Algorithms at Scale (Week 10)

Summary

Today: Parallelism

Models of Parallelism

 How to predict the performance of algorithms?

Some simple examples...

Sorting

• Parallel MergeSort

Trees and Graphs

Last Week: Caching

Breadth-First-Search

Sorting your graph

MIS

- Luby's Algorithm
- Cache-efficient implementation
 MST
- Connectivity
- Minimum Spanning Tree

Announcements / Reminders

Today:

MiniProject update due today.

Next week:

MiniProject explanatory section due

Moore's Law

Number of transistors doubles every 2 years!

"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year... Certainly over the short term this rate can be expected to continue, if not to increase." Gordon Moore, 1965

Transistor count

Source: Wikipedia

Limits will be reached in 10-20 years...maybe.

2,000,000,000 Dual-Core Itanium 2 1,000,000,000 100,000,000 Aton Curve shows 'Moore's Law': 10,000,000 transistor count doubling every two years 1,000,000 100.000 10,000 2.300 1971 1980 2000 1990 2008

CPU Transistor Counts 1971-2008 & Moore's Law

Quad-Core Itanium Tukwi

Date of introduction

More transisters == faster computers?

- More transistors per chip \rightarrow smaller transistors.
- − Smaller transistors → faster
- Conclusion:

Clock speed doubles every two years, also.

What to do with more transistors?

- More functionality
 - GPUs, FPUs, specialized crypto hardware, etc.
- Deeper pipelines
- More clever instruction issue (out-of-order issue, scoreboarding, etc.)
- More on chip memory (cache)

Limits for making faster processors?

Problems with faster clock speeds:

- Heat
 - Faster switching creates more heat.
- Wires
 - Adding more components takes more wires to connect.
 - Wires don't scale well!
- Clock synchronization
 - How do you keep the entire chip synchronized?
 - If the clock is too fast, then the time it takes to propagate a clock signal from one edge to the other matters!

Conclusion:

- We have lots of new transistors to use.
- We can't use them to make the CPU faster.

What do we do?

Instructions per Second

To make an algorithm run faster:

- Must take advantage of multiple cores.
- Many steps executed at the same time!

To make an algorithm run faster:

- Must take advantage of multiple cores.
- Many steps executed at the same time!

CS5234 algorithms:

- Sampling \rightarrow lots of parallelism
- Sketches \rightarrow lots of parallelism
- Streaming \rightarrow lots of parallelism
- Cache-efficient algorithms??

Challenges:

- How do we write parallel programs?
 - Partition problem over multiple cores.
 - Specify what can happen at the same time.
 - Avoid unnecessary sequential dependencies.
 - Synchronize different threads (e.g., locks).
 - Avoid race conditions!
 - Avoid deadlocks!

Challenges:

- How do we analyze parallel algorithms?
 - Total running time depends on # of cores.
 - Cost is harder to calculate.
 - Measure of scalability?

Challenges:

- How do we debug parallel algorithms?
 - More non-determinacy
 - Scheduling leads to un-reproduceable bugs – Heisenbugs!
 - Stepping through parallel programs is hard.
 - Race conditions are hard.
 - Deadlocks are hard.

Different types of parallelism:

- multicore
 - on-chip parallelism: synchronized, shared caches, etc.
- multisocket
 - closely coupled, highly synchronized, shared caches
- cluster / data center
 - connected by a high-performance interconnect
- distributed networks
 - slower interconnect, less tightly synchronized

Different types of paral

- multicore
 - on-chip parallelism:
- multisocket

Different settings \rightarrow

1) Different costs

2) Different solutions

- closely coupled, highly synchronized, shared caches
- cluster / data center
 - connected by a high-performance interconnect
- distributed networks
 - slower interconnect, less tightly synchronized

Different types of parallelism:

Today

- multicore
 - on-chip parallelism: synchronized, shared caches, etc.
- multisocket
 - closely coupled, highly synchronized, shared caches
- cluster / data center
 - connected by a high-performance interconnect
- distributed networks
 - slower interconnect, less tightly synchronized

Different types of parallelism:

Today

- multicore
 - on-chip parallelism: synchronized, shared caches, etc.
- multisocket
 - closely coupled, highly synchronized, shared caches
- cluster / data center
 - connected by a high-performance interconnect
- distributed networks
 - slower interconnect, less tightly synchronized

Next week

PRAM

Assumptions

- p processors, p large.
- shared memory
- program each proc separately

PRAM

Assumptions

- p processors, p large.
- shared memory
- program each proc separately

Example problem: AllZeros

- Given array A[1..n].
- Return **true** if A[j] = 0 for all j.
- Return false otherwise.

AllZero(A, 1, n, p)_i for i = (n/p)(j-1)+1 to (n/p)(j) do **if** A[i] ≠ 0 **then** *answer* = false done = done + 1wait until (*done* == p) return answer.

specifies behavior on processor j

AllZero(A, 1, n, p)_i 🗸 processor j is assigned a specific **for** i = (n/p)(j-1)+1 **to** (n/p)(j) **do** range of values to examine **if** A[i] ≠ 0 **then** *answer* = false done = done + 1wait until (*done* == p) return answer.

specifies behavior on processor j

AllZero(A, 1, n, p)_i 🗸 for i = (n/p)(j-1)+1 to (n/p)(j) do **if** A[i] ≠ 0 **then** *answer* = false someone done = done + 1initialized answer in the beginning to true? wait until (*done* == p) return answer.

specifies behavior on processor j

AllZero(A, 1, n, p)_i 🗸 for i = (n/p)(j-1)+1 to (n/p)(j) do **if** A[i] ≠ 0 **then** *answer* = false done = done + 1 \checkmark wait until (*done* == p) **Race condition?** Use a lock? return answer.

specifies behavior on processor j

PRAM

Assumptions

- p processors, p large.
- shared memory
- program each proc separately

Limitations

- Must carefully manage all processor interactions.
- Manually divide problem among processors.
- Number of processors may be hard-coded into the solution.
- Low-level way to design parallel algorithms.

RandomSum:

repeat until *root* is not empty:

Choose a random node u in the tree.

If both children are not empty, then:

set u = u.left + u.right

Fun exercise: Prove the theorem.

Theorem: RandomSum finishes in time: $\Theta\left(\frac{n\log n}{p} + \log n\right)$

How to sum an array?

PRAM-Sum:

Assign processors to nodes in tree.

Each processor does assigned work in tree?

Not as easy to specify precise behavior.

How to sum an array?

Observations:

Number of processors is not specified anywhere.

Observations:

Number of processors is not specified anywhere.

A scheduler assigns parallel computations to processors.

Time:

On one processor??

Time:

On infinite processors??

 $T_p(n) = ??$

DEPENDS!

The scheduler matters.

Simple model of parallel computation

Dynamic Multithreading

- Two special commands:
 - fork (or "in parallel"): start a new (parallel) procedure
 - sync: wait for all concurrent tasks to complete

- Machine independent
 - No fixed number of processors.

- Scheduler assigns tasks to processors.

```
Sum(A[1..n], b, e):
      if (b = e) return A[b]
      mid = (b+e)/2
      fork:
      1. L = Sum(A, b, mid)
      2. R = Sum(A, mid+2, e)
      sync
      return L+R
```


Analyzing Parallel Algorithms

Key metrics:

- Work: T_1
- Span: T_{∞}

Work = 18Span = 9

Analyzing Parallel Algorithms

Key metrics:

- Work: T_1
- Span: T_{∞}

Parallelism:

 $\frac{T_1}{T_{\infty}}$

Parallelism = 2

Determines number of processors that we can use productively.

Running Time: **T**_p

– Total running time if executed on *p* processors.

