Algorithms at Scale
(Week 8)

Summary

Last Week: Caching

External memory model

e How to predict the
performance of algorithms?

B-trees

* Efficient searching
Write-optimized data structures
 Buffer trees
Cache-oblivious algorithms

« van Emde Boas memory
layout

Today: Graph Algorithms

Breadth-First-Search

 Sorting your graph

MIS

 Luby’s Algorithm

* Cache-efficient implementation
MST

* Connectivity

* Minimum Spanning Tree

Announcements / Reminders

Today:

MiniProject “proposal” due today.

Next week:

Midterm exam (in class)

Announcements / Reminders

Midterm info:

Will post sample from last year.

In class, here, 2 hours.
Material up to (and including) today.

(Lecture, “tutorial”, problem sets, etc.)

One double-sided “cheat sheet” allowed

Note:

| will be out of town.

* Prof. Diptarka Chakraborty will give the exam.

Midterm Advice

Two types of questions:

1. Algorithms questions

. For example: sublinear connectivity, streaming distinct elements, B-
trees, etc.

Know the algorithms... when they are useful... when they are not
useful...

. Understand why they work.

2. Technique questions

. For example: sampling, reservoir sampling, Chernoff/Hoeffding bounds,
median-of-means, etc.

Know the techniques, how to use them, when they work (and when
they don’t work).

Today’s Problem: Connected Components

Assumptions:

Graph G = (V,E)

* Undirected

* nnodes

* m edges

* maximum degree d
Error term: ¢

Output:

C
Number of connected components. ®

Example: output 3

Summary

Last Week: Caching

External memory model

e How to predict the
performance of algorithms?

B-trees

* Efficient searching
Write-optimized data structures
 Buffer trees
Cache-oblivious algorithms

« van Emde Boas memory
layout

Today: Graph Algorithms

Breadth-First-Search

 Sorting your graph

MIS

 Luby’s Algorithm

* Cache-efficient implementation
MST

* Connectivity

* Minimum Spanning Tree

Problem: Breadth First Search

Searching a graph: /

e undirected graph G = (V,E)
e source node s

Problem: Breadth First Search

Searching a graph: /

undirected graph G = (V,E)
source node s

each adjacency list stored as
an array (consecutive in
memory)

Adjacency List Format:

Example:
u:a,b,cv
v:a,e,f
w:b,cdf

Problem: Breadth First Search

Searching a graph:

e undirected graph G = (V,E)
e source node s

Layer-by-layer...

Breadth First Search

Algorithm:

* I-o = {s}
* Repeat until done:
construct L., from L,

Key idea: neighbors of L, form layer L, ,.

Key idea 2: remove already visited nodes.

1}

Breadth First Search

Algorithm: L 1*\ LayerO}
* Ly=1s} / N\

* Repeat until done:
construct L., from L,

This edge cannot exist!

(If it did, node 7 would
be in Layer 2.)

Breadth First Search

Algorithm: { 1*\ LayerO}
* Ly=1s} / N\

* Repeat until done:
construct L., from L,

Key idea: neighbors of L, form layer L, ,.

Key idea 2: remove already visited nodes
from only two layers.

Breadth First Search

Construct L, :

1. L,; = neighbors of all

nodes in L,

. Sort L.

. Remove duplicatesin L,,,.

. Scan L, L,,;: remove
nodes in both.

. Scan L4, L;,;: remove
nodes in both.

Invariant: each L, is sorted.

Breadth First Search

Example:

L, ={1}

I—1 = {2; 3) 4}

Breadth First Search

Example:

L, ={1}

I—1 = {2; 31 4}

Cost?

Breadth First Search

Example:

L, ={1}

I—1 = {2; 31 4}

Cost:
||-1|/B+

Breadth First Search

Example:

L, ={1}

I—1 = {2; 31 4}

Cost:
L, |/B+ [L| +

Breadth First Search

Example:

L, ={1}

I—1 = {2; 31 4}

Cost:
IL,|/B+ |L]
+ edges(|L,])/B

Breadth First Search

Example:

L, ={1}

I—1 = {2; 31 4}

Breadth First Search

Example:

L, ={1}

I—1 = {2; 31 4}

Breadth First Search

Example: L 1x\

L, = {1} Remove duplicates / \

, 3
-2.3,9 R

L2 - {1; 1) 1, 2, 3, 5, 6, 6, 6} L H
\

6
/
e
\
\4 Layer4J
11

\
10
/

Breadth First Search

Example: L 1&\

L, = {1} Remove duplicates / \

, 3
L, ={2, 3, 4} L/

L2={1, 1, 1,2;3;5)6) 6)6} { > 6
A
9

\
10
/

e
O(edges(L,)/B) .

e

Breadth First Search

Example:

e

L, ={1}

Remove duplicates / \

I—1 = {2; 31 4}

L2 = {11 21 3) 5)

{2 3
6} { 5

/
6
/|
9

O(edges(L,)/B)

s o

\
10
/

\

|

\4 Layer 4
1

Breadth First Search

Example:

L, = {1} Subtract L,.

