Algorithms at Scale
(Week 10)

Summary

Today: Parallelism Last Week: Caching

Models of Parallelism Breadth-First-Search

e How to predict the e Sorting your graph
performance of algorithms? MIS

 Luby’s Algorithm

Some simple examples... * Cache-efficient implementation
MST

Sorting e Connectivity

* Parallel MergeSort « Minimum Spanning Tree

Trees and Graphs

Announcements / Reminders

Today:

MiniProject update due today.

Next week:

MiniProject explanatory section due

Parallel Algorithms

Moore’s Law CPU Transistor Counts 1971-2008 & Moore’s Law

Number of transistors 200,000,000 — R

O GT200

1,000,000,000 — P g ORVTT0
Itanium 2 with M8 cache @ ’
doubles every 2 years! omro 50
Itanium 2 @ ’4"8"'
100,000,000 — A
P".," ®Barton o aim
“The complexity for minimum component § 0,000,000 Curve shoms Moors's Lo ”,f'OQEm
costs has increased at a rate of roughly a factor g ninint :328'8:\3; ozgrgdoub"ng i
of two per year... Certainly over the short term 5 vy ’,.’;,,Miu,‘n""’
this rate can be expected to continue, if not to %‘ .
increase.” Gordon Moore, 1965 = LLEILLE
= oy
100,000 — e
Limits will be reached e
. 10,000 — g
in 10-20 years...maybe. i

2,300 — ot g8 508

o . 1971 1980 1990 2000 2008
Source: Wikipedia

Date of introduction

Parallel Algorithms

More transisters == faster computers?
— More transistors per chip =» smaller transistors.
— Smaller transistors =¥ faster
— Conclusion:

Clock speed doubles every two years, also.

Parallel Algorithms

Data source: Wikipedia

Clock Speed e
Pentiyxh 4 .
. Core 17

““:*IIII l\ llll‘Iallllllllllllllllll)

Intel
Rentium Pro

*

1975 1980 1985 1990 1995 2000 2005 2010 2015

Parallel Algorithms

What to do with more transistors?

— More functionality
* GPUs, FPUs, specialized crypto hardware, etc.
Deeper pipelines

More clever instruction 1ssue (out-of-order issue,
scoreboarding, etc.)

More on chip memory (cache)

Limits for making faster processors?

Parallel Algorithms

Problems with faster clock speeds:

— Heat
» Faster switching creates more heat.
— Wires
* Adding more components takes more wires to connect.
* Wires don’t scale well!
— Clock synchronization
 How do you keep the entire chip synchronized?

 If the clock 1s too fast, then the time it takes to propagats
a clock signal from one edge to the other matters!

Parallel Algorithms

Conclusion:

— We have lots of new transistors to use.

— We can’t use them to make the CPU faster.

What do we do?

Parallel Algorithms

Data source: Wikipedia

Multi-core
Era

Instructions per Clock Cycle

Multi-cycle instructions Out-of-order issue
In-order issue

Parallel Algorithms

Data source: Wikipedia

Instructions per Second

Parallel Algorithms

Data source: Wikipedia Clock Speed

Pentium 4

*

. Core 17

$3
*

*
*

*

*
Iﬁtel

Pentium Pro

&
v

*
Intel 386 Intel 486
* *

*
Intet 286

*

Intgl 8080

1975 1980 1985 1990 1995

Parallel Algorithms

To make an algorithm run faster:
— Must take advantage of multiple cores.

— Many steps executed at the same time!

Parallel Algorithms

To make an algorithm run faster:
— Must take advantage of multiple cores.

— Many steps executed at the same time!

CS5234 algorithms:

Sampling = lots of parallelism
Sketches =» lots of parallelism
Streaming =» lots of parallelism

Cache-efficient algorithms??

Parallel Algorithms

Challenges:

— How do we write parallel programs?
Partition problem over multiple cores.
Specify what can happen at the same time.
Avoid unnecessary sequential dependencies.
Synchronize different threads (e.g., locks).

Avoid race conditions!
Avoid deadlocks!

Parallel Algorithms

Challenges:

— How do we analyze parallel algorithms?
* Total running time depends on # of cores.
* Cost 1s harder to calculate.

e Measure of scalability?

Parallel Algorithms

Challenges:

— How do we debug parallel algorithms?
More non-determinacy

Scheduling leads to un-reproduceable bugs

— Heisenbugs!

Stepping through parallel programs 1s hard.
Race conditions are hard.

Deadlocks are hard.