- Claim: $T_p > T_{\infty}$
 - Cannot run slower on more processors!
 - Mostly, but not always, true in practice.

Running Time: **T**_p

– Total running time if executed on **p** processors.

- Claim: $T_p > T_1 / p$
 - Total work, divided perfectly evenly over **p** processors.
 - Only for a perfectly parallel program.

Running Time: **T**_p

- Total running time if executed on *p* processors.
- $T_p > T_1 / p$
- $-T_p > T_{\infty}$
- Goal: $T_p = (T_1 / p) + T_{\infty}$
 - Almost optimal (within a factor of 2).
 - We have to spend time T_{∞} on the critical path. We call this the "sequential" part of the computation.
 - We have to spend time (T₁ / p) doing all the work.
 We call this the "parallel" part of the computation.

Analyzing Parallel Algorithms

Key metrics:

- Work: T_1
- Span: T_{∞}

Parallelism:

 $\frac{T_1}{T_{\infty}}$

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

- If $\leq p$ tasks are *ready*, execute all of them.
- If > p tasks are *ready*, execute p of them.

Greedy Scheduler

- 1. If $\leq p$ tasks are *ready*, execute all of them.
- 2. If > p tasks are *ready*, execute p of them.

Theorem (Brent-Graham): $\mathbf{T}_p \leq (\mathbf{T}_1 / p) + \mathbf{T}_{\infty}$ Proof:

- At most steps (\mathbf{T}_1 / p) of type 2.
- Every step of type 1 works on the critical path, so at most + T_{∞} steps of type 1.

Greedy Scheduler

- 1. If $\leq p$ tasks are *ready*, execute all of them.
- 2. If > p tasks are *ready*, execute p of them.

Problem:

- Greedy scheduler is *centralized*.
- How to determine which tasks are ready?
- How to assign processors to ready tasks?

Work-Stealing Scheduler

- Each process keeps a queue of tasks to work on.
- Each *spawn* adds one task to queue, keeps working.
- Whenever a process is free, it takes a task from a randomly chosen queue (i.e., work-stealing).

Theorem (work-stealing): $\mathbf{T}_{\mathbf{p}} \leq (\mathbf{T}_1 / p) + O(\mathbf{T}_{\infty})$

- See, e.g., Intel Parallel Studio, Cilk, Cilk++, Java, etc.
- Many frameworks exist to schedule parlalel computations.

How to design parallel algorithms

PRAM

- Schedule each processor manually.
- Design algorithm for a specific number of processors.

Fork-Join model

- Focus on parallelism (and think about algorithms).
- Rely on a good scheduler to assign work to processors.

MergeSort(A, n)
if (n=1) then return;
else

- X = MergeSort(A[1..n/2], n/2)
- Y = MergeSort(A[n/2+1, n], n/2)

A = Merge(X, Y);

pMergeSort(A, n)

if (n==1) then return;

else

- X = fork pMergeSort(A[1..n/2], n/2)
- Y = fork pMergeSort(A[n/2+1, n], n/2)

sync;

A = Merge(X, Y);

pMergeSort(A, n)

if (n==1) then return;

else

- X = fork pMergeSort(A[1..n/2], n/2)
- Y = **fork** pMergeSort(A[n/2+1, n], n/2)

sync;

A = Merge(X, Y);

Work Analysis

 $- T_1(n) = 2T_1(n/2) + O(n) = O(n \log n)$
Parallel Sorting

pMergeSort(A, n)

if (n==1) then return;

else

- X = fork pMergeSort(A[1..n/2], n/2)
 Y = fork pMergeSort(A[n/2+1, n], n/2)
 sync;
- A = Merge(X, Y);

Critical Path Analysis

 $- T_{\infty}(n) = T_{\infty}(n/2) + O(n) = O(n)$

Oops!

How do we merge two arrays A and B in parallel?

How do we merge two arrays A and B in parallel?

