
Algorithms	at	Scale
(Week	10)



Summary

Last	Week:	Caching

Breadth-First-Search
• Sorting	your	graph
MIS
• Luby’s Algorithm
• Cache-efficient	implementation

MST
• Connectivity
• Minimum	Spanning	Tree

Today:	Parallelism

Models	of	Parallelism
• How	to	predict	the	

performance	of	algorithms?

Some	simple	examples…

Sorting
• Parallel	MergeSort

Trees	and	Graphs



Announcements	/	Reminders

Today:

MiniProject update	due	today.

Next	week:	

MiniProject explanatory	section	due



Moore’s Law
Number of transistors 
doubles every 2 years!

“The complexity for minimum component 
costs has increased at a rate of roughly a factor 
of two per year... Certainly over the short term 
this rate can be expected to continue, if not to 
increase.” Gordon Moore, 1965

Limits will be reached 
in 10-20 years…maybe.

Source: Wikipedia

Parallel Algorithms



More transisters == faster computers?
– More transistors per chip è smaller transistors.
– Smaller transistors è faster
– Conclusion:

Clock speed doubles every two years, also.

Parallel Algorithms
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What to do with more transistors?
– More functionality

• GPUs, FPUs, specialized crypto hardware, etc.

– Deeper pipelines
– More clever instruction issue (out-of-order issue, 

scoreboarding, etc.)
– More on chip memory (cache)

Limits for making faster processors?

Parallel Algorithms



Problems with faster clock speeds:
– Heat

• Faster switching creates more heat.

– Wires
• Adding more components takes more wires to connect.

• Wires don’t scale well!

– Clock synchronization
• How do you keep the entire chip synchronized?

• If the clock is too fast, then the time it takes to propagate 
a clock signal from one edge to the other matters!

Parallel Algorithms



Conclusion:
– We have lots of new transistors to use.
– We can’t use them to make the CPU faster.

What do we do?

Parallel Algorithms
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To make an algorithm run faster:
– Must take advantage of multiple cores.
– Many steps executed at the same time!

Parallel Algorithms



To make an algorithm run faster:
– Must take advantage of multiple cores.
– Many steps executed at the same time!

CS5234 algorithms:
– Sampling è lots of parallelism
– Sketches è lots of parallelism
– Streaming è lots of parallelism
– Cache-efficient algorithms??

Parallel Algorithms



Challenges:
– How do we write parallel programs?

• Partition problem over multiple cores.

• Specify what can happen at the same time.

• Avoid unnecessary sequential dependencies.

• Synchronize different threads (e.g., locks).

• Avoid race conditions!

• Avoid deadlocks!

Parallel Algorithms



Challenges:
– How do we analyze parallel algorithms?

• Total running time depends on # of cores.

• Cost is harder to calculate.

• Measure of scalability?

Parallel Algorithms



Challenges:
– How do we debug parallel algorithms?

• More non-determinacy

• Scheduling leads to un-reproduceable bugs
– Heisenbugs!

• Stepping through parallel programs is hard.

• Race conditions are hard.

• Deadlocks are hard.

Parallel Algorithms



Different types of parallelism:
– multicore

• on-chip parallelism: synchronized, shared caches, etc. 

– multisocket
• closely coupled, highly synchronized, shared caches

– cluster / data center
• connected by a high-performance interconnect

– distributed networks
• slower interconnect, less tightly synchronized

Parallel Algorithms



Different types of parallelism:
– multicore

• on-chip parallelism: synchronized, shared caches, etc. 

– multisocket
• closely coupled, highly synchronized, shared caches

– cluster / data center
• connected by a high-performance interconnect

– distributed networks
• slower interconnect, less tightly synchronized

Parallel Algorithms Different settings è

1) Different costs

2) Different solutions



Different types of parallelism:
– multicore

• on-chip parallelism: synchronized, shared caches, etc. 

– multisocket
• closely coupled, highly synchronized, shared caches

– cluster / data center
• connected by a high-performance interconnect

– distributed networks
• slower interconnect, less tightly synchronized

Parallel Algorithms

Today



Different types of parallelism:
– multicore

• on-chip parallelism: synchronized, shared caches, etc. 

– multisocket
• closely coupled, highly synchronized, shared caches

– cluster / data center
• connected by a high-performance interconnect

– distributed networks
• slower interconnect, less tightly synchronized

Parallel Algorithms

Today

Next week



How	to	model	parallel	programs?

PRAM

Assumptions
• p processors,	p large.
• shared	memory
• program	each	proc	separately	



How	to	model	parallel	programs?