Parallel Algorithms

Different types of parallelism:
— multicore

 on-chip parallelism: synchronized, shared caches, etc.
multisocket
 closely coupled, highly synchronized, shared caches
cluster / data center
 connected by a high-performance interconnect
distributed networks

 slower interconnect, less tightly synchronized

Parallel Algorithms

Different settings =
Different types of paral

1) Different costs
— multicore

.+ on-chip parallelism: 2) Different solutions
multisocket

 closely coupled, highly synchronized, shared caches
cluster / data center

 connected by a high-performance interconnect

distributed networks

 slower interconnect, less tightly synchronized

Parallel Algorithms

Different types of parallelism:

Today

multicore
 on-chip parallelism: synchronized, shared caches, etc.
multisocket

 closely coupled, highly synchronized, shared caches

cluster / data center
 connected by a high-performance interconnect
distributed networks

 slower interconnect, less tightly synchronized

Parallel Algorithms

Different types of parallelism:

Today

multicore

 on-chip parallelism: synchronized, shared caches, etc.

multisocket

 closely coupled, highly synchronized, shared caches

cluster / data center
 connected by a high-performance interconnect
distributed networks

 slower interconnect, less tightly synchronized

Next week

How to model parallel programs?

PRAM

Assumptions

* p processors, p large.

e shared memory

 program each proc separately

How to model parallel programs?

PRAM

Assumptions

* p processors, p large.

e shared memory

 program each proc separately

Example problem: AllZeros

* Given array A[1..n].

* Return true if A[j] =0 for all j.
e Return false otherwise.

How to model parallel programs?

AllZero(A, 1, n, p)j
fori=(n/p)(j-1)+1 to (n/p)(j) do

if Ali] # 0 then answer = false
done = done + 1
wait until (done == p)

return answer.

How to model parallel programs?

specifies behavior

Oon processor j
AllZero(A, 1, n, p)j /

processor j is
<— assigned a specific

fori=(n/p)(j-1)+1 to (n/p)(j) do range of values to
if Ali] # 0 then answer = false o

done = done + 1

wait until (done ==

return answer.

How to model parallel programs?

specifies behavior

Oon processor j
AllZero(A, 1, n, p)j /

fori=(n/p)(j-1)+1 to (n/p)(j) do

if Ali] # 0 then answer = false

someone
done = done + 1 initialized answer

in the beginning
to true?

wait until (done == p)

return answer.

How to model parallel programs?

specifies behavior

Oon processor j
AllZero(A, 1, n, p)j /

fori=(n/p)(j-1)+1 to (n/p)(j) do

if Ali] # 0 then answer = false
done = done + 1 \
wait until (done == p)

return answer.

Race condition?
Use a lock?

How to model parallel programs?

specifies behavior

Oon processor j
AllZero(A, 1, n, p)j /

fori=(n/p)(j-1)+1 to (n/p)(j) do

if Ali] # 0 then answer = false
done = done + 1
wait until (done == p)

return answer.

Synchronize with
p other processors

How to model parallel programs?

specifies behavior

Oon processor j
AllZero(A, 1, n, p)j /

fori=(n/p)(j-1)+1 to (n/p)(j) do

if Ali] # 0 then answer = false

done = done + 1

wait until (done == p)

return answer.

How to model parallel programs?

PRAM

Assumptions

* p processors, p large.

e shared memory

 program each proc separately

Limitations
Must carefully manage all processor interactions.
Manually divide problem among processors.
Number of processors may be hard-coded into the
solution.

Low-level way to design parallel algorithms.

How to model parallel programs?

Another example: summing an array

ldea: use a tree

How to model parallel programs?

Another example: summing an array 29 il
. A 16
Algorithm: I
3 ' b 2 .
3 5 2 HREEEYE I
RandomSum:

repeat until root is not empty:
Choose a random node u in the tree.
If both children are not empty, then:

set u = u.left + u.right

How to model parallel programs?

RandomSum:

repeat until root is not empty:
Choose a random node u in the tree.
If both children are not empty, then:

set u = u.left + u.right

Fun exercise: Prove the theorem.

RandomSum finishes in time: ©

Theorem: (n log n

p

How to sum an array?

PRAM-Sum:

How to sum an array?

PRAM-Sum:
Assign processors to nodes in tree.

Each processor does assigned work in tree?

Not as easy to specify precise behavior.

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
in parallel:
1. L=Sum(A, b, mid)
2. R=Sum(A, mid+2, e)
sync
return L+R

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
in parallel:
1. L=Sum(A, b, mid)
2. R=Sum(A, mid+2, e)
sync
return L+R

Observations:

Same tree calculation!

Each L+R computes 1 node

A

A 10

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
in parallel:
1. L=Sum(A, b, mid)
2. R=Sum(A, mid+2, e)
sync

Observations:

Number of processors is
not specified anywhere.

return L+R

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
in parallel:
1. L=Sum(A, b, mid)
2. R=Sum(A, mid+2, e)
sync
return L+R

Observations:

Number of processors is
not specified anywhere.