I—1 = {2; 31 4}

L2 = {11 21 3) 5) 6}

Breadth First Search

Example:

Subtract L,.

Breadth First Search

Example:

Subtract L,.

Breadth First Search

Example:

Subtract L,.

Breadth First Search

Example:

Subtract L,.

Breadth First Search

Example:

Subtract L,.

Breadth First Search

Example:

Subtract L,.

Breadth First Search

Example:

Subtract L,.

Breadth First Search

Example:

L, = {1} Subtract L,.

I—1 = {2; 31 4}

L2 = {11 21 3) 5) 6}

Breadth First Search

Example:

L, = {1} Subtract L,.

I—1 = {2; 31 4}

L2 = {11 21 3) 5) 6}

O(|L,|/B + O(edges(L,)/B)

Breadth First Search

Example:

L, = {1} Subtract L,.

I—1 = {2; 31 4}

L2 = {11 51 6}

O(|L,|/B + O(edges(L,)/B)

Breadth First Search

Example:

L, = {1} Subtract L,.

I—1 = {2; 31 4}

L2 = {11 51 6}

Breadth First Search

Example:

L, = {1} Subtract L,.

I—1 = {2; 31 4}

L2 = {11 51 6}

O(|Ly[/B + O(edges(L;)/B))

Breadth First Search

Example:

L, = {1} Subtract L,.

I—1 = {2; 31 4}

L, = {5, 6}

O(|Ly[/B + O(edges(L;)/B))

Breadth First Search

Cost to construct L, :

1. L,, =neighborsofall 2|L;| + edges(L;)/B
nodes in L,
. Sort L, 4.
3. Remove duplicates in
I-i+1'
. Scan L, L,;: remove
nodes in both.

. Scan L4, L,,: remove
nodes in both.

Breadth First Search

Cost to construct L, :

1. L,, =neighborsofall 2|L;| + edges(L;)/B
nodes in L,

. SortL,;. sort(L;)

3. Remove duplicates in

I-i+1'
. Scan L, L,;: remove
nodes in both.

. Scan L4, L,,: remove
nodes in both.

Breadth First Search

Cost to construct L, :

1. L,, =neighborsofall 2|L;| + edges(L;)/B
nodes in L,

. SortL,;. sort(L;)

3. Remove duplicatesin edges(L;)/B

I-i+1'
. Scan L, L,;: remove
nodes in both.

. Scan L4, L,,: remove
nodes in both.

Breadth First Search

Cost to construct L, :

1. L,, =neighborsofall 2|L;| + edges(L;)/B
nodes in L,

. SortL,;. sort(L;)

3. Remove duplicatesin edges(L;)/B
I-i+1'
. Scan L, L,;: remove IL;|/B + edges(L;)/B
nodes in both.

. Scan Ly, Lj,,:remove |1, . |/B + edges(L;)/B
nodes in both.

1.

Breadth First Search

Sums to | V| over all levels.

. E deisi level.
Costto construct L,,: / (Bverynodeisinone evel)

L., = neighbors of all edges(L;)/B

nodes in L,
. SortL,;. sort(L;)

3. Remove duplicatesin edges(L;)/B

I-i+1'

. Scan L, L,,: remove |L;|/B + edges(L;)/B

nodes in both.

. Scan Ly, Lj,,:remove |1, . |/B + edges(L;)/B

nodes in both.

1.

. Sort L, 4.

Breadth First Search

Sums to | V| over all levels.

. E deisi level.
Cost to constructL,,: / (Bverynodeisinonelevel)

L., = neighbors of all @ edges(L;)/B
\

nodes in L,
SO’I“t(LZ') Sums to 2|E|/B over all levels.

Remove duplicates in edges(L;)/B

I-i+1'

. Scan L, L,,: remove |L;|/B + edges(L;)/B

nodes in both.

. Scan Ly, Lj,,:remove |1, . |/B + edges(L;)/B

nodes in both.

Breadth First Search

Sums to | V| over all levels.

. E d level.
Cost to constructL,,: / (Bverynodeisinonelevel)

1.

. Sort L. 80’”5(

L.,; = neighbors of all @

nodes in L,
ums to 8| E|/B over all levels.

i+ /
3. Remove duplicates in
I-i+1'
. Scan L, L,;: remove IL;|/B
nodes in both.

. Scan Ly, Lj,,:remove |1, |/B
nodes in both.

Total cost: First Search

Sums to |V| over all levels.

/ (Every node is in one level.)

L., = neighbors of all @ edges(L;)/B

nodes in L,
. SortL,,,. sort(L)

ms to 8| E|/B over all levels.

Su
Remove duplicates in (‘edges(L;)/B
I-i+1'
. Scan L, L, ,: remove L;| /B Kedges(L;)/
nodes in both.

)/ B
. Scan L, Lt remove\ |1, ,|/B (L;)/B

nodes in both. /

Sums to 2|V |/B over all levels.