PRAM

Assumptions
• p processors,	p large.
• shared	memory
• program	each	proc	separately

Example	problem:	AllZeros
• Given	array	A[1..n].
• Return	true if	A[j]	=	0 for	all	j.
• Return	false otherwise.



How	to	model	parallel	programs?

AllZero(A,	1,	n,	p)j
for i =	(n/p)(j-1)+1 to (n/p)(j) do

if A[i]	≠	0 then answer =	false

done =	done +	1

wait	until	(done ==	p)

return answer.



How	to	model	parallel	programs?

AllZero(A,	1,	n,	p)j
for i =	(n/p)(j-1)+1 to (n/p)(j) do

if A[i]	≠	0 then answer =	false

done =	done +	1

wait	until	(done ==	p)

return answer.

specifies	behavior	
on	processor	j

processor	j	is	
assigned	a	specific	
range	of	values	to	
examine



How	to	model	parallel	programs?

AllZero(A,	1,	n,	p)j
for i =	(n/p)(j-1)+1 to (n/p)(j) do

if A[i]	≠	0 then answer =	false

done =	done +	1

wait	until	(done ==	p)

return answer.

specifies	behavior	
on	processor	j

someone	
initialized	answer	
in	the	beginning	
to	true?



How	to	model	parallel	programs?

AllZero(A,	1,	n,	p)j
for i =	(n/p)(j-1)+1 to (n/p)(j) do

if A[i]	≠	0 then answer =	false

done =	done +	1

wait	until	(done ==	p)

return answer.

specifies	behavior	
on	processor	j

Race	condition?
Use	a	lock?



How	to	model	parallel	programs?

AllZero(A,	1,	n,	p)j
for i =	(n/p)(j-1)+1 to (n/p)(j) do

if A[i]	≠	0 then answer =	false

done =	done +	1

wait	until	(done ==	p)

return answer.

specifies	behavior	
on	processor	j

Synchronize	with	
p	other	processors



How	to	model	parallel	programs?

AllZero(A,	1,	n,	p)j
for i =	(n/p)(j-1)+1 to (n/p)(j) do

if A[i]	≠	0 then answer =	false

done =	done +	1

wait	until	(done ==	p)

return answer.

specifies	behavior	
on	processor	j

Synchronize	with	
p	other	processors

Time:	O
✓
n

p

◆



How	to	model	parallel	programs?

PRAM

Assumptions
• p processors,	p large.
• shared	memory
• program	each	proc	separately

Limitations
• Must	carefully	manage	all	processor	interactions.
• Manually	divide	problem	among	processors.
• Number	of	processors	may	be	hard-coded	into	the	

solution.
• Low-level	way	to	design	parallel	algorithms.



How	to	model	parallel	programs?

Another	example:	summing	an	array

Idea:	use	a	tree



How	to	model	parallel	programs?

Another	example:	summing	an	array

Algorithm:

RandomSum:
repeat	until root is	not	empty:

Choose	a	random	node	u in	the	tree.
If both	children	are	not	empty,	then:

set u	=	u.left +	u.right



How	to	model	parallel	programs?

Fun	exercise:		Prove	the	theorem.

RandomSum:
repeat	until root is	not	empty:

Choose	a	random	node	u in	the	tree.
If both	children	are	not	empty,	then:

set u	=	u.left +	u.right

Theorem:
RandomSum finishes	in	time:	⇥

✓
n log n

p
+ log n

◆



How	to	sum	an	array?

PRAM-Sum:



How	to	sum	an	array?

Not	as	easy	to	specify	precise	behavior.

PRAM-Sum:
Assign	processors	to	nodes	in	tree.

Each	processor	does	assigned	work	in	tree?



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R

Observations:

Same	tree	calculation!
Each	L+R	computes	1	node



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R

Observations:

Number	of	processors	is	
not	specified	anywhere.



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R

Observations:

Number	of	processors	is	
not	specified	anywhere.

A	scheduler	assigns	
parallel	computations	to	
processors.



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R

Time:

On	one	processor??



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R

Time:

On	one	processor:

T1(n) = 2T1(n/2) +O(1)

= O(n)

Just	ignore	parallel	parts	
and	run	all	the	code!

Work
Total	steps	done	by	all	
processors.



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R

Time:

On	infinite	processors??



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R

Time:

On	infinite	processors:

T1(n) = T1(n/2) +O(1)

= O(log n)

Each	parallel	part	is	
delegated	to	two	
different	processors.

Critical	Path
or

Span:
longest	path	in	the	program



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R

Time:

On	p	processors??

Tp(n) = ??



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
in	parallel:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R

Time:

On	p	processors??

DEPENDS!
The	scheduler	matters.