A scheduler assigns
parallel computations to
pProcessors.

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
in parallel:
1. L=Sum(A, b, mid)
2. R=Sum(A, mid+2, e)
sync

return L+R On one processor??

Time:

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
in parallel:
1. L=Sum(A, b, mid)
2. R=Sum(A, mid+2, e)
sync
return L+R

/

- —Ti(n)

Work
Total steps done by all
pProcessors.

Just ignore parallel parts
and run all the code!

Time:

On one processor:
2Ty (n/2) + O(1)
O(n)

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
in parallel:
1. L=Sum(A, b, mid)

2. R=Sum(A, mid+2, e)
sync Time:

return L+R On infinite processors??

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b] Each parallel part is

S delegated to two
mid = (b+€)/2 — different processors.

in parallel:
1. L=Sum(A, b, mid)

2. R=Sum(A, mid+2, e)
sync Time:

return L+R On infinite processors:

Critical Path /'Too (ﬂ) Too (n/2) 0(1)
Span: O(logn)

longest path in the program

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
in parallel:
1. L=Sum(A, b, mid)
2. R=Sum(A, mid+2, e)

sync Time:

return L+R On p processors??

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
in parallel:
1. L=Sum(A, b, mid)

2. R=Sum(A, mid+2, e)
sync Time:

return L+R On p processors??

DEPENDS!

The scheduler matters.

Simple model of parallel computation

Dynamic Multithreading

— Two special commands:
 fork (or “in parallel”): start a new (parallel) procedure

 sync: wait for all concurrent tasks to complete

— Machine independent

* No fixed number of processors.

— Scheduler assigns tasks to processors.

How to sum an array?

Sum(A[1..n], b, e):
if (b = e) return A[b]
mid = (b+e)/2
fork:
1. L=Sum(A, b, mid)
2. R=Sum(A, mid+2, e)
sync
return L+R

Model as a DAG

fib(1) fib(0)

Model as a DAG

fib(1) fib(0)

Model as a DAG

fib(1) fib(0)

Work = T, = 17

fib(1) fib(0)

Model as a DAG

fib(1) fib(0)

Model as a DAG

fib(1) fib(0)

Analyzing Parallel Algorithms

Key metrics:
— Work: T,
— Span: T

Work = 18
Span = 9

Analyzing Parallel Algorithms

Key metrics:
— Work: T,
— Span: T,

Parallelism:
13
1o

Determines number of processors that
we can use productively.

Parallelism = 2

Analyzing a Parallel Computation

Running Time: T,

— Total running time 1f executed on p processors.

— Claim: T,>T,
 Cannot run slower on more processors!

* Mostly, but not always, true in practice.

Analyzing a Parallel Computation

Running Time: T,

— Total running time 1f executed on p processors.

— Claim: T,>T,/p

« Total work, divided perfectly evenly over p
Processors.

* Only for a perfectly parallel program.

Analyzing a Parallel Computation

Running Time: T

Total running time 1f executed on p processors.
T,>T,/p

T,>T,

Goal: T,=(T,/p)+T,

* Almost optimal (within a factor of 2).

* We have to spend time T_ on the critical path.

We call this the “sequential” part of the computation.

* We have to spend time (T, / p) doing all the work.
We call this the “parallel” part of the computation.

Analyzing Parallel Algorithms

Key metrics:

— Work: T,
— Span: T, Assumep =T,/ T_:

17

Parallelism: 15 o + 1

11
ﬂ Ty /T
1 o

27T

Analyzing a Parallel Computation

Greedy Scheduler

— If <p tasks are ready, execute all of them.

— If > p tasks are ready, execute p of them.

Analyzing a Parallel Computation

Greedy Scheduler

— If <p tasks are ready, execute all of them.

— If > p tasks are ready, execute p of them.

Assume p =3

Analyzing a Parallel Computation

Greedy Scheduler

— If <p tasks are ready, execute all of them.

— If > p tasks are ready, execute p of them.

not-ready

Assume p =3

Analyzing a Parallel Computation

Greedy Scheduler

— If <p tasks are ready, execute all of them.

— If > p tasks are ready, execute p of them.

Assume p =3

Analyzing a Parallel Computation

Greedy Scheduler

— If <p tasks are ready, execute all of them.

— If > p tasks are ready, execute p of them.

Assume p =3

Analyzing a Parallel Computation

Greedy Scheduler

— If <p tasks are ready, execute all of them.

— If > p tasks are ready, execute p of them.

execute
- any three

Assume p =3

Analyzing a Parallel Computation

Greedy Scheduler

1. If <p tasks are ready, execute all of them.

2. If > p tasks are ready, execute p of them.

Theorem (Brent-Graham): T, < (T, /p) + T
Proof:
— At most steps (T, / p) of type 2.

