
Algorithms	at	Scale
(Week	8)

Summary

Today:	Graph	Algorithms

Breadth-First-Search
• Sorting	your	graph
MIS
• Luby’s Algorithm
• Cache-efficient	implementation
MST
• Connectivity
• Minimum	Spanning	Tree

Last	Week:	Caching

External	memory	model
• How	to	predict	the	

performance	of	algorithms?
B-trees
• Efficient	searching
Write-optimized	data	structures
• Buffer	trees
Cache-oblivious	algorithms
• van	Emde Boas	memory	

layout

Announcements	/	Reminders

Today:

MiniProject “proposal”	due	today.

Next	week:	

Midterm	exam	(in	class)

Announcements	/	Reminders

Midterm	info:

• Will	post	sample	from	last	year.
• In	class,	here,	2	hours.
• Material	up	to	(and	including)	today.

(Lecture,	“tutorial”,	problem	sets,	etc.)
• One	double-sided	“cheat	sheet”	allowed

Note:	
• I	will	be	out	of	town.
• Prof.	Diptarka Chakraborty	will	give	the	exam.

Midterm	Advice

Two	types	of	questions:

1. Algorithms	questions
• For	example:	sublinear	connectivity,	streaming	distinct	elements,	B-

trees,	etc.

• Know	the	algorithms… when	they	are	useful… when	they	are	not	
useful…

• Understand	why	they	work.

2. Technique	questions
• For	example:	sampling,	reservoir	sampling,	Chernoff/Hoeffding bounds,	

median-of-means,	etc.

• Know	the	techniques,	how	to	use	them,	when	they	work	(and	when	
they	don’t	work).

Today’s	Problem:	Connected	Components

Assumptions:

Graph	G	=	(V,E)
• Undirected
• n nodes
• m edges
• maximum	degree	d
Error	term:	𝜀

Output:	
Number	of	connected	components.

Example:	output	3

A

B

c

Summary

Today:	Graph	Algorithms

Breadth-First-Search
• Sorting	your	graph
MIS
• Luby’s Algorithm
• Cache-efficient	implementation
MST
• Connectivity
• Minimum	Spanning	Tree

Last	Week:	Caching

External	memory	model
• How	to	predict	the	

performance	of	algorithms?
B-trees
• Efficient	searching
Write-optimized	data	structures
• Buffer	trees
Cache-oblivious	algorithms
• van	Emde Boas	memory	

layout

Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s

source

Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s
• each	adjacency	list	stored	as	

an	array	(consecutive	in	
memory)

Adjacency	List	Format:
Example:
u	:	a,	b,	c,	v
v	:	a,	e,	f
w	:	b,	c,	d,	f
…

source

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s

Layer-by-layer…

L0 = {1}
L1 = N(1) = {2, 3, 4}
L2 = N(L1)� L1 � L0 = {5, 6, 7}
L3 = N(L2)� L2 � L1 � L0 = {7, 8, 9, 10}
L4 = N(L3)� L3 � L2 � L1 � L0 = {11}

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Algorithm:

• L0 =	{s}
• Repeat	until	done:

construct	Li+1 from	Li

1

2
3

4

5
6

7 8 9 10

11

Key	idea:	neighbors	of	Li form	layer	Li+1.

Key	idea	2:	remove	already	visited	nodes.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Algorithm:

• L0 =	{s}
• Repeat	until	done:

construct	Li+1 from	Li

1

2
3

4

5
6

7 8 9 10

11

This	edge	cannot	exist!

(If	it	did,	node	7	would
be	in	Layer	2.)	

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Algorithm:

• L0 =	{s}
• Repeat	until	done:

construct	Li+1 from	Li

1

2
3

4

5
6

7 8 9 10

11

L0 = {1}
L1 = N(1) = {2, 3, 4}
L2 = N(L1)� L1 � L0 = {5, 6, 7}
L3 = N(L2)� L2 � L1 = {7, 8, 9, 10}
L4 = N(L3)� L3 � L2 = {11}

Key	idea:	neighbors	of	Li form	layer	Li+1.

Key	idea	2:	remove	already	visited	nodes	
from	only	two layers.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

1

2
3

4

5
6

7 8 9 10

11
Invariant:	each	Li is	sorted.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

1

2
3

4

5
6

7 8 9 10

11

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{6,	3,	1,	5,	1,	2,	6,	1,	6}

1

2
3

4

5
6

7 8 9 10

11

Cost?

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{6,	3,	1,	5,	1,	2,	6,	1,	6}

1

2
3

4

5
6

7 8 9 10

11

Cost:
|L1|/B	+	

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{6,	3,	1,	5,	1,	2,	6,	1,	6}

1

2
3

4

5
6

7 8 9 10

11

Cost:
|L1|/B	+	|L1|	+		

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{6,	3,	1,	5,	1,	2,	6,	1,	6}

1

2
3

4

5
6

7 8 9 10

11

Cost:
|L1|/B	+	|L1|	

+	edges(|L1|)/B

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{6,	3,	1,	5,	1,	2,	6,	1,	6}

1

2
3

4

5
6

7 8 9 10

11

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	1,	1,	2,	3,	5,	6,	6,	6}

1

2
3

4

5
6

7 8 9 10

11

Sort

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	1,	1,	2,	3,	5,	6,	6,	6}

1

2
3

4

5
6

7 8 9 10

11

Remove	duplicates

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	1,	1,	2,	3,	5,	6,	6,	6}

1

2
3

4

5
6

7 8 9 10

11

Remove	duplicates

O(edges(L1)/B)

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Remove	duplicates

O(edges(L1)/B)

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	2,	3,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

O(|L1|/B	+	O(edges(L1)/B)

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L1.

O(|L1|/B	+	O(edges(L1)/B)

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L0.

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{1,	5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L0.

O(|L0|/B	+	O(edges(L1)/B))

Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Breadth	First	Search

Example:

L0 =	{1}

L1 =	{2,	3,	4}

L2 =	{5,	6}

1

2
3

4

5
6

7 8 9 10

11

Subtract	L0.