- Let's try divide and conquer:
 - X = fork Merge(A[1..n/2], B[1..n/2])
 - Y = **fork** Merge(A[n/2+1..n], B[n/2+1..n]

- How do we merge X and Y?


```
pMerge(A[1..k], B[1..m], C[1..n])
if (m > k) then pMerge(B, A, C);
else if (n==1) then C[1] = A[1];
else if (k==1) and (m==1) then
if (A[1] ≤ B[1]) then
C[1] = A[1]; C[2] = B[1];
else
C[1] = B[1]; C[2] = A[1];
```

else

binary search for j where B[j] ≤ A[k/2] ≤ B[j+1
fork pMerge(A[1..k/2],B[1..j],C[1..k/2+j])
fork pMerge(A[k/2+1..1],B[j+1..m],C[k/2+j+1..n]
sync;

Critical Path Analysis:

- Define $T_{\infty}(n)$ to be the critical path of parallel merge when the two input arrays A and B together have *n* elements.
- There are k > n/2 elements in A, and (n-k) elements in B, so in total:

$$- k/2 + (n-k) = n - (k/2) < n - (n/4) < 3n/4$$

$$- T_{\infty}(n) \leq T_{\infty}(3n/4) + O(\log n)$$
$$\approx O(\log^2 n)$$

Work Analysis:

- Define $T_1(n)$ to be the work done by parallel merge when the two input arrays A and B together have *n* elements.
- Fix: $\frac{1}{4} \le \alpha \le \frac{3}{4}$

 $- T_1(n) = T_1(\alpha n) + T_1((1-\alpha)n) + O(\log n)$ $\approx 2T_1(n/2) + O(\log n)$ = O(n)

Parallel Sorting

pMergeSort(A, n) if (n=1) then return; else X = fork pMergeSort(A[1..n/2], n/2)Y = fork pMergeSort(A[n/2+1, n], n/2)sync; A = fork pMerge(X, Y);sync;

Critical Path Analysis

 $- T_{\infty}(n) = T_{\infty}(n/2) + O(\log^2 n) = O(\log^3 n)$

- insert: add an item to the set
- delete: remove an item from the set

- insert: add an item to the set
- delete: remove an item from the set
- divide: divide the set into two (approximately) equal sized pieces

- insert: add an item to the set
- delete: remove an item from the set
- divide: divide the set into two (approximately) equal sized pieces
- union: combine two sets
- subtraction: remove one set from another

- insert: add an item to the set
- delete: remove an item from the set
- divide: divide the set into two (approximately) equal sized pieces
- union: combine two sets
- subtraction: remove one set from another

- intersection: find the intersection of two sets
- set difference: find the items only in one set

- insert: add an item to the set
- delete: remove an item from the set
- divide: divide the set into two (approximately) equal sized pieces
- union: combine two sets
- subtraction: remove one set from another
- intersection: find the intersection of two sets
- set difference: find the items only in one set

How do we store a set of items?

- insert: add an item to the set
- delete: remove an item from the set
- divide: divide the set into two (approximately) equal sized pieces

Cost:

n items \rightarrow T₁ = O(log n) T_{\infty} = O(log n)

How do we store a set of items?

- insert: add an item to the set
- delete: remove an item from the set
- divide: divide the set into two (approximately) equal sized pieces

Cost:

Sequential solution: Any balanced binary search tree.

n items \rightarrow T₁ = O(log n) T_{\infty} = O(log n)

Basic building block:

Balanced binary tree that supports four operations:

```
1. split(T, k) \rightarrow (T1, T2, x)
```

T1 contains all items < kT2 contains all items > kx = k if k was in T

Basic building block:

Balanced binary tree that supports four operations:

2. $join(T1, T2) \rightarrow T$ every item in T1 < every item in T2

Basic building block: Note: easier than Union operation because trees are ordered and disjoint!