— Every step of type 1 works on the critical path, so at
most + T, steps of type 1.

Analyzing a Parallel Computation

Greedy Scheduler

1. If <p tasks are ready, execute all of them.

2. If > p tasks are ready, execute p of them.

Problem:
— Greedy scheduler 1s centralized.
— How to determine which tasks are ready?

— How to assign processors to ready tasks?

Analyzing a Parallel Computation

Work-Stealing Scheduler
Each process keeps a queue of tasks to work on.
Each spawn adds one task to queue, keeps working.

Whenever a process 1s free, it takes a task from a
randomly chosen queue (1.€., work-stealing).

Theorem (work-stealing): T, < (T, / p) + O(T,)
— See, e.g., Intel Parallel Studio, Cilk, Cilk++, Java, etc.

— Many frameworks exist to schedule parlalel
computations.

How to design parallel algorithms

PRAM

— Schedule each processor manually.

— Design algorithm for a specific number of
pProcessors.

Fork-Join model
— Focus on parallelism (and think about algorithms).

— Rely on a good scheduler to assign work to
Processors.

Parallel Sorting

Parallel Sorting

MergeSort (A, n)
i1f (n=1) then return;
else
X MergeSort (A[l..n/2], n/2)
Y MergeSort (A[n/2+1, n], n/2)
A Merge (X, Y);

Parallel Sorting

pMergeSort (A, n)
1f (n==1) then return;
else
X fork pMergeSort (A[l..n/2], n/2)
Y fork pMergeSort (A[n/2+1, n], n/2)
sync;
Merge (X, Y);

Parallel Sorting

pMergeSort (A, n)
1f (n==1) then return;
else
fork pMergeSort (A[l..n/2], n/2)
fork pMergeSort (A[n/2+1, n], n/2)
sync;
Merge (X, Y);

Work Analysis
— T,(n) =2T,(n/2) + O(n) = O(n log n)

Parallel Sorting

pMergeSort (A, n)
1f (n==1) then return;
else
fork pMergeSort (A[l..n/2], n/2)
fork pMergeSort (A[n/2+1, n], n/2)
sync;
Merge (X, Y);

Critical Path Analysis
— Ty (n) =T, (n/2) + O(n) = O(n)
Oops!

Parallel Merge

How do we merge two arrays A and B 1n parallel?

Parallel Merge

How do we merge two arrays A and B 1n parallel?

— Let’s try divide and conquer:
fork Merge (A[l..n/2], B[l..n/27])
fork Merge (A[n/2+1..n], B[n/2+1..n]

X =
Y =

A

B

13 20 22 24
27 29 32 35

— How do we merge X and Y?

X

Y

13 20 22 24 27 29 32 35

Parallel Merge

.7 Binary Search: B[j] < x < B[j+1]

/
v
J

Recurse: pMerge(A[l..n/2], B[1..])
pMerge(A[n/2+1..n], B[j+1..n])

Parallel Merge

pMerge (A[1l..k], B[l..m], C[l..n])
if (m > k) then pMerge (B, A, C);
else 1f (n==1) then C[1l] = A[l];
else 1f (k==1) and (m==1) then

if (A[1] £ B[1l]) then
C[1l] = A[1]; C[2]
else

4

4

else

binary search for j where B[j] < A[k/2] < B[j+1
fork pMerge (A[l..k/2],B[1..3]1,C[1l..k/2+737)
fork pMerge (A[k/2+1..1],B[j+1..m],C[k/2+3+1..n

sync;

Parallel Merge

.7 Binary Search: B[j] < x < B[j+1]

/

v

J
Recurse: pMerge(A[l..n/2], B[1.])

pMerge(A[n/2+1.n], B[j+1..n])

Parallel Merge

Critical Path Analysis:

— Define T_(n) to be the critical path of parallel merge
when the two input arrays A and B together have n
clements.

There are k£ > n/2 elements in A, and (n-k) elements
in B, so 1n total:

K2+ n—-k)=n—(k/2)<n—-n/4)<3n/4

T (n) <T_(3n/4)+ O(log n)
~ O(log? n)

Parallel Merge

Work Analysis:

— Define T,(n) to be the work done by parallel merge
when the two input arrays A and B together have n
clements.

— Fix:u<oa<¥

— Ty(n) =T(an) + T,((1-a)n) + O(log n)
= 2T,(n/2) +0O(log n)
= O(n)

Parallel Sorting

pMergeSort (A, n)
1f (n=1) then return;
else
fork pMergeSort (A[l..n/2], n/2)
fork pMergeSort (A[n/2+1, n], n/2)
sync;
fork pMerge (X, Y);

sync;

Critical Path Analysis
— T _(n)=T_(n/2) + O(log’n) = O(log> n)

Data Structures

How do we store a set of items?