O(|L0|/B	+	O(edges(L1)/B))

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

2|Li|+ edges(Li)/B

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

sort(Li)

2|Li|+ edges(Li)/B

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

sort(Li)

2|Li|+ edges(Li)/B

edges(Li)/B

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

sort(Li)

2|Li|+ edges(Li)/B

edges(Li)/B

|Li|/B + edges(Li)/B

|Li�1|/B + edges(Li)/B

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

sort(Li)

Sums	to	|V|	over	all	levels.
(Every	node	is	in	one	level.)

2|Li|+ edges(Li)/B

edges(Li)/B

|Li|/B + edges(Li)/B

|Li�1|/B + edges(Li)/B

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

sort(Li)

d

Sums	to	|V|	over	all	levels.
(Every	node	is	in	one	level.)

2|Li|+ edges(Li)/B

Sums	to	2|E|/B	over	all	levels.

edges(Li)/B

|Li|/B + edges(Li)/B

|Li�1|/B + edges(Li)/B

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

sort(Li)

d

Sums	to	|V|	over	all	levels.
(Every	node	is	in	one	level.)

2|Li|+ edges(Li)/B

Sums	to	8|E|/B	over	all	levels.

edges(Li)/B

|Li|/B + edges(Li)/B

|Li�1|/B + edges(Li)/Bd

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

sort(Li)

d

Sums	to	|V|	over	all	levels.
(Every	node	is	in	one	level.)

2|Li|+ edges(Li)/B

Sums	to	8|E|/B	over	all	levels.

edges(Li)/B

|Li|/B + edges(Li)/B

|Li�1|/B + edges(Li)/Bd

Sums	to	2|V|/B	over	all	levels.

Total	cost:
O(|V |+ |E|/B + sort(|E|))

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

sort(Li)

d

Sums	to	|V|	over	all	levels.
(Every	node	is	in	one	level.)

2|Li|+ edges(Li)/B

Sums	to	8|E|/B	over	all	levels.

edges(Li)/B

|Li|/B + edges(Li)/B

|Li�1|/B + edges(Li)/Bd

Sums	to	2|V|/B	over	all	levels.

Total	cost:
O(|V |+ |E|/B + sort(|E|))

sort(E) = O

✓
E

B
logM/B(E/B)

◆

Breadth	First	Search

Cost	to	construct	Li+1 :

1. Li+1 = neighbors	of	all	
nodes	in	Li

2. Sort	Li+1.
3. Remove	duplicates	in	

Li+1.
4. Scan	Li,	Li+1:	remove	

nodes	in	both.
5. Scan	Li-1,	Li+1:	remove	

nodes	in	both.

sort(Li)

d

Sums	to	|V|	over	all	levels.
(Every	node	is	in	one	level.)

2|Li|+ edges(Li)/B

Sums	to	8|E|/B	over	all	levels.

edges(Li)/B

|Li|/B + edges(Li)/B

|Li�1|/B + edges(Li)/Bd

Sums	to	2|V|/B	over	all	levels.

Total	cost:
O(|V |+ |E|/B + sort(|E|))

Compare	to:
O(|V |+ |E|)

sort(E) = O

✓
E

B
logM/B(E/B)

◆

Problem:	Breadth	First	Search

Can	we	do	better?
source

Problem:	Breadth	First	Search

Can	we	do	better?

Unlikely	in	dense	graph.

source

Problem:	Breadth	First	Search

Can	we	do	better?

Unlikely	in	dense	graph.
Ø If	|E|	>	B|V| and	BFS	needs	to	read	

each	edge,	then	requires	at	least	
|V| time.

source

Problem:	Breadth	First	Search

Can	we	do	better?

Unlikely	in	dense	graph.
Ø If	|E|	>	B|V| and	BFS	needs	to	read	

each	edge,	then	requires	at	least	
|V| time.

Unlikely	if	adjacency	lists	are	stored	
separately.

Ø BFS	needs	to	access	each	node	and	
each	list	at	least	once,	so	requires	
|V| time.

source

Problem:	Breadth	First	Search

Can	we	do	better?

Sparse	graph

Store	all	edges	in	one	array.

If	|E|	=	O(|V|)	then:

source

O

 r
|V ||E|
B

+ sort(E)

!

O

✓
|V |
B

+ sort(E)

◆

Summary

Today:	Graph	Algorithms

Breadth-First-Search
• Sorting	your	graph
MIS
• Luby’s Algorithm
• Cache-efficient	implementation
MST
• Connectivity
• Minimum	Spanning	Tree

Maximal	Independent	Set

Independent	Set:

A	set	of	nodes	S so	that	no	two	
neighbors	are	in	S.

Maximal	Independent	Set

Independent	Set:

A	set	of	nodes	S so	that	no	two	
neighbors	are	in	S.

Maximal	Independent	Set:

An	independent	set	S where	no	node	can	
be	added.

(Every	node	has	a	neighbor	in	the	
independent	set	S.)	

Maximal	Independent	Set

Independent	Set:

A	set	of	nodes	S so	that	no	two	
neighbors	are	in	S.

Maximal	Independent	Set:

An	independent	set	S where	no	node	can	
be	added.

Maximum Independent	Set:

An	independent	set	S of	maximum	size.

Maximal	Independent	Set

Independent	Set:

A	set	of	nodes	S so	that	no	two	
neighbors	are	in	S.

Maximal	Independent	Set:

An	independent	set	S where	no	node	can	
be	added.

Maximum Independent	Set:

An	independent	set	S of	maximum	size.

Maximal	Independent	Set

Independent	Set:

A	set	of	nodes	S so	that	no	two	
neighbors	are	in	S.

Maximal	Independent	Set:

An	independent	set	S where	no	node	can	
be	added.

Maximum Independent	Set:

An	independent	set	S of	maximum	size.
NP-Hard

Maximal	Independent	Set

Greedy	MIS	Algorithm:
• S =	empty	set
• for	every	node	v:

Ø If	no	neighbor	of	v is	in	S,	
then	add	v to	S.

