $\Pr[\text{unmark } w \mid w \text{ marked}] \leq \Pr[\text{higher degree neighbor of } w \text{ marked}]$

Only unmark if higher degree neighbor is marked.

Claim: If w is marked, then: $\Pr[\text{unmark } w \mid w \text{ marked}] \leq 1/2$

 $\Pr[\text{unmark } w \mid w \text{ marked}] \leq \Pr[\text{higher degree neighbor of } w \text{ marked}]$

$$\leq \lim_{z \text{ higher degree neighbor of } w \max_{z \text{ higher degree neighbor of } w} \frac{1}{2d(z)}$$

Union bound...

Claim: If w is marked, then: $\Pr[\text{unmark } w \mid w \text{ marked}] \le 1/2$

 $\Pr[\text{unmark } w \mid w \text{ marked}] \leq \Pr[\text{higher degree neighbor of } w \text{ marked}]$

$$\leq \sum_{\substack{z \text{ higher degree neighbor of } w}} \frac{1}{2d(z)}$$
$$\leq \sum_{\substack{z \text{ higher degree neighbor of } w}} \frac{1}{2d(w)}$$

ce nerguo

By assumption, d(w) < d(z).

Claim: If w is marked, then: $\Pr[\text{unmark } w \mid w \text{ marked}] \leq 1/2$

 $\Pr[\text{unmark } w \mid w \text{ marked}] \leq \Pr[\text{higher degree neighbor of } w \text{ marked}]$

Node w has d(w) neighbors.

Claim: If w is marked, then: $\Pr[\text{unmark } w \mid w \text{ marked}] \leq 1/2$

 $\Pr[\text{unmark } w \mid w \text{ marked}] \leq \Pr[\text{higher degree neighbor of } w \text{ marked}]$ $\leq \sum_{\substack{z \text{ higher degree neighbor of } w}} \frac{1}{2d(z)}$ $\leq \sum_{\substack{z \text{ higher degree neighbor of } w}} \frac{1}{2d(w)}$

$$\leq \frac{d(w)}{2d(w)}$$
$$\leq \frac{1}{2}$$

 $\Pr[v \text{ is deleted at end of iteration}] \geq \alpha$

Analysis

Theorem:

Luby's Algorithm terminates in O(log |E|) iterations, in expectation.

Maximal Independent Set

Luby's Algorithm:

- **S** = Ø
- Repeat until V is empty:
 - 1. Mark each node u with probability 1/2d(u).
 - 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.
 - 3. Add all marked nodes to S.
 - 4. Delete from V every marked node.
 - 5. Delete from V every neighbor of marked node.
 - 6. Delete from E every edge that no longer exists.

Analysis

Theorem:

Luby's Algorithm terminates in O(log |E|) iterations, in O(E) time, in expectation.

Cache Efficient??

Luby's Algorithm:

- **S** = Ø
- Repeat until V is empty:
 - 1. Mark each node u with probability 1/2d(u).
 - 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.
 - 3. Add all marked nodes to S.
 - 4. Delete from V every marked node.
 - 5. Delete from V every neighbor of marked node.
 - 6. Delete from E every edge that no longer exists.

Cache-Efficient Luby's

Setup

Initially:

Assume that all the edges are in a single array. Assume each edge also stores:

- deg(u), deg(v)
- 1-bit: marked
- 1-bit: deleted

Ex:

[(u,v,3,3,00), (u,w,2,4,00), (x,z,4,2,00), (z,u,5,2,00), (x,w,3,1,00)]

Cache-Efficient Luby's

Setup

Initially:

concatenated adjacency lists with extra bits

Assume that all the edges are in a single array. Assume each edge also stores:

- deg(u), deg(v)
- 1-bit: marked
- 1-bit: deleted

Assume each edge is stored twice: (u,v) and (v,u)

Ex:

[(u,v),(v,u),(u,w),(w,u),(x,z),(z,x),(z,u),(u,z)]
Setup

Initially:

concatenated adjacency lists with extra bits

Assume that all the edges are in a single array. Assume each edge also stores:

- deg(u), deg(v)
- 1-bit: marked
- 1-bit: deleted

Assume each edge is stored twice: (u,v) and (v,u)

To access the edges adjacent to u: sort the edge array.