Data Structures

How do we store a set of items?
* 1nsert: add an item to the set
e delete: remove an item from the set

insert(E)
A,B,C,D — ABCDE

Data Structures

How do we store a set of items?
* 1nsert: add an item to the set
e delete: remove an item from the set

 divide: divide the set into two (approximately) equal
sized pieces

A,B,C
divide
G, E’ F’D

A,B,C,D,E,FG

Data Structures

How do we store a set of items?
* 1nsert: add an item to the set
e delete: remove an item from the set

 divide: divide the set into two (approximately) equal
sized pieces

e union: combine two sets

e subtraction: remove one set from another

union
. @C’ D’ EB

Data Structures

How do we store a set of items?
* 1nsert: add an item to the set

e delete: remove an item from the set

 divide: divide the set into two (approximately) equal
sized pieces

e union: combine two sets

e subtraction: remove one set from another

subtract

—

Data Structures

set difference

—

subiractiion. remove one set Irrom anotner
intersection: find the intersection of two sets

set difference: find the items only 1n one set

Data Structures

How do we store a set of items?
insert: add an item to the set
delete: remove an item from the set

divide: divide the set into two (approximately) equal
sized pieces

union: combine two sets
subtraction: remove one set from another

intersection: find the intersection of two sets

set difference: find the items only 1n one set

Data Structures

How do we store a set of items?

* 1nsert: add an item to the set

e delete: remove an item from the set

 divide: divide the set into two (approximately) equal
sized pieces

Cost:

nitems = T, = O(log n)
T+, = O(log n)

Data Structures

How do we store a set of items?

* 1nsert: add an item to the set

e delete: remove an item from the set

 divide: divide the set into two (approximately) equal
sized pieces

Cost:

nitems = T, = O(log n)
T+, = O(log n)

Sequential solution:
Any balanced binary
search tree.

Data Structures

Cost: set 1 (n items), set 2 (m items), n > m

=2 T,=0(n+m)
T = O(log n + log m)

union: combine two sets
subtraction: remove one set from another

intersection: find the intersection of two sets

set difference: find the items only 1n one set

Data Structures

Cost: set 1 (n items), set 2 (m items), n > m

> 4 T1 =0(n+m) < need linear time

to examine all items
Te = O(log n + log m) in both sets!

union: combine two sets
subtraction: remove one set from another

intersection: find the intersection of two sets

set difference: find the items only 1n one set

Parallel Sets
Basic building block:

Balanced binary tree that supports four operations:

T1 contains all items < k

1. Split(T, k) -> (Tl, TZ, X) T2 contains all items > k

x=kifkwasinT

split(T, D) < AB C>
ABCDEFG | T @
Coe D

Parallel Sets
Basic building block:

Balanced binary tree that supports four operations:

2. join(Tl, TZ) 9 T |everyitemin T1 < every item in T2

N

Parallel Sets

. o Note: easier than Union operation because
Basic buﬂdlng block: trees are ordered and disjoint!

Balanced binary tree that supports foyir operations:

2. _]OlIl(Tl . TZ) 9 T |everyitemin T1 < every item in T2

e G

Parallel Sets
Basic building block:

Balanced binary tree that supports four operations:

3. root(T) = 1tem at root Tree T is unchanged.

Root is approximate median.

t

Parallel Sets
Basic building block:

Balanced binary tree that supports four operations:

4 iIlSCI’t(T, X) =) T’ |Tree T = T with x inserted.

insert(F)
A,CE,G,H,JK
< > — <A,C,E,F,G,H,JD

Parallel Sets
Basic building block:

Balanced binary tree that supports four operations:

1. split(T, k) =» (T1, T2, x)
2. join(T1, T2)=> T

3. root(T) =» x

4. insert(T, x) = T’

Parallel Sets

Basic building block:

Balanced binary tree that supports four operations:

1. split(T, k) =» (T1, T2, x)
2. join(T1, T2)=> T
3. root(T) =» x

4. insert(T, x) = T’

Can implement all four operations
with a (2,4)-tree with:

« Work: O(log n + log m)

« Span: O(log n + log m)

Parallel Sets

Basic building block:

Balanced binary tree that supports four operations:

1. split(T, k) =» (T1, T2, x)
2. join(T1, T2)=> T
3. root(T) =» x

4. insert(T, x) = T’

Exercise!