Maximal	Independent	Set

Greedy	MIS	Algorithm:
• S =	empty	set
• for	every	node	v:

Ø If	no	neighbor	of	v is	in	S,	
then	add	v to	S.

Cost:

(every	access	is	a	cache	miss)

O(|V |+ |E|)

Maximal	Independent	Set

Luby’s Algorithm:
• S =	∅
• Repeat	until	V is	empty:

1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

3. Add	all	marked	nodes	to	S.
4. Delete	from	V every	marked	node.
5. Delete	from	V every	neighbor	of	marked	node.	
6. Delete	from	E every	edge	that	no	longer	exists.

degree	of	
node	u

Maximal	Independent	Set

Luby’s Algorithm:
• S =	∅
• Repeat	until	V is	empty:

1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

3. Add	all	marked	nodes	to	S.
4. Delete	from	V every	marked	node.
5. Delete	from	V every	neighbor	of	marked	node.	
6. Delete	from	E every	edge	that	no	longer	exists.

degree	of	
node	u

[Example	on	the	board]

Luby’s Algorithm

Claim	1:

The	set	S is	a	maximal	independent	set.

Luby’s Algorithm

Claim	1:

The	set	S is	a	maximal	independent	set.

independent:
• only	add	marked	nodes	to	S
• unmark	if	two	neighbors	are	marked
• delete	all	neighbors	of	every	node	added	to	S

Luby’s Algorithm

Claim	1:

The	set	S is	a	maximal	independent	set.

maximal:
• only	delete	a	node	if	added	to	S,	or	a	neighbor	

is	added	to	S
• algorithm	terminates	when	all	nodes	are	

deleted	è all	are	in	S	or	have	a	neighbor	in	S.

Maximal	Independent	Set

Luby’s Algorithm:
• S =	∅
• Repeat	until	V is	empty:

1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

3. Add	all	marked	nodes	to	S.
4. Delete	from	V every	marked	node.
5. Delete	from	V every	neighbor	of	marked	node.	
6. Delete	from	E every	edge	that	no	longer	exists.

Luby’s Algorithm

Define:	Ej =	edges	at	start	of	iteration	j.

Goal:	for	some	constant	α<1,	show:

Idea:	reduce	the	number	of	edges	by	a	constant	
fraction	in	each	iteration.

Analysis

E[Ej | Ej�1] ↵Ej�1

Luby’s Algorithm

Define:	node	w is	good	if	≥	1/3 neighbors	have	smaller	
degree	than	w.	

Analysis

good

Luby’s Algorithm

Define:	node	w is	good if	≥	1/3 neighbors	have	smaller	
degree	than	w.	

Define:	edge	(u,v) is	good	if	u or	v is	good.	

Analysis

good

Luby’s Algorithm

Claim:	At	least	half	of	all	edges	are	good.

Analysis

good

Luby’s Algorithm

Claim:	At	least	half	of	all	edges	are	good.

Proof:
Orient	each	edge	TO	the	higher	degree	node.
•

Analysis

Luby’s Algorithm

Claim:	At	least	half	of	all	edges	are	good.

Proof:
Orient	each	edge	TO	the	higher	degree	node.

If	v	is	bad,	then:		 >	2/3	are	OUT
≤	1/3 are	IN

•

Analysis

good	è ≥	1/3	have	smaller	degree

Luby’s Algorithm

Claim:	At	least	half	of	all	edges	are	good.

Proof:
Orient	each	edge	TO	the	higher	degree	node.

If	v	is	bad,	then:		 >	2/3	are	OUT
≤	1/3 are	IN

Assign	two	OUT	edges	to	one	IN	edge.
(At	bad	nodes,	there	are	enough	OUT…)
•

Analysis

Luby’s Algorithm

Claim:	At	least	half	of	all	edges	are	good.

Proof:
Assign	two	OUT	edges	to	one	IN	edge.

Each	BAD	edge	(u,v) has	u and	v bad.

Since	it	is	IN	to	a	BAD	node,	it	has	2
edges	assigned	to	it.

Analysis

Luby’s Algorithm

Claim:	At	least	half	of	all	edges	are	good.

Proof:
Assign	two	OUT	edges	to	one	IN	edge.

Since	it	is	IN	to	a	BAD	node,	it	has	2
edges	assigned	to	it.

If	there	are	B bad	nodes,	then	≥	2B	edges	
total	in	graph.

Analysis

Luby’s Algorithm

Claim:	At	least	half	of	all	edges	are	good.

Proof:
If	there	are	B bad	nodes,	then	≥	2B	edges	
total	in	graph.

If	there	are	>	E/2 bad	nodes,	then	>	E					
edges	total	in	graph	è impossible.

è >	E/2 good	nodes.

Analysis

Luby’s Algorithm

Claim:	If	v is	good,	then:

Analysis

Pr [nbr of v marked] � (1� e�1/6
) = 2↵

Luby’s Algorithm

Claim:	If	v is	good,	then:

Pr [no nbr of v marked] Pr [no nbr of v with smaller degree marked]

Y

w smaller degree nbr of v

Pr[w not marked]

Y

w smaller degree nbr of v

✓
1� 1

2d(w)

◆

Y

w smaller degree nbr of v

✓
1� 1

2d(v)

◆

✓
1� 1

2d(v)

◆d(v)/3

 e�1/6

Pr [nbr of v marked] � (1� e�1/6
) = 2↵

Show	at	least	one	neighbor	of	v	with	smaller	degree	is	marked!

Luby’s Algorithm

Claim:	If	v is	good,	then:

Pr [no nbr of v marked] Pr [no nbr of v with smaller degree marked]

Y

w smaller degree nbr of v

Pr[w not marked]

Y

w smaller degree nbr of v

✓
1� 1

2d(w)

◆

Y

w smaller degree nbr of v

✓
1� 1

2d(v)

◆

✓
1� 1

2d(v)

◆d(v)/3

 e�1/6

Pr [nbr of v marked] � (1� e�1/6
) = 2↵

Nodes	are	marked	independently.