Balanced binary tree that supports four operations:

2. $join(T1, T2) \rightarrow T$ every item in T1 < every item in T2

Basic building block:

Balanced binary tree that supports four operations:

3. $root(T) \rightarrow item at root$

Tree T is unchanged. Root is approximate median.

Basic building block:

Balanced binary tree that supports four operations:

4. $insert(T, x) \rightarrow T'$ Tree T' = T with x inserted.

Basic building block:

Balanced binary tree that supports four operations:

- split(T, k) → (T1, T2, x)
 join(T1, T2) → T
 root(T) → x
- 4. insert(T, x) \rightarrow T'

Basic building block:

Balanced binary tree that supports four operations:

- 1. $split(T, k) \rightarrow (T1, T2, x)$
- 2. join(T1, T2) → T
- 3. $root(T) \rightarrow x$
- 4. insert(T, x) \rightarrow T'

Can implement all four operations with a (2,4)-tree with:

- Work: O(log n + log m)
- Span: O(log n + log m)

Basic building block:

Balanced binary tree that supports four operations:

- 1. $split(T, k) \rightarrow (T1, T2, x)$
- 2. join(T1, T2) → T
- 3. $root(T) \rightarrow x$
- 4. insert(T, x) \rightarrow T'

Exercise!

Can implement all four operations with a (2,4)-tree with:

- Work: O(log n + log m)
- Span: O(log n + log m)

How do we store a set of items?

• insert: add an item to the set

- delete: remove an item from the set
- divide: divide the set into two (approximately) equal sized pieces
- union: combine two sets
- subtraction: remove one set fr
- intersection: find the intersecti
- set difference: find the items c

Example: delete(T, k): (T1, T2, x) = split(T, k)T = join(T1, T2)

Easy!

How do we store a set of items?

• insert: add an item to the set

- delete: remove an item from the set
- divide: divide the set into two (approximately) equal sized pieces
- union: combine two sets
- subtraction: remove one set fr
- intersection: find the intersecti
- set difference: find the items c

Example: divide(T, k): k = root(T)(T1, T2, x) = split(T, k)T2 = insert(T2, k)

Easy!


```
Union(T1, T2)
   if T1 = null: return T2
   if T2 = null: return T1
   key = root(T1)
   (L, R, x) = split(T2, key)
   fork:
    . . .
```

T1


```
Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, R, x) = split(T2, key)
fork:
```



```
Union(T1, T2)

if T1 = null: return T2

if T2 = null: return T1

key = root(T1)

(L, R, x) = split(T2, key)

fork:
```


. . .

Union(T1, T2) **if** T1 = null: **return** T2 if T2 = null: return T1 key = root(T1)(L, G, x) = split(T2, key)fork: 1. TL = Union(key.left, L)2. TR = Union(key.right, R)sync

root left right child child

R

R

Union(T1, T2) **if** T1 = null: **return** T2 if T2 = null: return T1 key = root(T1)(L, G, x) = split(T2, key)fork: 1. TL = Union(key.left, L) 2. TR = Union(key.right, R)

sync

. . .

Parallel Sets

Work Analysis

```
Union(T1, T2)

if T1 = null: return T2

if T2 = null: return T1

key = root(T1)

(L, G, x) = split(T2, key)

fork:
```

- 1. TL = Union(key.left, L)
- 2. TR = Union(key.right, R)

sync

T = join(TL, TR) insert(T, key) return T Lying (a little): Left and right subtrees are not exactly sized n/2.

Still true...