Total cost: First Search

Sums to |V| over all levels.

/ (Every node is in one level.)

nodes in L,

L., = neighbors of all @ edges(L;)/B
\

(J »
() 28 S (/0

. Sort L.

Remove duplicates in (
I-i+1'

. Scan L, L, ,: remove IL;|/ B edges(L;)/B
nodes in both.

. Scan L, Lt remove\ |1, ,|/B

nodes in both. /

Sums to 2|V |/B over all levels.

Total cost: First Search

Sums to | V| over all levels.

/ (Every node is in one level.)

L., = neighbors of all @ edges(L;)/B

nodes in L,
. Sort L4

(J »
() 28 S (/0

Remove duplicates in (

3.
I-i+1'
4. Scan L, L,,: remove IL;|/B

Compare to:

pver all levels.

Problem: Breadth First Search

source
Can we do better? /

Problem: Breadth First Search

source
Can we do better? /

Unlikely in dense graph.

Problem: Breadth First Search

source
Can we do better? /

Unlikely in dense graph.
» |If |E| >B|V| and BFS needs to read
each edge, then requires at least
|V| time.

Problem: Breadth First Search

source
Can we do better? /

Unlikely in dense graph.
» |If |E| >B|V| and BFS needs to read
each edge, then requires at least
|V| time.

Unlikely if adjacency lists are stored
separately.
» BFS needs to access each node and
each list at least once, so requires
|V| time.

Problem: Breadth First Search

source
Can we do better? /

Sparse graph

Store all edges in one array.

O (‘VEE‘ + SOTt(E))

If |E| =0O(|V]|)then: O (‘—? + Sort(E)>

Summary

Today: Graph Algorithms

Breadth-First-Search

e Sorting your graph

MIS

 Luby’s Algorithm

* Cache-efficient implementation
MST

* Connectivity

* Minimum Spanning Tree

Maximal Independent Set

Independent Set:

A set of nodes S so that no two
neighbors are in S.

Maximal Independent Set

Independent Set:

A set of nodes S so that no two
neighbors are in S.

Maximal Independent Set:

An independent set S where no node can
be added.

(Every node has a neighbor in the
independent set S.)

Maximal Independent Set

Independent Set:

A set of nodes S so that no two
neighbors are in S.

Maximal Independent Set:

An independent set S where no node can
be added.

Maximum Independent Set:

An independent set S of maximum size.

Maximal Independent Set

Independent Set:

A set of nodes S so that no two
neighbors are in S.

Maximal Independent Set:

An independent set S where no node can
be added.

Maximum Independent Set:

An independent set S of maximum size.

Maximal Independent Set

Independent Set:

A set of nodes S so that no two
neighbors are in S.

Maximal Independent Set:

An independent set S where no node can
be added.

=%

NP-Hard

pendent set S of maxim

Maximal Independent Set

Greedy MIS Algorithm:
* S=emptyset
 foreverynodev:
» If no neighborof visins,
then add v to S.

Maximal Independent Set

Greedy MIS Algorithm:
* S=emptyset
 foreverynodev:
» If no neighborof visins,
then add v to S.

Cost:
O(|V| + |EJ)

(every access is a cache miss)

Maximal Independent Set

Luby’s Algorithm: degree of

¢« S=0 node u
 Repeat until V is empty:

1. Mark each node u with probability 1/2d(u).

2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.
else if d(v) < d(u) then unmark v.

else if d(u) = d(v) then unmark node with smaller id.
. Add all marked nodes to S.

Delete from V every marked node.
Delete from V every neighbor of marked node.
Delete from E every edge that no longer exists.

Maximal Independent Set

Luby’s Algorithm: degree of

¢« S=0 node u
 Repeat until V is empty:

1. Mark each node u with probability 1/2d(u).

2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.
else if d(v) < d(u) then unmark v.

else if d(u) = d(v) then unmark node with smaller id.
. Add all marked nodes to S.

Delete from V every marked node.
Delete from V every neighbor of marked node.
Delete from E every edge that no longer exists.

[Example on the board]

Luby’s Algorithm

Claim 1:

The set S is a maximal independent set.

Luby’s Algorithm

Claim 1:

The set S is a maximal independent set.

independent:

 only add marked nodes to S

 unmark if two neighbors are marked

e delete all neighbors of every node added to S

Luby’s Algorithm

Claim 1:

The set S is a maximal independent set.

maximal:

 only delete a node if added to S, or a neighbor
is added to S

e algorithm terminates when all nodes are
deleted =2 all are in S or have a neighbor in S.

Maximal Independent Set

Luby’s Algorithm:
° S=9
 Repeat until V is empty:
1. Mark each node u with probability 1/2d(u).

2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.

else if d(v) < d(u) then unmark v.

else if d(u) = d(v) then unmark node with smaller id.
. Add all marked nodes to S.

Delete from V every marked node.
Delete from V every neighbor of marked node.
Delete from E every edge that no longer exists.

Luby’s Algorithm

Analysis

Define: E; = edges at start of iteration j.