Luby’s Algorithm

Claim:	If	v is	good,	then:

Pr [no nbr of v marked] Pr [no nbr of v with smaller degree marked]

Y

w smaller degree nbr of v

Pr[w not marked]

Y

w smaller degree nbr of v

✓
1� 1

2d(w)

◆

Y

w smaller degree nbr of v

✓
1� 1

2d(v)

◆

✓
1� 1

2d(v)

◆d(v)/3

 e�1/6

Pr [nbr of v marked] � (1� e�1/6
) = 2↵

The	probability	that	a	node	w	is	marked	is	1/2d(w).

Luby’s Algorithm

Claim:	If	v is	good,	then:

Pr [no nbr of v marked] Pr [no nbr of v with smaller degree marked]

Y

w smaller degree nbr of v

Pr[w not marked]

Y

w smaller degree nbr of v

✓
1� 1

2d(w)

◆

Y

w smaller degree nbr of v

✓
1� 1

2d(v)

◆

✓
1� 1

2d(v)

◆d(v)/3

 e�1/6

Pr [nbr of v marked] � (1� e�1/6
) = 2↵

By	assumption,	d(w)	<	d(v).

Luby’s Algorithm

Claim:	If	v is	good,	then:

Pr [no nbr of v marked] Pr [no nbr of v with smaller degree marked]

Y

w smaller degree nbr of v

Pr[w not marked]

Y

w smaller degree nbr of v

✓
1� 1

2d(w)

◆

Y

w smaller degree nbr of v

✓
1� 1

2d(v)

◆

✓
1� 1

2d(v)

◆d(v)/3

 e�1/6

Pr [nbr of v marked] � (1� e�1/6
) = 2↵

At	least	d(v)/3	neighbors	with	smaller	degree	because	v	is	good.

Luby’s Algorithm

Claim:	If	v is	good,	then:

Pr [no nbr of v marked] Pr [no nbr of v with smaller degree marked]

Y

w smaller degree nbr of v

Pr[w not marked]

Y

w smaller degree nbr of v

✓
1� 1

2d(w)

◆

Y

w smaller degree nbr of v

✓
1� 1

2d(v)

◆

✓
1� 1

2d(v)

◆d(v)/3

 e�1/6

Pr [nbr of v marked] � (1� e�1/6
) = 2↵

(1-1/x)x ≤	e-1

Luby’s Algorithm

Claim:	If	w is	marked,	then:

Analysis

Pr [unmark w | w marked] 1/2

Luby’s Algorithm

Claim:	If	w is	marked,	then:
Pr [unmark w | w marked] 1/2

Pr [unmark w | w marked] Pr[higher degree neighbor of w marked]

X

z higher degree neighbor of w

1

2d(z)

X

z higher degree neighbor of w

1

2d(w)

 d(w)

2d(w)

 1

2

Only	unmark	if	higher	degree	neighbor	is	marked.

Luby’s Algorithm

Claim:	If	w is	marked,	then:
Pr [unmark w | w marked] 1/2

Pr [unmark w | w marked] Pr[higher degree neighbor of w marked]

X

z higher degree neighbor of w

1

2d(z)

X

z higher degree neighbor of w

1

2d(w)

 d(w)

2d(w)

 1

2

Union	bound…

Luby’s Algorithm

Claim:	If	w is	marked,	then:
Pr [unmark w | w marked] 1/2

Pr [unmark w | w marked] Pr[higher degree neighbor of w marked]

X

z higher degree neighbor of w

1

2d(z)

X

z higher degree neighbor of w

1

2d(w)

 d(w)

2d(w)

 1

2

By	assumption,	d(w)	<	d(z).

Luby’s Algorithm

Claim:	If	w is	marked,	then:
Pr [unmark w | w marked] 1/2

Pr [unmark w | w marked] Pr[higher degree neighbor of w marked]

X

z higher degree neighbor of w

1

2d(z)

X

z higher degree neighbor of w

1

2d(w)

 d(w)

2d(w)

 1

2

Node	w	has	d(w)	neighbors.

Luby’s Algorithm

Claim:	If	w is	marked,	then:
Pr [unmark w | w marked] 1/2

Pr [unmark w | w marked] Pr[higher degree neighbor of w marked]

X

z higher degree neighbor of w

1

2d(z)

X

z higher degree neighbor of w

1

2d(w)

 d(w)

2d(w)

 1

2

Luby’s Algorithm

Claim:	If	w is	marked,	then:

Analysis

Claim:	If	v is	good,	then:
Pr [nbr of v marked] � (1� e�1/6

) = 2↵

Pr[stay marked w | marked w] � 1

2

Claim:	If	w is	marked,	then:

Luby’s Algorithm

Claim:	If	v is	good,	then:

Analysis

Claim:	If	v is	good,	then:
Pr [nbr of v marked] � (1� e�1/6

) = 2↵

Pr[node w, nbr of v, enters the MIS] � ↵

Pr[stay marked w | marked w] � 1

2

Claim:	If	w is	marked,	then:

Luby’s Algorithm

Claim:	If	v is	good,	then:

Analysis

Claim:	If	v is	good,	then:
Pr [nbr of v marked] � (1� e�1/6

) = 2↵

Pr[stay marked w | marked w] � 1

2

Pr[v is deleted at end of iteration] � ↵

Claim:	If	edge	(u,v) is	good,	then:

Luby’s Algorithm

Analysis

Claim:	If	v is	good,	then:
Pr[v is deleted at end of iteration] � ↵

Pr[(u, v) is deleted at end of iteration] � ↵

Because	either	u	or	v	is	good.