Can implement all four operations
with a (2,4)-tree with:

« Work: O(log n + log m)

« Span: O(log n + log m)

Data Structures

How do we store a set of items?

insert: add an item to the set
delete: remove an item from the set

divide: divide the set into two (approximately) equal
sized pieces

union: combine two sets

subtraction: remove one set fr Example:

itersection: find the intersect] delete(T, k):

set difference: find the items @ (T1, T2, x) = split(T, k)
T = join(T1, T2)

Data Structures

How do we store a set of items?

insert: add an item to the set
delete: remove an item from the set

divide: divide the set into two (approximately) equal
sized pieces

union: combine two sets

subtraction: remove one set fr Example:

itersection: find the itersecty divide(T, k):

set difference: find the items o k = root(T)
(T1, T2, x) = split(T, k)
T2 = insert(T2, k)

Parallel Sets

Union(T1, T2)
if T1 = null; return T2
if T2 = null; return T1

Parallel Sets

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, R, x) = split(T2, key)

fork:

Parallel Sets

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, R, x) = split(T2, key)

fork:

Parallel Sets

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, R, x) = split(T2, key)

fork:

Parallel Sets

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)

sync

Parallel Sets

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L) UNION
2. TR = Union(key.right, R)

sync

Parallel Sets

Union(T1, T2)
if T1 = null: return T2 TR =
if T2 = null: return T1 nrgeﬁtu lei\i/gn
key =root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)

sync

TL =
recursive
left union

Parallel Sets

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T =join(TL, TR)
insert(T, key)

return T

TR =
recursive
right union

TL =
recursive
left union

Parallel Sets

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, G, x) = split(T2, key)

fork:

1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync

T =join(TL, TR)

insert(T, key)

return T

Parallel Sets insert root

Union(T1, T2)

if T1 = null: return T2

if T2 = null: return T1
key =root(T1)

(L, G, x) = split(T2, key)
fork:

1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync

T =join(TL, TR)

insert(T, key)

return T

Work Analysis

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1) <=
(L, G, x) = split(T2, key)

fork:

1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync

T =join(TL, TR)

insert(T, key)

Work Analysis

Union(T1, T2)
if T1 =null: return T2
if T2 = null: return T1
key =root(T1)
(L, G, x) = split(T2, key) «—
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T =join(TL, TR)
insert(T, key)

O(logn + logm)

return T

Work Analysis

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, G, x) = split(T2, key)

Recursive calls
fork: where T1 is

1. TL = Union(key.left, L) ‘/’ half the size.

2. TR = Union(key.right, R)
sync

T =join(TL, TR)

insert(T, key)

return T

Work Analysis

Union(T1, T2)
if T1 =null: return T2
if T2 =null: return T1
key =root(T1)
(L, G, %) = spht(12, key) Recursive calls
fork: where T1 is

1. TL = Union(key.left, L) ‘/ half the size.

2. TR = Union(key.right, R)
sync

T =join(TL, TR)
insert(T, key)

T(n,m) 2T (n/2, m) + O(logn + logm)
O(nlogm)

return T

Work Analysis

Union(T1, T2)
if T1 =null: return T2
if T2 = null: return T1
key =root(T1)

(L, G, x) = sphit(T2, key) Lying (a little):
fork: Left and right subtrees are not

: exactly sized n/2.
1. TL = Union(key.left, L)
2. TR = Union(key.right, R) Still true...
sync
T =join(TL, TR)
insert(T, key)

T(n,m) 2T (n/2,m) + O(logn + logm)
O(nlogm)

return T

Work Analysis

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, G, x) = split(T2, key)

Be more careful
fork: if m < n then:

1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync

T =join(TL, TR)
insert(T, key)

Work = O(m log(n/m))

T(n,m) 2T (n/2, m) + O(logn + logm)
O(nlogm)

return T

Span Analysis

Union(T1, T2)
if T1 =null: return T2
if T2 =null: return T1
key =root(T1)
(L, G, %) = spht(12, key) Recursive calls
fork: where T1 is

1. TL = Union(key.left, L) ‘/ half the size.

2. TR = Union(key.right, R)
sync

T =join(TL, TR)
insert(T, key)

S(n,m) T(n/2,m)+ O(logn + logm)

O(log® n
return T (5)

Span Analysis

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key =root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)

sync

Use a different type of

model / scheduler:

if m < n then:

Span = O(log n)

T =join(TL, TR)

. S(n,m)
insert(T, key)

return T

T(n/2,m)+ O(logn + logm)
O(log® n)

Span Analysis

Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1 Not in CS5234
key =root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T =join(TL, TR)
insert(T, key)

S(n,m) T(n/2,m)+ O(logn + logm)
O(log® n)

return T

Other operations?

Other operations?

Intersection(T1, T2)

if T1 = null: return null

if T2 = null: return null

key =root(T1)

(L, G, x) = split(T2, key)

fork:

1. TL = Intersection(key.left, L)
2. TR = Intersection(key.right, R)
sync

T =join(TL, TR)

if (x = key) then insert(T, key)

return T

Other operations?