Dynamic Multithreading
– Two special commands:

• fork (or “in parallel”): start a new (parallel) procedure

• sync: wait for all concurrent tasks to complete

– Machine independent
• No fixed number of processors.

– Scheduler assigns tasks to processors.

Simple model of parallel computation



How	to	sum	an	array?

Sum(A[1..n],	b,	e):
if	(b	=	e) return	A[b]
mid =	(b+e)/2
fork:
1. L	=	Sum(A,	b,	mid)
2. R	=	Sum(A,	mid+2,	e)
sync
return L+R



Model as a DAG
fib(4)

fib(3) fib(2)

fib(2)

fib(1)

fib(1) fib(0)

fib(1) fib(0)



Model as a DAG
fib(4)

fib(3) fib(2)

fib(2)

fib(1)

fib(1) fib(0)

fib(1) fib(0)

Work = T1 = ??



Model as a DAG
fib(4)

fib(3) fib(2)

fib(2)

fib(1)

fib(1) fib(0)

fib(1) fib(0)

Work = T1 = 17



Model as a DAG
fib(4)

fib(3) fib(2)

fib(2)

fib(1)

fib(1) fib(0)

fib(1) fib(0)

Span = T∞ = ??



Model as a DAG
fib(4)

fib(3) fib(2)

fib(2)

fib(1)

fib(1) fib(0)

fib(1) fib(0)

Span = T∞ = 8



Key metrics:
– Work: T1

– Span: T¥

Analyzing Parallel Algorithms

Work = 18
Span = 9



Key metrics:
– Work: T1

– Span: T¥

Parallelism:

Determines number of processors that 
we can use productively.

Analyzing Parallel Algorithms

T1

T1
Work = 18
Span = 9
Parallelism = 2



Running Time: Tp

– Total running time if executed on p processors.

– Claim:   Tp > T¥

• Cannot run slower on more processors!

• Mostly, but not always, true in practice.

Analyzing a Parallel Computation



Running Time: Tp

– Total running time if executed on p processors.

– Claim:   Tp > T1 / p
• Total work, divided perfectly evenly over p

processors.

• Only for a perfectly parallel program.

Analyzing a Parallel Computation



Running Time: Tp

– Total running time if executed on p processors.
– Tp > T1 / p
– Tp > T¥

– Goal:   Tp = (T1 / p) + T¥

• Almost optimal (within a factor of 2).

• We have to spend time T¥ on the critical path.
We call this the “sequential” part of the computation.

• We have to spend time (T1 / p) doing all the work.
We call this the “parallel” part of the computation.

Analyzing a Parallel Computation



Key metrics:
– Work: T1

– Span: T¥

Parallelism:

Analyzing Parallel Algorithms

T1

T1

Assume p = T1/ T¥:

Tp =
T1

p
+ T1

=
T1

T1/T1
+ T1

= 2T1



Greedy Scheduler
– If  ≤ p tasks are ready, execute all of them.
– If  > p tasks are ready, execute p of them.

Analyzing a Parallel Computation



Greedy Scheduler
– If  ≤ p tasks are ready, execute all of them.
– If  > p tasks are ready, execute p of them.

Analyzing a Parallel Computation

Assume p = 3

ready

done



Greedy Scheduler
– If  ≤ p tasks are ready, execute all of them.
– If  > p tasks are ready, execute p of them.

Analyzing a Parallel Computation

Assume p = 3

not-ready

not ready



Greedy Scheduler
– If  ≤ p tasks are ready, execute all of them.
– If  > p tasks are ready, execute p of them.

Analyzing a Parallel Computation

Assume p = 3

execute
both of
these



Greedy Scheduler
– If  ≤ p tasks are ready, execute all of them.
– If  > p tasks are ready, execute p of them.

Analyzing a Parallel Computation

Assume p = 3

ready



Greedy Scheduler
– If  ≤ p tasks are ready, execute all of them.
– If  > p tasks are ready, execute p of them.

Analyzing a Parallel Computation

Assume p = 3

execute
any three



Greedy Scheduler
1. If  ≤ p tasks are ready, execute all of them.
2. If  > p tasks are ready, execute p of them.

Theorem (Brent-Graham): Tp £ (T1 / p) + T¥

Proof:
– At most steps (T1 / p) of type 2.
– Every step of type 1 works on the critical path, so at 

most + T¥ steps of type 1.

Analyzing a Parallel Computation



Greedy Scheduler
1. If  ≤ p tasks are ready, execute all of them.
2. If  > p tasks are ready, execute p of them.

Problem:
– Greedy scheduler is centralized.
– How to determine which tasks are ready?
– How to assign processors to ready tasks?