Claim:	If	edge	(u,v) is	good,	then:

Luby’s Algorithm

Analysis

Claim:	If	v is	good,	then:
Pr[v is deleted at end of iteration] � ↵

Pr[(u, v) is deleted at end of iteration] � ↵

E[Ej |Ej�1] Ej�1(1� ↵/2)

Luby’s Algorithm

Analysis

E[Ej |Ej�1] Ej�1(1� ↵/2)

E[Ej] = E[E[Ej |Ej�1]]

 E[Ej�1](1� ↵/2)

 |E|(1� ↵/2)j

Law	of	Total	Expectation

Luby’s Algorithm

Analysis

E[Ej |Ej�1] Ej�1(1� ↵/2)

E[Ej] = E[E[Ej |Ej�1]]

 E[Ej�1](1� ↵/2)

 |E|(1� ↵/2)j

Substitution.

Luby’s Algorithm

Analysis

E[Ej |Ej�1] Ej�1(1� ↵/2)

E[Ej] = E[E[Ej |Ej�1]]

 E[Ej�1](1� ↵/2)

 |E|(1� ↵/2)j

Induction.
Note	that	E0 =	|E|.

Luby’s Algorithm

Analysis

E[Ej |Ej�1] Ej�1(1� ↵/2)

E[Ej] = E[E[Ej |Ej�1]]

 E[Ej�1](1� ↵/2)

 |E|(1� ↵/2)j

E[iterations] O

✓
2

↵
log(|E|)

◆

Prove	this.		(Hint:	Markov’s	Inequality	is	useful.)

Luby’s Algorithm

Analysis

Theorem:

Luby’s Algorithm	terminates	in	O(log	|E|) iterations,	
in	expectation.

Luby’s Algorithm

Expected	time?

Maximal	Independent	Set

Luby’s Algorithm:
• S =	∅
• Repeat	until	V is	empty:

1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

3. Add	all	marked	nodes	to	S.
4. Delete	from	V every	marked	node.
5. Delete	from	V every	neighbor	of	marked	node.	
6. Delete	from	E every	edge	that	no	longer	exists.

Luby’s Algorithm

Expected	time?

O(E + (1� ↵/2)E + (1� ↵/2)2E + (1� ↵/2)3E + . . .) = O(E)

Luby’s Algorithm

Analysis

Theorem:

Luby’s Algorithm	terminates	in	O(log	|E|) iterations,	
in	O(E) time,	in	expectation.

Cache	Efficient??

Luby’s Algorithm:
• S =	∅
• Repeat	until	V is	empty:

1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

3. Add	all	marked	nodes	to	S.
4. Delete	from	V every	marked	node.
5. Delete	from	V every	neighbor	of	marked	node.	
6. Delete	from	E every	edge	that	no	longer	exists.

Cache-Efficient	Luby’s

Initially:

Assume	that	all	the	edges	are	in	a	single	array.

Ex:	
[(u,v),	(u,w),	(x,z),	(z,u),	(x,w)]

Setup

This	could	take	O(|V|)	time	to	construct,	otherwise.

Cache-Efficient	Luby’s

Initially:

Assume	that	all	the	edges	are	in	a	single	array.
Assume	each	edge	also	stores:
• deg(u),	deg(v)
• 1-bit:	marked
• 1-bit:	deleted

Ex:	
[(u,v,3,3,00),	(u,w,2,4,00),	(x,z,4,2,00),	(z,u,5,2,00),	(x,w,3,1,00)]

Setup

Cache-Efficient	Luby’s

Initially:

Assume	that	all	the	edges	are	in	a	single	array.
Assume	each	edge	also	stores:
• deg(u),	deg(v)
• 1-bit:	marked
• 1-bit:	deleted
Assume	each	edge	is	stored	twice:	(u,v)	and	(v,u)

Ex:	
[(u,v),(v,u),(u,w),(w,u),(x,z),(z,x),(z,u),(u,z)]

Setup

concatenated	adjacency	lists
with	extra	bits

Cache-Efficient	Luby’s

Initially:

Assume	that	all	the	edges	are	in	a	single	array.
Assume	each	edge	also	stores:
• deg(u),	deg(v)
• 1-bit:	marked
• 1-bit:	deleted
Assume	each	edge	is	stored	twice:	(u,v)	and	(v,u)

To	access	the	edges	adjacent	to	u:	sort	the	edge	array.

Setup

concatenated	adjacency	lists
with	extra	bits

Cache	Efficient	Luby’s

Luby’s Iteration:
1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

3. Add	all	marked	nodes	to	S.
4. Delete	from	V every	marked	node.
5. Delete	from	V every	neighbor	of	marked	node.	
6. Delete	from	E every	edge	that	no	longer	exists.

Cache	Efficient	Luby’s

Luby’s Iteration:
1. Mark	each	node	u with	probability	1/2d(u).

Cache-efficient:
Sort	the	array	by	node.
Scan	the	array.
For	each	node	u,	flip	a	random	coin	to	decide	on	mark.
(Use	the	degree	of	each	node	that	is	stored	with	the	edge.)

Set	the	mark	bits	for	each	edge	(u,	.).		

O(sort(E) + E/B)

Cache	Efficient	Luby’s

Luby’s Iteration:
1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

Cache-efficient:
Make	a	copy	E’.
Sort	by	2nd component	of	edge	(.,	u).
Iterate	and	unmark	if	higher	degree	neighbor	is	marked.

Cache	Efficient	Luby’s

(b,a)
2

(d,a)
2

(e,a)
2
X

(a,b)
3
X

(c,b)
1
X

(b,c)
2

(a,d)
3
X

(e,d)
2
X

(a,e)
3
X

(d,e)
2

(a,b)
3
X

(a,d)
3
X

(a,e)
3
X

(b,a)
2

(b,c)
2

(c,b)
1
X

(d,a)
2

(d,e)
2

(e,a)
2
X

(e,d)
2
X

Sort	by	first:

Sort	by	second:

Cache	Efficient	Luby’s

(b,a)
2

(d,a)
2

(e,a)
2
X

(a,b)
3
X

(c,b)
1
X

(b,c)
2

(a,d)
3
X

(e,d)
2
X

(a,e)
3
X

(d,e)
2

(a,b)
3
X

(a,d)
3
X

(a,e)
3
X

(b,a)
2

(b,c)
2

(c,b)
1
X

(d,a)
2

(d,e)
2

(e,a)
2
X

(e,d)
2
X

Sort	by	first:

Sort	by	second:

Scan	neighbors	of	node	a.
Do	not	unmark	a.