SetDifference(T1, T2)

if T1 = null: return T2

if T2 =null: return T1

key =root(T1)

(L, G, x) = split(T2, key)

fork:

1. TL = Intersection(key.left, L)
2. TR = Intersection(key.right, R)
sync

T =join(TL, TR)

if (x = null) then insert(T, key)

return T

Problem: Breadth First Search

Searching a graph: /

e undirected graph G = (V,E)
e source nodes

Problem: Breadth First Search

Searching a graph:

undirected graph G = (V,E)
source node s

assume each node stores its
adjacency list as a (parallel)

set, using the data structure
from before.

Problem: Breadth First Search

Searching a graph:

e undirected graph G = (V,E)
e source nodes

Layer-by-layer...

Sequential Algorithm

BFS(G, s)
F = {s}
repeat until F = {}
F =1
for eachuin F:
visited[u] = true
for each neighbor v of u:
if (visited[v] = false) then F’.insert(v)
F=F

Sequential Algorithm

BFS(G, s)
F={s}
repeat until F = {}
F =4

for each u in F:

visited[u] = true

for each nei Problems to solve:

it (vi{ « need to do parallel exploration of
F=F the frontier

« visited is hard to maintain in
parallel

Parallel Algorithm

parBFS(G, s)
F = {s}
D={}
repeat until F = {}
D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

F and D are parallel
sets, built using the
parallel data
structure we saw
earlier!

Parallel Algorithm

parBFS(G, s)
Mark everything already

F = {s} explored as done.
D=4}
repeat until F = {}

D = Union(D, F)

F = ProcessFrontier(F)

F = SetSubtraction(F, D)

Parallel Algorithm

parBFS(G, s)
Mark everything already
F = {s} explored as done.
D={}
repeat until F = {} Explore all the neighbors
D = Union(D F) of every node in F.

F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Parallel Algorithm

parBFS(G, s)
Mark everything already

F = {s} explored as done.

D=1}

repeat until F = {} Explore all the neighbors

D = Union(D, F) / of every node in F.

F = ProcessFrontier(F) N
Remove already visited

F = SetSubtraction(F, D) «——— nodes from the new
frontier.

Parallel Algorithm

ProcessFrontier(F)
i |F| _ 1 then Base case: return the set

/ containing the neighbors
u = root(F) of one node.

return u.neighbors
else

(F1, F2) = divide(F)

fork:

1. F1 = ProcessFrontier(F1)

2. F2 =ProcessFrontier(F2)

sync

return Union(F1, F2)

Parallel Algorithm

ProcessFrontier(F)
. Base case: return the set
if |[F| =1 then

/ containing the neighbors
u = root(F) of one node.

return u.neighbors o
Divide the set

else / (approximately)
(F1, F2) = divide(F) n half.

fork:

1. F1 = ProcessFrontier(F1)
2. F2 =ProcessFrontier(F2)
sync

return Union(F1, F2)

Parallel Algorithm

ProcessFrontier(F)
i |F| _ 1 then Base case: return the set

/ containing the neighbors
u = root(F) of one node.

return u.neighbors o
Divide the set

else / (approximately)
(F1, F2) = divide(F) n half.

fork: Recursively process

: the two frontiers.
1. F1 = ProcessFrontier(F1) / = WD TTONHER

2. F2 =ProcessFrontier(F2)
sync
return Union(F1, F2)

Parallel Algorithm

ProcessFrontier(F)
i |F| _ 1 then Base case: return the set

/ containing the neighbors
u = root(F) of one node.

return u.neighbors o
Divide the set

else / (approximately)
(F1, F2) = divide(F) n half.

fork: Recursively process

: the two frontiers.
1. F1 = ProcessFrontier(F1) / = WD TTONHER

2. F2 =ProcessFrontier(F2)
sync
return Union(F1, F2)

Merge the two
frontiers and return.

Work Analysis

ProcessFrontier(F)
if [F| =1 then
u =root(F)
return u.neighbors
else
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 =ProcessFrontier(F2)
sync
return Union(F1, F2)

n = nodes in F
m = # adjacent edges to F

Work Analysis

ProcessFrontier(F)
if |F| = 1 then

n = nodes in F
m = # adjacent edges to F

O(1)

u =root(F)

return u.neighbors

else

(F1, F2) = divide(F)

fork:

1. F1 = ProcessFrontier(F1)
2. F2 =ProcessFrontier(F2)
sync

return Union(F1, F2)

Work Analysis

n = nodes in F

ProcessFrontier(F)
if |F| = 1 then

m = # adjacent edges to F

u =root(F)

return u.neighbors

else

(F1, F2) = divide(F) —
fork:

1. F1 = ProcessFrontier(F1)

2. F2 =ProcessFrontier(F2)
sync

return Union(F1, F2)

O(1)

Work Analysis

n = nodes in F

ProcessFrontier(F)
if |F| = 1 then

m = # adjacent edges to F

O(1)

u = root(F)
return u.neighbors
else

(F1, F2) = divide(F) —
fork:

1. F1 = ProcessFrontier(F1)
2. F2 =ProcessFrontier(F2)
sync

return Union(F1, F2)

Two recursive calls
_—" of size approximately n/2.