Analyzing a Parallel Computation



Work-Stealing Scheduler
– Each process keeps a queue of tasks to work on.
– Each spawn adds one task to queue, keeps working.
– Whenever a process is free, it takes a task from a 

randomly chosen queue (i.e., work-stealing).

Theorem (work-stealing): Tp £ (T1 / p) + O(T¥)
– See, e.g., Intel Parallel Studio, Cilk, Cilk++, Java, etc. 
– Many frameworks exist to schedule parlalel

computations.

Analyzing a Parallel Computation



PRAM
– Schedule each processor manually.
– Design algorithm for a specific number of 

processors.

Fork-Join model
– Focus on parallelism (and think about algorithms).
– Rely on a good scheduler to assign work to 

processors.

How to design parallel algorithms



Parallel Sorting



MergeSort(A, n)
if (n=1) then return;

else
X = MergeSort(A[1..n/2], n/2)

Y = MergeSort(A[n/2+1, n], n/2)

A = Merge(X, Y);

Parallel Sorting



pMergeSort(A, n)
if (n==1) then return;

else
X = fork pMergeSort(A[1..n/2], n/2)
Y = fork pMergeSort(A[n/2+1, n], n/2)
sync;
A = Merge(X, Y);

Parallel Sorting



pMergeSort(A, n)
if (n==1) then return;

else
X = fork pMergeSort(A[1..n/2], n/2)
Y = fork pMergeSort(A[n/2+1, n], n/2)
sync;
A = Merge(X, Y);

Work Analysis
– T1(n) = 2T1(n/2) + O(n) = O(n log n)

Parallel Sorting



pMergeSort(A, n)
if (n==1) then return;

else
X = fork pMergeSort(A[1..n/2], n/2)
Y = fork pMergeSort(A[n/2+1, n], n/2)
sync;
A = Merge(X, Y);

Critical Path Analysis
– T¥(n) = T¥(n/2) + O(n) = O(n)

Oops!

Parallel Sorting



How do we merge two arrays A and B in parallel?

Parallel Merge



How do we merge two arrays A and B in parallel?
– Let’s try divide and conquer: 
X = fork Merge(A[1..n/2], B[1..n/2])
Y = fork Merge(A[n/2+1..n], B[n/2+1..n])

– How do we merge X and Y?

Parallel Merge

A = 5 8 9 11 13 20 22 24
B = 6 7 10 23 27 29 32 35

X = 5 6 7 8 9 10 11 23
Y = 13 20 22 24 27 29 32 35



Parallel Merge

1 n

1 n/2 n

x

B=

A=

Binary Search: B[j] £ x £ B[j+1]

y
j

Recurse:   pMerge(A[1..n/2], B[1..j]) 
pMerge(A[n/2+1..n], B[j+1..n])



pMerge(A[1..k], B[1..m], C[1..n])
if (m > k) then pMerge(B, A, C);

else if (n==1) then C[1] = A[1];

else if (k==1) and (m==1) then
if (A[1] £ B[1]) then

C[1] = A[1]; C[2] = B[1];

else
C[1] = B[1]; C[2] = A[1];

else 
binary search for j where B[j] £ A[k/2] £ B[j+1]
fork pMerge(A[1..k/2],B[1..j],C[1..k/2+j])
fork pMerge(A[k/2+1..l],B[j+1..m],C[k/2+j+1..n])
sync;

Parallel Merge



Parallel Merge

1 n-k

1 k/2 k

x

B=

A=

Binary Search: B[j] £ x £ B[j+1]

y
j

Recurse:   pMerge(A[1..n/2], B[1..j]) 
pMerge(A[n/2+1..n], B[j+1..n])



Critical Path Analysis:
– Define T¥(n) to be the critical path of parallel merge 

when the two input arrays A and B together have n
elements.

– There are k > n/2 elements in A, and (n-k) elements 
in B, so in total: 

– k/2 + (n – k) = n – (k/2) < n – (n/4) < 3n/4

– T¥(n) £ T¥(3n/4) + O(log n) 
» O(log2 n)

Parallel Merge



Work Analysis:
– Define T1(n) to be the work done by parallel merge 

when the two input arrays A and B together have n
elements.

– Fix: ¼ £ a £ ¾ 

– T1(n) = T1(an) + T1((1–a)n) + O(log n) 
» 2T1(n/2)  + O(log n)              
= O(n)

Parallel Merge



pMergeSort(A, n)
if (n=1) then return;

else
X = fork pMergeSort(A[1..n/2], n/2)
Y = fork pMergeSort(A[n/2+1, n], n/2)
sync;
A = fork pMerge(X, Y);
sync;

Critical Path Analysis
– T¥(n) = T¥(n/2) + O(log2n) = O(log3 n)

Parallel Sorting



How do we store a set of items?