Goal: for some constant a<1, show:
E[E; | Ej 1] < alj

ldea: reduce the number of edges by a constant
fraction in each iteration.

Luby’s Algorithm

Analysis

Define: node w is good if > 1/3 neighbors have smaller
degree than w.

Luby’s Algorithm

Analysis

Define: node w is good if > 1/3 neighbors have smaller
degree than w.

Define: edge (u,v) is good if u or v is good.

~-

Luby’s Algorithm

Analysis

Claim: At least half of all edges are good.

Luby’s Algorithm

Analysis

Claim: At least half of all edges are good.

Proof:

Orient each edge TO the higher degree node.

Luby’s Algorithm

Analysis

Claim: At least half of all edges are good.

Proof:
Orient each edge TO the higher degree node.

If vis bad, then: >2/3 are OUT
<1/3 are IN

good = > 1/3 have smaller degree

Luby’s Algorithm

Analysis

Claim: At least half of all edges are good.

Proof:
Orient each edge TO the higher degree node.

If vis bad, then: >2/3 are OUT
<1/3 are IN

Assign two OUT edges to one IN edge.
(At bad nodes, there are enough OUT...)

Luby’s Algorithm

Analysis

Claim: At least half of all edges are good.

Proof:
Assign two OUT edges to one IN edge.

Each BAD edge (u,v) has u and v bad.

Since it is IN to a BAD node, it has 2
edges assighed to it.

Luby’s Algorithm

Analysis

Claim: At least half of all edges are good.

Proof:
Assign two OUT edges to one IN edge.

Since it is IN to a BAD node, it has 2
edges assigned to it.

If there are B bad nodes, then > 2B edge
total in graph.

Luby’s Algorithm

Analysis

Claim: At least half of all edges are good.

Proof:
If there are B bad nodes, then > 2B edges
total in graph.

If there are > E/2 bad nodes, then > E
edges total in graph =» impossible.

=» > E/2 good nodes.

Luby’s Algorithm

Analysis

Claim: If v is good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Luby’s Algorithm

Claim: If v is good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Pr [no nbr of v marked] < Pr[no nbr of v with smaller degree marked]

Show at least one neighbor of v with smaller degree is marked!

Luby’s Algorithm

Claim: If v is good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Pr [no nbr of v marked] < Pr[no nbr of v with smaller degree marked]

H Pr|w not marked]

w smaller degree nbr of v

Nodes are marked independently.

Luby’s Algorithm

Claim: If v is good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Pr [no nbr of v marked] < Pr[no nbr of v with smaller degree marked]

H Pr|w not marked]

w smaller degree nbr of v

I)

w smaller degree nbr of v

The probability that a node w is marked is 1/2d(w).

Luby’s Algorithm

Claim: If v is good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Pr [no nbr of v marked] < Pr[no nbr of v with smaller degree marked]

H Pr|w not marked]

w smaller degree nbr of v

I)

w smaller degree nbr of v

|1

w smaller degree nbr of v

By assumption, d(w) < d(v).

Luby’s Algorithm

Claim: If v is good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Pr [no nbr of v marked] < Pr[no nbr of v with smaller degree marked]

H Pr|w not marked]

w smaller degree nbr of v

I)

w smaller degree nbr of v

|1

w smaller degree nbr of v

)d(’v)/B

At least d(v)/3 neighbors with smaller degree because v is good.

Luby’s Algorithm

Claim: If v is good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Pr [no nbr of v marked] < Pr[no nbr of v with smaller degree marked]

H Pr|w not marked]

w smaller degree nbr of v

I)

w smaller degree nbr of v

|1

(1-1/x)* < el

Luby’s Algorithm

Analysis

Claim: If w is marked, then:
Pr [unmark w | w marked] < 1/2

Luby’s Algorithm

Claim: If w is marked, then:
Pr [unmark w | w marked] < 1/2

Pr [unmark w | w marked] < Prf|higher degree neighbor of w marked]

Only unmark if higher degree neighbor is marked.

Luby’s Algorithm

Claim: If w is marked, then:
Pr [unmark w | w marked] < 1/2

Pr [unmark w | w marked] < Prf|higher degree neighbor of w marked]

1
Z 2d(z)

z higher degree neighbor of w

Union bound...

Luby’s Algorithm

Claim: If w is marked, then:
Pr [unmark w | w marked] < 1/2

Pr [unmark w | w marked] < Prf|higher degree neighbor of w marked]

z higher degree neighbor of w

Z 2d(w)

z higher degree neighbor of w

1
Z 2d(z)
1

By assumption, d(w) < d(z).

Luby’s Algorithm

Claim: If w is marked, then:
Pr [unmark w | w marked] < 1/2

Pr [unmark w | w marked|

Node w has d(w) neighbors.