Cache	Efficient	Luby’s

(b,a)
2

(d,a)
2

(e,a)
2
X

(a,b)
3
X

(c,b)
1
X

(b,c)
2

(a,d)
3
X

(e,d)
2
X

(a,e)
3
X

(d,e)
2

(a,b)
3
X

(a,d)
3
X

(a,e)
3
X

(b,a)
2

(b,c)
2

(c,b)
1
X

(d,a)
2

(d,e)
2

(e,a)
2
X

(e,d)
2
X

Sort	by	first:

Sort	by	second:

Scan	neighbors	of	node	b.
If	b	were	marked,	unmark	b	because	a	is	marked.

Cache	Efficient	Luby’s

(b,a)
2

(d,a)
2

(e,a)
2
X

(a,b)
3
X

(c,b)
1
X

(b,c)
2

(a,d)
3
X

(e,d)
2
X

(a,e)
3
X

(d,e)
2

(a,b)
3
X

(a,d)
3
X

(a,e)
3
X

(b,a)
2

(b,c)
2

(c,b)
1
X

(d,a)
2

(d,e)
2

(e,a)
2
X

(e,d)
2
X

Sort	by	first:

Sort	by	second:

Scan	neighbors	of	node	c.
None	are	marked.

Cache	Efficient	Luby’s

(b,a)
2

(d,a)
2

(e,a)
2
X

(a,b)
3
X

(c,b)
1
X

(b,c)
2

(a,d)
3
X

(e,d)
2
X

(a,e)
3
X

(d,e)
2

(a,b)
3
X

(a,d)
3
X

(a,e)
3
X

(b,a)
2

(b,c)
2

(c,b)
1
X

(d,a)
2

(d,e)
2

(e,a)
2
X

(e,d)
2
X

Sort	by	first:

Sort	by	second:

Scan	neighbors	of	node	d.

Cache	Efficient	Luby’s

(b,a)
2

(d,a)
2

(e,a)
2
X

(a,b)
3
X

(c,b)
1
X

(b,c)
2

(a,d)
3
X

(e,d)
2
X

(a,e)
3
X

(d,e)
2

(a,b)
3
X

(a,d)
3
X

(a,e)
3
X

(b,a)
2

(b,c)
2

(c,b)
1
X

(d,a)
2

(d,e)
2

(e,a)
2
X

(e,d)
2
X

Sort	by	first:

Sort	by	second:

Scan	neighbors	of	node	e.
Unmark	e	because	a	is	marked	and	has	higher	degree.

Cache	Efficient	Luby’s

(b,a)
2

(d,a)
2

(e,a)
2
X

(a,b)
3
X

(c,b)
1
X

(b,c)
2

(a,d)
3
X

(e,d)
2
X

(a,e)
3
X

(d,e)
2

(a,b)
3
X

(a,d)
3
X

(a,e)
3
X

(b,a)
2

(b,c)
2

(c,b)
1
X

(d,a)
2

(d,e)
2

(e,a)
2

(e,d)
2

Sort	by	first:

Sort	by	second:

Scan	neighbors	of	node	e.
Unmark	e	because	a	is	marked	and	has	higher	degree.

Cache	Efficient	Luby’s

(b,a)
2

(d,a)
2

(e,a)
2
X

(a,b)
3
X

(c,b)
1
X

(b,c)
2

(a,d)
3
X

(e,d)
2
X

(a,e)
3
X

(d,e)
2

(a,b)
3
X

(a,d)
3
X

(a,e)
3
X

(b,a)
2

(b,c)
2

(c,b)
1
X

(d,a)
2

(d,e)
2

(e,a)
2

(e,d)
2

Sort	by	first:

Sort	by	second:

O(sort(E) + E/B)

Cache	Efficient	Luby’s

Luby’s Iteration:
1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

Cache-efficient:
Make	a	copy	E’.
Sort	by	2nd component	of	edge	(.,	u).
Iterate	and	unmark	if	higher	degree	neighbor	is	marked.

Cache	Efficient	Luby’s

Luby’s Iteration:
1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

3. Add	all	marked	nodes	to	S.
4. Delete	from	V every	marked	node.

Cache-efficient:
Create	two	new	arrays	S	and	(new)	E.
Copy	all	marked	edges	into	S	and	all	unmarked	edges	into	(new)	E.

O(E/B)

Cache	Efficient	Luby’s

Luby’s Iteration:
1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

3. Add	all	marked	nodes	to	S.
4. Delete	from	V every	marked	node.
5. Delete	from	V every	neighbor	of	marked	node.	
6. Delete	from	E every	edge	that	no	longer	exists.

Cache-efficient:
Sort	S.	Sort	E.
Scan	and	delete	from	E.

Cache	Efficient	Luby’s

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

(f,d)
2
X

(f,c)
2
X

(b,a)
2

(c,a)
2

(e,a)
2

(b,d)
2

(h,d)
1

(d,f)
2

(c,f)
1

(d,h)
2

E	(sorted	by	second)

S	(sorted	by	first)

Scan	neighbors	of	node	a.
Mark	to	delete	if	neighbor	is	marked.

Cache	Efficient	Luby’s

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

(f,d)
2
X

(f,c)
2
X

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2

(h,d)
1

(d,f)
2

(c,f)
1

(d,h)
2

E	(sorted	by	second)

S	(sorted	by	first)

Scan	neighbors	of	node	a.
Mark	to	delete	if	neighbor	is	marked.

Cache	Efficient	Luby’s

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

(f,d)
2
X

(f,c)
2
X

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2

(h,d)
1

(d,f)
2

(c,f)
1

(d,h)
2

E	(sorted	by	second)

S	(sorted	by	first)

Scan	neighbors	of	node	d.
Mark	to	delete	if	neighbor	is	marked.