Luby's Iteration:

- 1. Mark each node u with probability 1/2d(u).
- 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.
- 3. Add all marked nodes to S.
- 4. Delete from V every marked node.
- 5. Delete from V every neighbor of marked node.
- 6. Delete from E every edge that no longer exists.

Luby's Iteration:

1. Mark each node u with probability 1/2d(u).

<u>Cache-efficient:</u> Sort the array by node. Scan the array. For each node u, flip a random coin to decide on mark. (Use the degree of each node that is stored with the edge.) Set the mark bits for each edge (u, .).

O(sort(E) + E/B)

Luby's Iteration:

- 1. Mark each node u with probability 1/2d(u).
- 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.

Cache-efficient:

Make a copy E'. Sort by 2nd component of edge (., u). Iterate and unmark if higher degree neighbor is marked.

Sort by first:

(a,b)	(a,d)	(a,e)	(b <i>,</i> a)	(b,c)	(c,b)	(d,a)	(d,e)	(e,a)	(e,d)
3	3	3	2	2	1	2	2	2	2
Χ	X	X			X			X	X

Sort by second:

(b,a)	(d <i>,</i> a)	(e,a)	(a,b)	(c,b)	(b,c)	(a,d)	(e,d)	(a,e)	(d,e)
2	2	2	3	1	2	3	2	3	2
		X	X	Х		X	X	X	

Sort by first:

(a,b)	(a,d)	(a,e)	(b,a)	(b,c)	(c,b)	(d,a)	(d,e)	(e,a)	(e,d)
3	3	3	2	2	1	2	2	2	2
Х	X	X			X			X	X

Sort by second:

(b,a)	(d,a)	(e,a)	(a,b)	(c,b)	(b,c)	(a,d)	(e,d)	(a,e)	(d,e)
2	2	2	3	1	2	3	2	3	2
		X	Х	X		X	X	X	

Scan neighbors of node a. Do not unmark a.

Sort by first:

(a,b)	(a,d)	(a,e)	(b,a)	(b,c)	(c,b)	(d,a)	(d,e)	(e,a)	(e,d)
3	3	3	2	2	1	2	2	2	2
X	X	X			Χ			X	X

Sort by second:

(b,a)	(d,a)	(e,a)	(a,b)	(c,b)	(b,c)	(a,d)	(e,d)	(a,e)	(d,e)
2	2	2	3	1	2	3	2	3	2
		Х	Χ	Х		X	Х	X	

Scan neighbors of node b.

If b were marked, unmark b because a is marked.

Sort by first:

(a,b)	(a,d)	(a,e)	(b,a)	(b,c)	(c,b)	(d,a)	(d,e)	(e,a)	(e,d)
3	3	3	2	2	1	2	2	2	2
X	X	X			Χ			X	X

Sort by second:

(b,a)	(d,a)	(e,a)	(a,b)	(c,b)	(b,c)	(a,d)	(e,d)	(a,e)	(d,e)
2	2	2	3	1	2	3	2	3	2
		X	Х	Х		Х	X	Х	

Scan neighbors of node c. None are marked.

Sort by first:

(a,b)	(a,d)	(a,e)	(b,a)	(b,c)	(c,b)	(d,a)	(d,e)	(e,a)	(e,d)
3	3	3	2	2	1	2	2	2	2
X	X	X			X			X	X

Sort by second:

(b,a)	(d,a)	(e,a)	(a,b)	(c,b)	(b,c)	(a,d)	(e,d)	(a,e)	(d,e)
2	2	2	3	1	2	3	2	3	2
		X	X	Χ		Х	Х	Х	

Scan neighbors of node d.

Sort by first:

(a,b)	(a,d)	(a,e)	(b,a)	(b,c)	(c,b)	(d,a)	(d,e)	(e,a)	(e,d)
3	3	3	2	2	1	2	2	2	2
Χ	X	X			X			Х	Х

Sort by second:

(b,a)	(d,a)	(e,a)	(a,b)	(c,b)	(b,c)	(a,d)	(e,d)	(a,e)	(d,e)
2	2	2	3	1	2	3	2	3	2
		Х	Х	Х		X	X	Х	

Scan neighbors of node e.

Unmark e because a is marked and has higher degree.