Pr|higher degree neighbor of w marked]

z higher degree neighbor of w

Z 2d(w)

z higher degree neighbor of w

d(w)

2d(w)

1
Z 2d(z)
1

Luby’s Algorithm

Claim: If w is marked, then:
Pr [unmark w | w marked] < 1/2

Pr [unmark w | w marked] < Prf|higher degree neighbor of w marked]

z higher degree neighbor of w

Z 2d(w)

z higher degree neighbor of w

d(w)

d(w)

1
Z 2d(z)
1

Luby’s Algorithm

Analysis

Claim: If vis good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Claim: If w is marked, then:

Pr[stay marked w | marked w]| >

Luby’s Algorithm

Analysis

Claim: If vis good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Claim: If w is marked, then:

Pr[stay marked w | marked w]| >

Claim: If v is good, then:

Prinode w, nbr of v, enters the MIS] > «

Luby’s Algorithm

Analysis

Claim: If vis good, then:
Pr [nbr of v marked] > (1 — e~ /%) = 2a

Claim: If w is marked, then:

Pr[stay marked w | marked w]| >

Claim: If v is good, then:

Prlv is deleted at end of iteration| > «

Luby’s Algorithm

Analysis

Claim: If vis good, then:

Prlv is deleted at end of iteration| > «

Claim: If edge (u,v) is good, then:

Pr|(u,v) is deleted at end of iteration| > «

Because either u or v is good.

Luby’s Algorithm

Analysis

Claim: If vis good, then:

Prlv is deleted at end of iteration| > «

Claim: If edge (u,v) is good, then:

Pr|(u,v) is deleted at end of iteration| > «

EE;|Ej—1] < Ej—1(1 —a/2)

Luby’s Algorithm

Analysis

E[E;|Ej 1] < Ej (1 —a/2)

E[F;] = E[E[E;|E; 1]

Law of Total Expectation

Luby’s Algorithm

Analysis

ElE;|Ej 1] < Ej1(1—a/2)

E[E)]

E|
.

| Ej—1]]
(1 —a/2)

Substitution.

Luby’s Algorithm

Analysis

E[E;|Ej 1] < Ej1(1 —a/2)

E[E)] EE[E;|E;1]]

E[E;_1)(1 — a/2)
E|(1 - a/2)

Induction.
Note that E, = |E].

Luby’s Algorithm

Analysis

E[E;|E;_1] <

E;1(1—a/2)

E[E)] E|

E

| Ej—1]]

Ei1)(1—a/2)

E|(1-a/2)

2
Eliterations] < O<alog(!ED>

Prove this. (Hint: Markov’s Inequality is useful.)

Luby’s Algorithm

Analysis

Theorem:

Luby’s Algorithm terminates in O(log |E|) iterations,
In expectation.

Luby’s Algorithm

Expected time?

Maximal Independent Set

Luby’s Algorithm:
° S=9
 Repeat until V is empty:
1. Mark each node u with probability 1/2d(u).

2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.

else if d(v) < d(u) then unmark v.

else if d(u) = d(v) then unmark node with smaller id.
. Add all marked nodes to S.

Delete from V every marked node.
Delete from V every neighbor of marked node.
Delete from E every edge that no longer exists.

Luby’s Algorithm

Expected time?

OEFE+(1—a/2QE+(1—-a/2?*E+(1—a/2)°E+...)=0(F)

Luby’s Algorithm

Analysis

Theorem:

Luby’s Algorithm terminates in O(log |E|) iterations,
in O(E) time, in expectation.

Cache Efficient??

Luby’s Algorithm:
° S=9
 Repeat until V is empty:
1. Mark each node u with probability 1/2d(u).

2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.

else if d(v) < d(u) then unmark v.

else if d(u) = d(v) then unmark node with smaller id.
. Add all marked nodes to S.

Delete from V every marked node.
Delete from V every neighbor of marked node.
Delete from E every edge that no longer exists.

Cache-Efficient Luby’s

Setup

Initially:

Assume that all the edges are in a single array.

This could take O(|V]) time to construct, otherwise.

Ex:
[(u,v), (u,w), (x,2), (z,u), (x,w)]

Cache-Efficient Luby’s

Setup

Initially:

Assume that all the edges are in a single array.
Assume each edge also stores:

e deg(u), deg(v)

e 1-bit: marked

e 1-bit: deleted

Ex:
[(u,v,3,3,00), (u,w,2,4,00), (x,z,4,2,00), (z,u,5,2,00), (x,w,3,1,00)]

Cache-Efficient Luby’s

Setup

Initially; cqncatenatgd adjacency lists
with extra bits

Assume that all the edges are in a single array.
Assume each edge also stores:

e deg(u), deg(v)

e 1-bit: marked

e 1-bit: deleted

Assume each edge is stored twice: (u,v) and (v,u)

Ex:
[(u,v),(v,u),(u,w),(w,u),(x,2),(z,x),(z,u),(u,z)]

Cache-Efficient Luby’s

Setup

concatenated adjacency lists
with extra bits

Initially:

Assume that all the edges are in a single array.
Assume each edge also stores:

e deg(u), deg(v)

e 1-bit: marked

e 1-bit: deleted

Assume each edge is stored twice: (u,v) and (v,u)

To access the edges adjacent to u: sort the edge array.