Cache	Efficient	Luby’s

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

(f,d)
2
X

(f,c)
2
X

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2

(h,d)
1

(d,f)
2

(c,f)
1

(d,h)
2

E	(sorted	by	second)

S	(sorted	by	first)

Scan	neighbors	of	node	f.
Mark	to	delete	if	neighbor	is	marked.

Cache	Efficient	Luby’s

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

(f,d)
2
X

(f,c)
2
X

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2

(h,d)
1

(d,f)
2
D

(c,f)
1
D

(d,h)
2

E	(sorted	by	second)

S	(sorted	by	first)

Scan	neighbors	of	node	f.
Mark	to	delete	if	neighbor	is	marked.

Cache	Efficient	Luby’s

(a,b)
3
X

(a,c)
3
X

(a,e)
3
X

(f,d)
2
X

(f,c)
2
X

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2

(h,d)
1

(d,f)
2
D

(c,f)
1
D

(d,h)
2

E	(sorted	by	second)

S	(sorted	by	first)

Scan	neighbors	of	node	h.
Mark	to	delete	if	neighbor	is	marked.

Cache	Efficient	Luby’s

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2

(h,d)
1

(d,f)
2
D

(c,f)
1
D

(d,h)
2

E	(sorted	by	second)

Cache	Efficient	Luby’s

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(c,f)
1
D

(d,f)
2
D

(d,h)
2
D

(e,a)
2
D

(h,d)
1

E	(sorted	by	first)

Sort	and	mark	all	associated	with	same	node	as	deleted.

Cache	Efficient	Luby’s

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2
D

(h,d)
1

(d,f)
2
D

(c,f)
1
D

(d,h)
2
D

E	(sorted	by	second)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(c,f)
1
D

(d,f)
2
D

(d,h)
2
D

(e,a)
2
D

(h,d)
1

E	(sorted	by	first)

Copy	and	sort.

Cache	Efficient	Luby’s

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2
D

(h,d)
1

(d,f)
2
D

(c,f)
1
D

(d,h)
2
D

E	(sorted	by	second)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(c,f)
1
D

(d,f)
2
D

(d,h)
2
D

(e,a)
2
D

(h,d)
1

E	(sorted	by	first)

Scan	and	mark	deleted	if	any	neighbor	is	marked	deleted.

Cache	Efficient	Luby’s

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2
D

(h,d)
1

(d,f)
2
D

(c,f)
1
D

(d,h)
2
D

E	(sorted	by	second)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(c,f)
1
D

(d,f)
2
D

(d,h)
2
D

(e,a)
2
D

(h,d)
1

E	(sorted	by	first)

Scan	and	mark	deleted	if	any	neighbor	is	marked	deleted.

Cache	Efficient	Luby’s

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2
D

(h,d)
1

(d,f)
2
D

(c,f)
1
D

(d,h)
2
D

E	(sorted	by	second)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(c,f)
1
D

(d,f)
2
D

(d,h)
2
D

(e,a)
2
D

(h,d)
1

E	(sorted	by	first)

Scan	and	mark	deleted	if	any	neighbor	is	marked	deleted.

Cache	Efficient	Luby’s

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2
D

(h,d)
1

(d,f)
2
D

(c,f)
1
D

(d,h)
2
D

E	(sorted	by	second)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(c,f)
1
D

(d,f)
2
D

(d,h)
2
D

(e,a)
2
D

(h,d)
1

E	(sorted	by	first)

Scan	and	mark	deleted	if	any	neighbor	is	marked	deleted.

Cache	Efficient	Luby’s

(b,a)
2
D

(c,a)
2
D

(e,a)
2
D

(b,d)
2
D

(h,d)
1

(d,f)
2
D

(c,f)
1
D

(d,h)
2
D

E	(sorted	by	second)

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(c,f)
1
D

(d,f)
2
D

(d,h)
2
D

(e,a)
2
D

(h,d)
1
D

E	(sorted	by	first)

Scan	and	mark	deleted	if	any	neighbor	is	marked	deleted.

Cache	Efficient	Luby’s

new	array

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(c,f)
1
D

(d,f)
2
D

(d,h)
2
D

(e,a)
2
D

(h,d)
1
D

E	(sorted	by	first)

Copy	anything	left	to	a	new	array	E	for	the	next	iteration.

Cache	Efficient	Luby’s

new	array

(b,a)
2
D

(b,d)
2
D

(c,a)
2
D

(c,f)
1
D

(d,f)
2
D

(d,h)
2
D

(e,a)
2
D

(h,d)
1
D

E	(sorted	by	first)

O(sort(E) + E/B)

Cache	Efficient	Luby’s

Luby’s Iteration:
1. Mark	each	node	u with	probability	1/2d(u).
2. For	each	edge (u,v):	if	both	u and	v are	marked:

if	d(u)	<	d(v)	then	unmark	u.
else	if	d(v)	<	d(u)	then	unmark	v.
else	if	d(u)	=	d(v)	then	unmark	node	with	smaller	id.

3. Add	all	marked	nodes	to	S.
4. Delete	from	V every	marked	node.
5. Delete	from	V every	neighbor	of	marked	node.	
6. Delete	from	E every	edge	that	no	longer	exists.

Cache-efficient:

O(sort(E) + E/B)

Luby’s Algorithm

Analysis

Theorem:

Luby’s Algorithm	terminates	in	O(log	|E|) iterations,	
in	O(E/B	+	sort(E)) time,	in	expectation.

sort(E) = O

✓
E

B
logM/B(E/B)

◆

Summary

Today:	Graph	Algorithms

Breadth-First-Search
• Sorting	your	graph
MIS
• Luby’s Algorithm
• Cache-efficient	implementation
MST
• Connectivity
• Minimum	Spanning	Tree

Connected	Components

Idea:	Transform	graph	into	depth-1	trees.