Sort by first:

(a,b)	(a,d)	(a,e)	(b,a)	(b,c)	(c,b)	(d,a)	(d,e)	(e,a)	(e,d)
3	3	3	2	2	1	2	2	2	2
X	X	X			X				

Sort by second:

(b,a)	(d,a)	(e,a)	(a,b)	(c,b)	(b,c)	(a,d)	(e,d)	(a,e)	(d,e)
2	2	2	3	1	2	3	2	3	2
		X	X	Х		X	X	Х	

Scan neighbors of node e.

Unmark e because a is marked and has higher degree.

Sort by first:

(a,b)	(a,d)	(a,e)	(b,a)	(b,c)	(c,b)	(d,a)	(d,e)	(e,a)	(e,d)
3	3	3	2	2	1	2	2	2	2
Χ	X	X			X				

Sort by second:

(b,a)	(d,a)	(e,a)	(a,b)	(c,b)	(b,c)	(a,d)	(e,d)	(a,e)	(d,e)
2	2	2	3	1	2	3	2	3	2
		X	Х	Х		X	Х	Х	

O(sort(E) + E/B)

Luby's Iteration:

- 1. Mark each node u with probability 1/2d(u).
- 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.

Cache-efficient:

Make a copy E'. Sort by 2nd component of edge (., u). Iterate and unmark if higher degree neighbor is marked.

Luby's Iteration:

- 1. Mark each node u with probability 1/2d(u).
- 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.
- 3. Add all marked nodes to S.
- 4. Delete from V every marked node.

Cache-efficient:

Create two new arrays S and (new) E.

Copy all marked edges into S and all unmarked edges into (new) E.

O(E/B)

Luby's Iteration:

- 1. Mark each node u with probability 1/2d(u).
- 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.
- 3. Add all marked nodes to S.
- 4. Delete from V every marked node.
- 5. Delete from V every neighbor of marked node.
- 6. Delete from E every edge that no longer exists.

<u>Cache-efficient:</u> Sort S. Sort E. Scan and delete from E.

E (sorted by second)

(b,a) (c,a) (e,a) 2 2 2 2	(b,d) 2	(h,d) 1	(d,f) 2	(c,f) 1	(d,h) 2		
------------------------------	------------	------------	------------	------------	------------	--	--

S (sorted by first)

(a,b)	(a,c)	(a,e)	(f,d)	(f,c)			
3	3	3	2	2			
Х	Х	X	X	X			

Scan neighbors of node a.

Mark to delete if neighbor is marked.

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h,d)	(d,f)	(c,f)	(d,h)	
2	2	2	2	1	2	1	2	
D	D	D						

S (sorted by first)

(a,b)	(a,c)	(a,e)	(f,d)	(f,c)			
3	3	3	2	2			
Х	Χ	X	Х	Х			

Scan neighbors of node a.

Mark to delete if neighbor is marked.

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h,d)	(d <i>,</i> f)	(c,f)	(d,h)	
2	2	2	2	1	2	1	2	
D	D	D						

S (sorted by first)

(a,b)	(a,c)	(a,e)	(f,d)	(f,c)		
3	3	3	2	2		
X	X	Х	X	X		

Scan neighbors of node d. Mark to delete if neighbor is marked.

E (sorted by second)

(b,a) 2 D	(c,a) 2 D	(e,a) 2 D	(b,d) 2	(h,d) 1	(d,f) 2	(c,f) 1	(d,h) 2		
-----------------	-----------------	-----------------	------------	------------	------------	------------	------------	--	--

S (sorted by first)

(a,b)	(a,c)	(a,e)	(f,d)	(f,c)		
3	3	3	2	2		
X	X	Х	X	X		

Scan neighbors of node f. Mark to delete if neighbor is marked.

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h <i>,</i> d)	(d,f)	(c,f)	(d,h)	
2	2	2	2	1	2	1	2	
D	D	D			D	D		

S (sorted by first)

(a,b)	(a,c)	(a,e)	(f,d)	(f,c)		
3	3	3	2	2		
X	X	Х	X	X		

Scan neighbors of node f. Mark to delete if neighbor is marked.

E (sorted by second)

(b,a) 2	(c,a)	(e,a)	(b,d) 2	(h,d) 1	(d,f) 2	(c,f) 1	(d,h) 2	
D	D	D	2	-	D	D	2	

S (sorted by first)

(a,b)	(a,c)	(a,e)	(f,d)	(f,c)			
3	3	3	2	2			
Χ	X	X	X	Х			

Scan neighbors of node h. Mark to delete if neighbor is marked.