Cache Efficient Luby’s

Luby’s Iteration:

1. Mark each node u with probability 1/2d(u).

2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.
else if d(v) < d(u) then unmark v.

else if d(u) = d(v) then unmark node with smaller id.
. Add all marked nodes to S.

Delete from V every marked node.

Delete from V every neighbor of marked node.
Delete from E every edge that no longer exists.

Cache Efficient Luby’s

Luby’s Iteration:
1. Mark each node u with probability 1/2d(u).

Cache-efficient:

Sort the array by node.

Scan the array.

For each node u, flip a random coin to decide on mark.

(Use the degree of each node that is stored with the edge.)
Set the mark bits for each edge (u, .).

O(sort(E) + FE/B)

Cache Efficient Luby’s

Luby’s Iteration:

1. Mark each node u with probability 1/2d(u).
2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.
else if d(v) < d(u) then unmark v.
else if d(u) = d(v) then unmark node with smaller id.

Cache-efficient:

Make a copy FE’.

Sort by 2" component of edge (., u).

Iterate and unmark if higher degree neighbor is marked.

Cache Efficient Luby’s

Sort by first:

(a,b) | (a,d)
3 3
X X

Sort by second:

(b,a) | (d,a)
2 2

Cache Efficient Luby’s

Sort by first:

Scan neighbors of node a.
Do not unmark a.

Cache Efficient Luby’s

Sort by first:

(a,b) | (a,d)
3 3
X X

Sort by second:

(b,a) | (d,a)
2 2

Scan neighbors of node b.
If b were marked, unmark b because a is marked.

Cache Efficient Luby’s

Sort by first:

(a,b) | (a,d)
3 3
X X

Sort by second:

(b,a) | (d,a)
2 2

Scan neighbors of node c.
None are marked.

Cache Efficient Luby’s

Sort by first:

(a,b)
3
X

(a,d)
3
X

(c,b)
1
X

(d,a) | (d,e) § (e,a)
2 2 2
X

Sort by second:

(b,a)
2

(d,a)
2

(b,c)
2

Scan neighbors of node d.

(a,d) | (e,d) §(a,e)
3 2 3
X X X

Cache Efficient Luby’s

Sort by first:

(a,b)
3
X

(a,d)
3
X

Sort by second:

(b,a)
2

(d,a)
2

Scan neighbors of node e.

Unmark e because a is marked and has higher degree.

Cache Efficient Luby’s

Sort by first:

(a,b)
3
X

(a,d)
3
X

Sort by second:

(b,a)
2

(d,a)
2

Scan neighbors of node e.

Unmark e because a is marked and has higher degree.

Cache Efficient Luby’s

Sort by first:

(a,b)
3
X

(a,d)
3
X

Sort by second:

(b,a)
2

(d,a)
2

(e,a)
2
X

3
X

1
X

O(sort(F) + FE/B)

Cache Efficient Luby’s

Luby’s Iteration:

1. Mark each node u with probability 1/2d(u).
2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.
else if d(v) < d(u) then unmark v.
else if d(u) = d(v) then unmark node with smaller id.

Cache-efficient:

Make a copy FE’.

Sort by 2" component of edge (., u).

Iterate and unmark if higher degree neighbor is marked.

Cache Efficient Luby’s

Luby’s Iteration:
1. Mark each node u with probability 1/2d(u).
2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.
else if d(v) < d(u) then unmark v.
else if d(u) = d(v) then unmark node with smaller id.
3. Add all marked nodes to S.
4. Delete from V every marked node.

Cache-efficient:
Create two new arrays S and (new) E.
Copy all marked edges into S and all unmarked edges into (new) E.

O(E/B)

Cache Efficient Luby’s

Luby’s Iteration:

1. Mark each node u with probability 1/2d(u).

2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.
else if d(v) < d(u) then unmark v.

else if d(u) = d(v) then unmark node with smaller id.
. Add all marked nodes to S.

Delete from V every marked node.

Delete from V every neighbor of marked node.
Delete from E every edge that no longer exists.

Cache-efficient:
Sort S. Sort E.

Scan and delete from E.

Cache Efficient Luby’s

E (sorted by second)

S (sorted by first)

(a,c) | (a,e)
3 3
X X

Scan neighbors of node a.
Mark to delete if neighbor is marked.

Cache Efficient Luby’s

E (sorted by second)

S (sorted by first)

(a,c) | (a,e)
3 3
X X

Scan neighbors of node a.
Mark to delete if neighbor is marked.

Cache Efficient Luby’s

E (sorted by second)

(b,a)
2
D

(c,a)
2
D

S (sorted by first)

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

(b,d) | (h,d) | (d,f)
2 1

Scan neighbors of node d.
Mark to delete if neighbor is marked.

Cache Efficient Luby’s

E (sorted by second)

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(h,d)

S (sorted by first)

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

(d,f) | (c,f)
2 1

Scan neighbors of node f.