Work Analysis

n = nodes in F

ProcessFrontier(F)
if |F| = 1 then

m = # adjacent edges to F

u = root(F)
return u.neighbors
else
(F1, F2) = divide(F) —
fork:
1. F1 = ProcessFrontier(F1)
2. F2 =ProcessFrontier(F2)

sync

O(1)

Two recursive calls
_—" of size approximately n/2.

- O(mlogm)

return Union(F1, F2) «

Wi(n,m) 2W(n/2,m) + O(mlogm) + O(logn)
O(mlognlogm)
O(mlog® n)

ﬁ

u = root(F) () (1)
return u.neighbors

olse — O(log n)

(F1, F2) = divide(F) —

fork: Two recursive calls

1. F1 =ProcessFrontier(F1) // of size approximately n/2.

2. F2 =ProcessFrontier(F2)
sync
return Union(F1, F2) «

- O(mlogm)

Span Analysis

n = nodes in F

ProcessFrontier(F)
if |F| = 1 then

m = # adjacent edges to F

u = root(F)
return u.neighbors
else
(F1, F2) = divide(F) —
fork:
1. F1 = ProcessFrontier(F1)
2. F2 =ProcessFrontier(F2)

sync

O(1)

One recursive calls
of size approximately n/2.

_ O(log®m)

return Union(F1, F2) «

S(n, m) S(n/2,m) + O(log® m) + O(logn)
O(log nlog® m)
O(log® n)

u = root(F) N - 1)

return u.neighbors

olse — O(log n)

(F1, F2) = divide(F) —

fork: One recursive calls

1. F1=ProcessFrontier(F1) «— of size approximately n/2.

2. F2 =ProcessFrontier(F2)

syne _ O(log? m)

return Union(F1, F2) «

Parallel Algorithm

parBFS(G, s)
F = {s) work: O (m log® n)

D={}

repeat until F = {} Span: O(log3 n)
D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Work Analysis

parBFS(G, s)
F = {s} O(mlogn)
D={}

repeat until F = {} O(mlog®n)
D = Union(D, F)

F = ProcessFrontier(F)
F = SetSubtraction(F, D) < O(mlogn)

Note: every edge appears in at most two iterations!
Note: every node appears in at most one frontier.

F; = number of nodes in frontier in jth iteration.

Work Analysis

parBFS(G, s)
F = {s} O(mlogn)
D={}
repeat until F = {} O(mlog®n)

D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D) < O(mlogn)

T:(n,m) = O(mlog®n)

Note: every edge appears in at most two iterations!
Note: every node appears in at most one frontier.

F; = number of nodes in frontier in jth iteration.

Span Analysis

parBFS(G, s)
F={s} O(log” m)

D=1}
repeat until F = {} / 0(10g3 m)

D = Union(D, F)

F = ProcessFrontier(F)

F = SetSubtraction(F, D)+ O(log” m)

Assume the graph has diameter D.

T = Dlog3 m

Hard to do better than D.

Problem: Breadth First Search

Searching a graph:

e undirected graph G = (V,E)
e source nodes

Layer-by-layer...

Problem: Breadth First Search

Searching a graph:

e undirected graph G = (V,E)
e source nodes

m log” n
p

- D log3 m)

7,0

Problem: Breadth First Search

Searching a graph:

e undirected graph G = (V,E)
e source nodes

m log” n
p

- D log3 m)

7,0

Interpretation:

With a good scheduler and
enough processors, you can
perform a BFS in time roughly
proportional to the diameter.

Problem: Breadth First Search

Searching a graph:

e undirected graph G = (V,E)
e source nodes

m log” n
p

- D log3 m)

7,0

Caveat:
Only useful if p > log?n.

Problem: Depth First Search

Searching a graph:

e undirected graph G = (V,E)

e source nodes

* search graph in depth-first order
=>» Best we know is Q(n)

Why does DFS seem so much harder than BFS?

Summary

Today: Parallelism Last Week: Caching

Models of Parallelism Breadth-First-Search

e How to predict the e Sorting your graph
performance of algorithms? MIS

 Luby’s Algorithm

Some simple examples... * Cache-efficient implementation
MST

Sorting e Connectivity

* Parallel MergeSort « Minimum Spanning Tree

Trees and Graphs