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h <i>,</i> d)	(d <i>,</i> f)	(c,f)	(d,h)	
2	2	2	2	1	2	1	2	
D	D	D			D	D		

E (sorted by first)

(b,a)	(b,d)	(c,a)	(c,f)	(d,f)	(d <i>,</i> h)	(e,a)	(h <i>,</i> d)	
2	2	2	1	2	2	2	1	
D	D	D	D	D	D	D		

Sort and mark all associated with same node as deleted.

E (sorted by first)

(b,a)	(b,d)	(c,a)	(c,f)	(d,f)	(d <i>,</i> h)	(e,a)	(h,d)	
2	2	2	1	2	2	2	1	
D	D	D	D	D	D	D		

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h,d)	(d,f)	(c,f)	(d <i>,</i> h)	
2	2	2	2	1	2	1	2	
D	D	D	D		D	D	D	

Copy and sort.

E (sorted by first)

(b,a)	(b,d)	(c,a)	(c,f)	(d,f)	(d <i>,</i> h)	(e,a)	(h,d)	
2	2	2	1	2	2	2	1	
D	D	D	D	D	D	D		

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h <i>,</i> d)	(d,f)	(c,f)	(d,h)	
2	2	2	2	1	2	1	2	
D	D	D	D		D	D	D	

E (sorted by first)

(b,a)	(b,d)	(c,a)	(c,f)	(d,f)	(d,h)	(e,a)	(h,d)	
2	2	2	1	2	2	2	1	
D	D	D	D	D	D	D		

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h <i>,</i> d)	(d,f)	(c,f)	(d <i>,</i> h)	
2	2	2	2	1	2	1	2	
D	D	D	D		D	D	D	

E (sorted by first)

(b,a)	(b,d)	(c,a)	(c,f)	(d <i>,</i> f)	(d,h)	(e,a)	(h,d)	
2	2	2	1	2	2	2	1	
D	D	D	D	D	D	D		

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h <i>,</i> d)	(d,f)	(c,f)	(d <i>,</i> h)	
2	2	2	2	1	2	1	2	
D	D	D	D		D	D	D	

E (sorted by first)

(b,a)	(b,d)	(c,a)	(c,f)	(d,f)	(d <i>,</i> h)	(e,a)	(h,d)	
2	2	2	1	2	2	2	1	
D	D	D	D	D	D	D		

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h <i>,</i> d)	(d,f)	(c,f)	(d <i>,</i> h)	
2	2	2	2	1	2	1	2	
D	D	D	D		D	D	D	

E (sorted by first)

(b,a)	(b,d)	(c,a)	(c,f)	(d,f)	(d <i>,</i> h)	(e,a)	(h <i>,</i> d)
2	2	2	1	2	2	2	1
D	D	D	D	D	D	D	D

E (sorted by second)

(b,a)	(c,a)	(e,a)	(b,d)	(h <i>,</i> d)	(d,f)	(c,f)	(d <i>,</i> h)	
2	2	2	2	1	2	1	2	
D	D	D	D		D	D	D	

E (sorted by first)

(b,a)	(b,d)	(c,a)	(c,f)	(d,f)	(d <i>,</i> h)	(e,a)	(h,d)	
2	2	2	1	2	2	2	1	
D	D	D	D	D	D	D	D	

new array

Copy anything left to a new array E for the next iteration.

E (sorted by first)

(b,a)	(b,d)	(c,a)	(c,f)	(d,f)	(d <i>,</i> h)	(e,a)	(h,d)	
2	2	2	1	2	2	2	1	
D	D	D	D	D	D	D	D	

new array

O(sort(E) + E/B)

Luby's Iteration:

- 1. Mark each node u with probability 1/2d(u).
- 2. For each edge (u,v): if both u and v are marked: if d(u) < d(v) then unmark u. else if d(v) < d(u) then unmark v. else if d(u) = d(v) then unmark node with smaller id.
- 3. Add all marked nodes to S.
- 4. Delete from V every marked node.
- 5. Delete from V every neighbor of marked node.
- 6. Delete from E every edge that no longer exists.