Mark to delete if neighbor is marked.

Cache Efficient Luby’s

E (sorted by second)

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(h,d)

S (sorted by first)

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

(d,f) | (c,f)
2 1
D D

Scan neighbors of node f.

Mark to delete if neighbor is marked.

Cache Efficient Luby’s

E (sorted by second)

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

1
D

S (sorted by first)

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

Scan neighbors of node h.
Mark to delete if neighbor is marked.

Cache Efficient Luby’s

E (sorted by second)

(b,a) | (c,a) | (e,a)
2 2 2
D D D

Cache Efficient Luby’s

E (sorted by first)

(b,a) | (b,d) | (c,a)
2 | 2 | 2
D | D | D

Sort and mark all associated with same node as deleted.

Cache Efficient Luby’s

E (sorted by first)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

E (sorted by second)

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

Copy and sort.

E (sorted by first)

Cache Efficient Luby’s

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

E (sorted by second)

Scan and mark deleted if any neighbor is marked deleted.

Cache Efficient Luby’s

E (sorted by first)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(d,f) | (d,h) | (e,a)
2 | 2
D | D

E (sorted by second)

(b,a)
2
D

(c,a)
2
D

(b,d) | (h,d) | (d,f)
2 1
D

Scan and mark deleted if any neighbor is marked deleted.

Cache Efficient Luby’s

E (sorted by first)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

E (sorted by second)

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(h,d)
1

Scan and mark deleted if any neighbor is marked deleted.

Cache Efficient Luby’s

E (sorted by first)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

E (sorted by second)

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

Scan and mark deleted if any neighbor is marked deleted.

Cache Efficient Luby’s

E (sorted by first)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

E (sorted by second)

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

Scan and mark deleted if any neighbor is marked deleted.

E (sorted by first)

Cache Efficient Luby’s

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

new array

Copy anything left to a new array E for the next iteration.

E (sorted by first)

Cache Efficient Luby’s

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

new array

O(sort(F) + E/B)

Cache Efficient Luby’s

Luby’s Iteration:

1. Mark each node u with probability 1/2d(u).

2. For each edge (u,v): if both u and v are marked:
if d(u) < d(v) then unmark u.
else if d(v) < d(u) then unmark v.

else if d(u) = d(v) then unmark node with smaller id.
. Add all marked nodes to S.

Delete from V every marked node.

Delete from V every neighbor of marked node.
Delete from E every edge that no longer exists.

Cache-efficient:

O(sort(F)+ E/B)

Luby’s Algorithm

Analysis

Theorem:

Luby’s Algorithm terminates in O(log |E|) iterations,
in O(E/B + sort(E)) time, in expectation.

sort(E) = O (% log /B(E/B)>

Summary

Today: Graph Algorithms

Breadth-First-Search

e Sorting your graph

MIS

 Luby’s Algorithm

* Cache-efficient implementation
MST

* Connectivity

* Minimum Spanning Tree

Connected Components

ldea: Transform graph into depth-1 trees.

A
im

Cache-Efficient Connectivity

Setup

Initially:

Assume that all the edges are in a single array.
Assume each edge is stored ONCE

EX:
[(u,v),(u,w),(x,2),(z,u)]

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E1 and E2.

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E1 and E2.
. Base case:
2. Recursively solve E2 =» depth 1 trees. |oneedge & done.

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E1 and E2.
2. Recursively solve E2 =2 depth 1 trees.
3. Contract E1.

directed
edge

edge

) inEl

Only “root” nodes in E2 are connected to E1.

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E1 and E2.
2. Recursively solve E2 =2 depth 1 trees.
3. Contract E1.

Claim: does not change connected components.

E2 depth-1 tree

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E1 and E2.
2. Recursively solve E2 =2 depth 1 trees.
3. Contract E1.

Claim: does not change connected components.

E2 depth-1 tree

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E1 and E2.
2. Recursively solve E2 =2 depth 1 trees.
3. Contract E1.

Claim: does not change connected components.

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E1 and E2.
2. Recursively solve E2 =2 depth 1 trees.
3. Contract E1.

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E1 and E2.
2. Recursively solve E2 =2 depth 1 trees.
3. Contract E1.

Claim: does not change connected components.

Algorithm:
For each (x,y) in E1: if (a,x) or (a,y) is in E2 then:
Replace (x,y) with (y,a) or (x,y) with (x,a).

Cache-Efficient Connectivity

Algorithm Idea

1. Divide E into two parts: E1 and E2.
2. Recursively solve E2 =2 depth 1 trees.
3. Contract E1.

directed
edge

)

Only “root” nodes in E2 are connected to E1.

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.

Recursively solve E1 =2 depth 1 trees.

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.

Recursively solve E1 =2 depth 1 trees.
Merge E2 into E1.

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.

Recursively solve E1 =2 depth 1 trees.
Merge E2 ipto E1.

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.

Recursively solve E1 =2 depth 1 trees.
Merge E2 into E1.

Q@<

T o

No merging necessary!

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.