 $T(n,m) = 2T(n/2,m) + O(\log n + \log m)$ = $O(n \log m)$

Work Analysis

```
Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
```

- 1. TL = Union(key.left, L)
- 2. TR = Union(key.right, R)

sync

T = join(TL, TR) insert(T, key) return T <u>Be more careful</u> if m < n then:

Work = $O(m \log(n/m))$

 $T(n,m) = 2T(n/2,m) + O(\log n + \log m)$ = $O(n \log m)$

Span Analysis

```
Union(T1, T2)

if T1 = null: return T2

if T2 = null: return T1

key = root(T1)

(L, G, x) = split(T2, key)
```

fork:

- 1. TL = Union(key.left, L)
- 2. TR = Union(key.right, R)

sync

T = join(TL, TR) insert(T, key) return T <u>Use a different type of</u> <u>model / scheduler:</u> if m < n then:

Span = $O(\log n)$

 $S(n,m) = T(n/2,m) + O(\log n + \log m)$ = $O(\log^2 n)$

Span Analysis

Union(T1, T2) if T1 = null: return T2 if T2 = null: return T1 key = root(T1) (L, G, x) = split(T2, key) fork:

- 1. TL = Union(key.left, L)
- 2. TR = Union(key.right, R)

sync

T = join(TL, TR) insert(T, key) return T

Other operations?

Other operations?

Intersection(T1, T2)
 if T1 = null: return null
 if T2 = null: return null
 key = root(T1)
 (L, G, x) = split(T2, key)
 fork:

1. TL = Intersection(key.left, L)

2. TR = Intersection(key.right, R)

sync

```
T = join(TL, TR)
if (x = key) then insert(T, key)
return T
```

Other operations?

```
SetDifference(T1, T2)

if T1 = null: return T2

if T2 = null: return T1

key = root(T1)

(L, G, x) = split(T2, key)

fork:
```

```
1. TL = Intersection(key.left, L)
```

```
2. TR = Intersection(key.right, R)
```

sync

```
T = join(TL, TR)
if (x = null) then insert(T, key)
return T
```

Problem: Breadth First Search

Searching a graph:

- undirected graph G = (V,E)
- source node s

Problem: Breadth First Search

source

Searching a graph:

- undirected graph G = (V,E)
- source node s
- assume each node stores its adjacency list as a (parallel) set, using the data structure from before.

Problem: Breadth First Search

Sequential Algorithm

```
BFS(G, s)
   \mathbf{F} = \{\mathbf{s}\}
    repeat until F = {}
        F' = \{\}
        for each u in F:
               visited[u] = true
               for each neighbor v of u:
                        if (visited[v] = false) then F'.insert(v)
        F = F'
```

Sequential Algorithm

BFS(G, s) $\mathbf{F} = \{\mathbf{s}\}$ **repeat until** F = {} $F' = \{\}$ for each u in F: visited[u] = true for each neis Problems to solve: if (vis
 need to do parallel exploration of $\mathbf{F} = \mathbf{F'}$ the frontier visited is hard to maintain in parallel

Parallel Algorithm

```
parBFS(G, s)
    \mathbf{F} = \{\mathbf{s}\}
    D = \{\}
    repeat until F = {}
        D = Union(D, F)
        F = ProcessFrontier(F)
        F = SetSubtraction(F, D)
```

F and D are parallel sets, built using the parallel data structure we saw earlier!

n = nodes in F m = # adjacent edges to F

Note: every edge appears in at most two iterations!

Note: every node appears in at most one frontier.

 F_{j} = number of nodes in frontier in jth iteration.

Note: every edge appears in at most two iterations!

Note: every node appears in at most one frontier.

 F_j = number of nodes in frontier in jth iteration.

Problem: Depth First Search

Searching a graph:

- undirected graph G = (V,E)
- source node s
- search graph in depth-first order
- \rightarrow Best we know is $\Omega(n)$

Why does DFS seem so much harder than BFS?

Summary

Today: Parallelism

Models of Parallelism

 How to predict the performance of algorithms?

Some simple examples...

Sorting

• Parallel MergeSort

Trees and Graphs

Last Week: Caching

Breadth-First-Search

Sorting your graph

MIS

- Luby's Algorithm
- Cache-efficient implementation
 MST
- Connectivity
- Minimum Spanning Tree