Cache-efficient:

O(sort(E) + E/B)

Luby's Algorithm

Analysis

Theorem:

Luby's Algorithm terminates in O(log |E|) iterations, in O(E/B + sort(E)) time, in expectation.

$$sort(E) = O\left(\frac{E}{B}\log_{M/B}(E/B)\right)$$

Summary

Today: Graph Algorithms

Breadth-First-Search

• Sorting your graph

MIS

- Luby's Algorithm
- Cache-efficient implementation

MST

- Connectivity
- Minimum Spanning Tree

Cache-Efficient Connectivity

Setup

Initially:

Assume that all the edges are in a single array. Assume each edge is stored ONCE

Ex: [(u,v),(u,w),(x,z),(z,u)]
Cache-Efficient Connectivity Algorithm Idea 1. Divide E into two parts: E1 and E2.

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.

Algorithm Idea

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.

Claim: does not change connected components.

<u>Algorithm:</u>

For each (x,y) in E1: if (a,x) or (a,y) is in E2 then: Replace (x,y) with (y,a) or (x,y) with (x,a).

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve $E2 \rightarrow depth 1 trees$.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

Algorithm Idea

No merging necessary!

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve $E2 \rightarrow depth 1 trees$.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

Algorithm Idea

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

```
<u>Algorithm:</u>
```

For each (a,b) in E2: If a is an E1 root: add (a,b) to E1. Else if (x,a) in E1: add (x,b) to E1. Claim: Does not change connected components.

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

Contract(E1, E2)

- 1. Sort E1 by first.
- 2. Sort E2 by second.
- 3. Scan: (a,b) in E1, (x,a) in E2 → delete(a,b), add(x,b)
- 4. Sort E1 by second.
- 5. Sort E2 by second.
- 6. Scan: (a,b) in E1, (x,b) in E2 \rightarrow delete(a,b), add(x,a)

E1 (sorted by first)

(a,b)	(b,d)	(b,c)	(c,e)	(c,f)	(d,g)	(d <i>,</i> h)			
-------	-------	-------	-------	-------	-------	----------------	--	--	--

E2 (sorted by second)

	(z,b)	(z,c)	(y,d)	(y,f)	(z,j)					
--	-------	-------	-------	-------	-------	--	--	--	--	--

Sort E1 by first, E2 by second.

E1 (sorted by first)

(a,b)	(b <i>,</i> d)	(b,c)	(c <i>,</i> e)	(c,f)	(d,g)	(d <i>,</i> h)			
-------	----------------	-------	----------------	-------	-------	----------------	--	--	--

E2 (sorted by second)

(z,b)	(z,c)	(y,d)	(y,f)	(z,j)			

Scan: look for (b, .)

E1 (sorted by first)

(a,b)	(b,d)	(b,c)	(c,e)	(c <i>,</i> f)	(d,g)	(d <i>,</i> h)			
-------	-------	-------	-------	----------------	-------	----------------	--	--	--

E2 (sorted by second)

(z,b)	(z,c)	(y,d)	(y,f)	(z,j)			

Scan: look for (b, .)

E1 (sorted by first)

(a,b)	(z,d)	(b,c)	(c,e)	(c <i>,</i> f)	(d,g)	(d <i>,</i> h)			
-------	-------	-------	-------	----------------	-------	----------------	--	--	--

E2 (sorted by second)

(z,b)	(z,c)	(y,d)	(y,f)	(z,j)			

Scan: replace (b,d) with (z,d)

E1 (sorted by first)

(a,b)	(z,d)	(b,c)	(c,e)	(c,f)	(d,g)	(d,h)			
-------	-------	-------	-------	-------	-------	-------	--	--	--

E2 (sorted by second)

(z,b)	(z,c)	(y,d)	(y,f)	(z,j)			

Scan: replace (b,c) with (z,c)

E1 (sorted by first)

(a,b)	(z,d)	(z,c)	(c,e)	(c,f)	(d,g)	(d,h)			
-------	-------	-------	-------	-------	-------	-------	--	--	--

E2 (sorted by second)

(z,b)	(z,c)	(y,d)	(y,f)	(z,j)			

Scan: replace (b,c) with (z,c)

E1 (sorted by first)

(a <i>,</i> b)	(z,d)	(z,c)	(c,e)	(c,f)	(d,g)	(d,h)			
----------------	-------	-------	-------	-------	-------	-------	--	--	--

E2 (sorted by second)

(z,b) (z,c) (y,d) (y,f) (z,j)	
-------------------------------	--

Scan...