Recursively solve E1 =2 depth 1 trees.
Merge E2 into E1.

E2 depth-1 tree

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.

Recursively solve E1 =2 depth 1 trees.
Merge E2 into E1.

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.

Recursively solve E1 =2 depth 1 trees.
Merge E2 into E1.

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
Recursively solve E2 =2 depth 1 trees.
Contract E1.

Recursively solve E1 =2 depth 1 trees.
Merge E2 into E1.

Claim: Does not change
connected components.

Algorithm:

For each (a,b) in E2:
If ais an E1 root: add (a,b) to E1.
Else if (x,a) in E1: add (x,b) to E1.

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.
Recursively solve E1 =2 depth 1 trees.
Merge E2 into E1.

= /AN

Cache-Efficient Connectivity

Contract(E1, E2)

. Sort E1 by first.

. Sort E2 by second.
. Scan: (a,b) in E1, (x,a) in E2 =» delete(a,b), add(x,b)

. Sort E1 by second.
. Sort E2 by second.
. Scan: (a,b) in E1, (x,b) in E2 =» delete(a,b), add(x,a)

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (b,d) | (b,c)

E2 (sorted by second)

(z,b) | (z,c) | (y,d) | (v.f) | (z,))

Sort E1 by first, E2 by second.

Cache Efficient Contract

E1 (sorted by first)

(b,d) | (b,c)

E2 (sorted by second)

(z,c) | (y,d)

Scan: look for (b, .)

Cache Efficient Contract

E1 (sorted by first)

E2 (sorted by second)

(z,c) | (y,d)

Scan: look for (b, .)

Cache Efficient Contract

E1 (sorted by first)

E2 (sorted by second)

(z,c) | (v,d) | (v,f) | (z])

Scan: replace (b,d) with (z,d)

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) (c,e)

E2 (sorted by second)

(z,c) | (v,d) | (v,f) | (z])

Scan: replace (b,c) with (z,c)

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) (c,e)

E2 (sorted by second)

(z,c) | (v,d) | (v,f) | (z])

Scan: replace (b,c) with (z,c)

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) | (z,c) (c,f)

E2 (sorted by second)

Scan...

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) | (z,c) (c,f)

E2 (sorted by second)

Replace...

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) | (z,c) (Z,E)(d,g)

E2 (sorted by second)

Scan...

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) | (z,c) (Z,E)(d,g)

E2 (sorted by second)

Replace...

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) | (z,c) (z,f) (d,h)

E2 (sorted by second)

(z,b) | (z,c) | (v, d) | (v.f)

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) | (z,c) (z,f) | (v,8) |(d,h)

E2 (sorted by second)

(z,b) | (z,c) | (v, d) | (v.f)

Replace...

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) | (z,c) (v,8)

E2 (sorted by second)

(z,b) | (z,c) | (v, d) | (v.f)

Cache Efficient Contract

E1 (sorted by first)

(a,b) | (z,d) | (z,c) (v,g) | (v,h)

E2 (sorted by second)

(z,b) | (z,c) | (v, d) | (v.f)

Replace...

Cache-Efficient Connectivity

Contract(E1, E2)

. Sort E1 by first.

. Sort E2 by second.
. Scan: (a,b) in E1, (x,a) in E2 =» delete(a,b), add(x,b)

. Sort E1 by second.
. Sort E2 by second.
. Scan: (a,b) in E1, (x,b) in E2 =» delete(a,b), add(x,a)

O(sort(F)+ E/B)

Cache-Efficient Connectivity

Merge(E1, E2)

. Sort E1 by second.
. Sort E2 by first.
. Scan: (a,b) in E1, (b,c) in E2 =» add(a,c) to E1

. Sort E1 by first.
. Sort E2 by first.
. Scan: (a,.)in E1, (a,x) in E2 =» add(a,x) to E1

O(sort(F)+ E/B)

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.

Recursively solve E1 =2 depth 1 trees.
Merge E2 into E1.

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
Recursively solve E2 =2 depth 1 trees.

. Contract E1.
. Recursively solve depth 1 trees.
. Merge E2 ipto E1.

O(sort(E)+ E/B)

Cache-Efficient Connectivity

Algorithm Idea

Divide E into two parts: E1 and E2.
. Recursively solve E2 =» depth 1 trees.
. Contract E1.

Recursively solve E1 =2 depth 1 trees.
Merge E2 into E1.

T(E) 2T (E/2) + O(E/B) + sort(E)
O(sort(F)log(E))

Faster than BFS (except in sparse case)!

Summary

Today: Graph Algorithms

Breadth-First-Search

e Sorting your graph

MIS

 Luby’s Algorithm

* Cache-efficient implementation
MST

* Connectivity

* Minimum Spanning Tree

Cache-Efficient MST

Algorithm Idea

Let e be a random edge.

Divide E into two parts:

 E1 has edges with weight < w(e).
 E2.has edges with weight > w(e)
Recursively find MST of E1.

DO something.

Recursively find MST of E2.

DO something.