Cache-Efficient	Connectivity

Initially:

Assume	that	all	the	edges	are	in	a	single	array.
Assume	each	edge	is	stored	ONCE

Ex:	
[(u,v),(u,w),(x,z),(z,u)]

Setup

1. Divide	E into	two	parts:	E1 and	E2.

Cache-Efficient	Connectivity

Algorithm	Idea

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.

Cache-Efficient	Connectivity

Algorithm	Idea

Base	case:
One	edge	è done.

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

edge
in	E1

directed
edge
in	E2

edge
in	E1

directed
edge
in	E2

Only	“root”	nodes	in	E2	are	connected	to	E1.

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E2	depth-1	tree

E1

Claim:	does	not	change	connected	components.

E1

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E2	depth-1	tree

E1

Claim:	does	not	change	connected	components.

E1

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

Claim:	does	not	change	connected	components.

E1

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

Claim:	does	not	change	connected	components.

Algorithm:
For	each	(x,y) in	E1:	if	(a,x) or	(a,y) is	in	E2 then:

Replace	(x,y) with	(y,a) or	(x,y) with	(x,a).

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

edge
in	E1

directed
edge
in	E2

edge
in	E1

directed
edge
in	E2

Only	“root”	nodes	in	E2	are	connected	to	E1.

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.

Cache-Efficient	Connectivity

Algorithm	Idea

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1
No	merging	necessary!

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E2	depth-1	tree

E1

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

Algorithm:
For	each	(a,b) in	E2:	

If	a	is	an	E1 root:	add	(a,b) to	E1.
Else	if	(x,a) in	E1:	add	(x,b) to	E1.

Claim:	Does	not	change
connected	components.

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

1. Sort	E1 by	first.
2. Sort	E2 by	second.
3. Scan:	(a,b) in	E1,	(x,a) in	E2è delete(a,b),	add(x,b)

4. Sort	E1 by	second.
5. Sort	E2 by	second.
6. Scan:	(a,b) in	E1,	(x,b) in	E2è delete(a,b),	add(x,a)

Cache-Efficient	Connectivity

Contract(E1,	E2)

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (b,d) (b,c) (c,e) (c,f) (d,g) (d,h)

E1	(sorted	by	first)

Sort	E1	by	first,	E2	by	second.

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (b,d) (b,c) (c,e) (c,f) (d,g) (d,h)

E1	(sorted	by	first)

Scan:	look	for	(b,	.)

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (b,d) (b,c) (c,e) (c,f) (d,g) (d,h)

E1	(sorted	by	first)

Scan:	look	for	(b,	.)

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (b,c) (c,e) (c,f) (d,g) (d,h)

E1	(sorted	by	first)

Scan:	replace	(b,d)	with	(z,d)

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (b,c) (c,e) (c,f) (d,g) (d,h)

E1	(sorted	by	first)

Scan:	replace	(b,c)	with	(z,c)

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (z,c) (c,e) (c,f) (d,g) (d,h)

E1	(sorted	by	first)

Scan:	replace	(b,c)	with	(z,c)

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (z,c) (c,e) (c,f) (d,g) (d,h)

E1	(sorted	by	first)

Scan…

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (z,c) (z,e) (c,f) (d,g) (d,h)

E1	(sorted	by	first)

Replace…

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (z,c) (z,e) (c,f) (d,g) (d,h)

E1	(sorted	by	first)

Scan…

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (z,c) (z,e) (z,f) (d,g) (d,h)

E1	(sorted	by	first)

Replace…

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (z,c) (z,e) (z,f) (d,g) (d,h)

E1	(sorted	by	first)

Scan…

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (z,c) (z,e) (z,f) (y,g) (d,h)

E1	(sorted	by	first)

Replace…

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (z,c) (z,e) (z,f) (y,g) (d,h)

E1	(sorted	by	first)

Scan…

Cache	Efficient	Contract

(z,b) (z,c) (y,d) (y,f) (z,j)

E2	(sorted	by	second)

(a,b) (z,d) (z,c) (z,e) (z,f) (y,g) (y,h)

E1	(sorted	by	first)

Replace…

1. Sort	E1 by	first.
2. Sort	E2 by	second.
3. Scan:	(a,b) in	E1,	(x,a) in	E2è delete(a,b),	add(x,b)

4. Sort	E1 by	second.
5. Sort	E2 by	second.
6. Scan:	(a,b) in	E1,	(x,b) in	E2è delete(a,b),	add(x,a)

Cache-Efficient	Connectivity

Contract(E1,	E2)

O(sort(E) + E/B)

1. Sort	E1 by	second.
2. Sort	E2 by	first.
3. Scan:	(a,b) in	E1,	(b,c) in	E2è add(a,c)	to	E1

4. Sort	E1 by	first.
5. Sort	E2 by	first.
6. Scan:	(a,.) in	E1,	(a,x) in	E2è add(a,x)	to	E1

Cache-Efficient	Connectivity

Merge(E1,	E2)

O(sort(E) + E/B)

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

O(sort(E) + E/B)

1. Divide	E into	two	parts:	E1 and	E2.
2. Recursively	solve	E2	è depth	1	trees.
3. Contract	E1.
4. Recursively	solve	E1	è depth	1	trees.
5. Merge	E2 into	E1.

Cache-Efficient	Connectivity

Algorithm	Idea

E1

T (E) = 2T (E/2) +O(E/B) + sort(E)

= O(sort(E) log(E))

Faster	than	BFS	(except	in	sparse	case)!

Summary

Today:	Graph	Algorithms

Breadth-First-Search
• Sorting	your	graph
MIS
• Luby’s Algorithm
• Cache-efficient	implementation
MST
• Connectivity
• Minimum	Spanning	Tree

1. Let	e be	a	random	edge.
2. Divide	E into	two	parts:	
• E1 has	edges	with	weight	<	w(e).
• E2.has	edges	with	weight	>	w(e)

3. Recursively	find	MST	of	E1.
4. Do	something.
5. Recursively	find	MST	of	E2.
6. Do	something.

Cache-Efficient	MST

Algorithm	Idea