E1 (sorted by first)

(a <i>,</i> b)	(z,d)	(z,c)	(z,e)	(c,f)	(d,g)	(d,h)			
----------------	-------	-------	-------	-------	-------	-------	--	--	--

E2 (sorted by second)

(z,b) (z,c) (y,d) (y,f) (z,j)	
-------------------------------	--

Replace...

E1 (sorted by first)

(a,b)	(z,d)	(z,c)	(z,e)	(c,f)	(d,g)	(d,h)			
-------	-------	-------	-------	-------	-------	-------	--	--	--

E2 (sorted by second)

(z,b) (z,c) (y,d) (y,f) (z,j)	
-------------------------------	--

Scan...

E1 (sorted by first)

(a,b)	(z,d)	(z,c)	(z,e)	(z,f)	(d,g)	(d,h)			
-------	-------	-------	-------	-------	-------	-------	--	--	--

E2 (sorted by second)

(z,b) (z,c) (y,d) (y,f) (z,j)	
-------------------------------	--

Replace...

E1 (sorted by first)

(a,b)	(z,d)	(z,c)	(z,e)	(z,f)	(d,g)	(d <i>,</i> h)			
-------	-------	-------	-------	-------	-------	----------------	--	--	--

E2 (sorted by second)

(z,b) (z,c) (y,d) (y,f) (z,j)	(z,b) (z,c)	(y,d) (y,f)	(z,j)				
-------------------------------	-------------	-------------	-------	--	--	--	--

Scan...

E1 (sorted by first)

(a,b)	(z,d)	(z,c)	(z,e)	(z,f)	(y,g)	(d <i>,</i> h)			
-------	-------	-------	-------	-------	-------	----------------	--	--	--

E2 (sorted by second)

Replace...

E1 (sorted by first)

(a,b)	(z,d)	(z,c)	(z,e)	(z,f)	(y,g)	(d <i>,</i> h)			
-------	-------	-------	-------	-------	-------	----------------	--	--	--

E2 (sorted by second)

Scan...

E1 (sorted by first)

(a,b)	(z,d)	(z,c)	(z,e)	(z,f)	(y,g)	(y,h)			
-------	-------	-------	-------	-------	-------	-------	--	--	--

E2 (sorted by second)

Replace...

Contract(E1, E2)

- 1. Sort E1 by first.
- 2. Sort E2 by second.
- 3. Scan: (a,b) in E1, (x,a) in E2 → delete(a,b), add(x,b)
- 4. Sort E1 by second.
- 5. Sort E2 by second.
- 6. Scan: (a,b) in E1, (x,b) in E2 \rightarrow delete(a,b), add(x,a)

O(sort(E) + E/B)

Merge(E1, E2)

- 1. Sort E1 by second.
- 2. Sort E2 by first.
- 3. Scan: (a,b) in E1, (b,c) in E2 \rightarrow add(a,c) to E1
- 4. Sort E1 by first.
- 5. Sort E2 by first.
- 6. Scan: (a,.) in E1, (a,x) in E2 → add(a,x) to E1

O(sort(E) + E/B)

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve $E2 \rightarrow depth 1 trees$.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.
Cache-Efficient Connectivity

Algorithm Idea

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve $E2 \rightarrow depth 1$ trees.
- 3. Contract E1. 🔨
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

O(sort(E) + E/B)

Cache-Efficient Connectivity

Algorithm Idea

- 1. Divide E into two parts: E1 and E2.
- 2. Recursively solve E2 \rightarrow depth 1 trees.
- 3. Contract E1.
- 4. Recursively solve E1 \rightarrow depth 1 trees.
- 5. Merge E2 into E1.

T(E) = 2T(E/2) + O(E/B) + sort(E)= $O(sort(E)\log(E))$

Faster than BFS (except in sparse case)!

Summary

Today: Graph Algorithms

Breadth-First-Search

• Sorting your graph

MIS

- Luby's Algorithm
- Cache-efficient implementation

MST

- Connectivity
- Minimum Spanning Tree

Cache-Efficient MST

Algorithm Idea

- 1. Let e be a random edge.
- 2. Divide E into two parts:
 - E1 has edges with weight < w(e).
 - E2.has edges with weight > w(e)
- 3. Recursively find MST of E1.
- 4. Do something.
- 5. Recursively find MST of E2.
- 6. Do something.