Data Structures



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set

Data Structures

A,B,C,D A,B,C,D,E
insert(E)



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces

Data Structures

A,B,C,D,E,F,G

A,B,C

D,E,F,G

divide



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another

Data Structures

A,C,E,G
A,B,C,D,E,F,G

union

B,D,F



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another

Data Structures

A,C,E,G
A,E

subtract

C,G



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another
• intersection: find the intersection of two sets
• set difference: find the items only in one set

Data Structures

A,C,E,G

A,B,H

set difference

B,C,G,H



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another
• intersection: find the intersection of two sets
• set difference: find the items only in one set

Data Structures



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another
• intersection: find the intersection of two sets
• set difference: find the items only in one set

Data Structures

Cost: 

n items è T1 = O(log n)
T∞ = O(log n)



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another
• intersection: find the intersection of two sets
• set difference: find the items only in one set

Data Structures

Cost: 

n items è T1 = O(log n)
T∞ = O(log n)

Sequential solution:
Any balanced binary 
search tree.



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another
• intersection: find the intersection of two sets
• set difference: find the items only in one set

Data Structures

Cost: set 1 (n items), set 2 (m items), n > m

è T1 = O(n + m)
T∞ = O(log n + log m)



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another
• intersection: find the intersection of two sets
• set difference: find the items only in one set

Data Structures

Cost: set 1 (n items), set 2 (m items), n > m

è T1 = O(n + m)
T∞ = O(log n + log m)

need linear time
to examine all items
in both sets!



Basic building block:

Balanced binary tree that supports four operations:

1. split(T, k) è (T1, T2, x)

Parallel Sets

T1 contains all items < k
T2 contains all items > k
x = k if k was in T

A,B,C,D,E,F,G
A,B,C

E,F,G

split(T, D)

D



Basic building block:

Balanced binary tree that supports four operations:

2. join(T1, T2) è T

Parallel Sets

every item in T1 < every item in T2

A,C,E A,C,E,F,G,H
join

F,G,H



Basic building block:

Balanced binary tree that supports four operations:

2. join(T1, T2) è T

Parallel Sets

every item in T1 < every item in T2

A,C,E A,C,E,F,G,H
join

F,G,H

Note: easier than Union operation because 
trees are ordered and disjoint!



Basic building block:

Balanced binary tree that supports four operations:

3. root(T) è item at root

Parallel Sets

Tree T is unchanged.
Root is approximate median.

A,C,E,G,H,J,K
G

root



Basic building block:

Balanced binary tree that supports four operations:

4. insert(T, x) è T’ 

Parallel Sets

Tree T’ = T with x inserted.

A,C,E,G,H,J,K
A,C,E,F,G,H,J,K

insert(F)



Basic building block:

Balanced binary tree that supports four operations:

1. split(T, k) è (T1, T2, x)
2. join(T1, T2) è T
3. root(T) è x
4. insert(T, x) è T’

Parallel Sets



Basic building block:

Balanced binary tree that supports four operations:

1. split(T, k) è (T1, T2, x)
2. join(T1, T2) è T
3. root(T) è x
4. insert(T, x) è T’

Parallel Sets

Can implement all four operations 
with a (2,4)-tree with: 
• Work: O(log n + log m)
• Span: O(log n + log m)



Basic building block:

Balanced binary tree that supports four operations:

1. split(T, k) è (T1, T2, x)
2. join(T1, T2) è T
3. root(T) è x
4. insert(T, x) è T’

Parallel Sets

Can implement all four operations 
with a (2,4)-tree with: 
• Work: O(log n + log m)
• Span: O(log n + log m)

Exercise!



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another
• intersection: find the intersection of two sets
• set difference: find the items only in one set

Data Structures

Easy!

Example:
delete(T, k):

(T1, T2, x) = split(T, k)
T = join(T1, T2)



How do we store a set of items?
• insert: add an item to the set
• delete: remove an item from the set
• divide: divide the set into two (approximately) equal 

sized pieces
• union: combine two sets
• subtraction: remove one set from another
• intersection: find the intersection of two sets
• set difference: find the items only in one set

Data Structures

Easy!

Example:
divide(T, k):

k = root(T)
(T1, T2, x) = split(T, k)
T2 = insert(T2, k)



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1

…

Parallel Sets

T1 T2



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, R, x) = split(T2, key)
fork:

…

Parallel Sets

T1 T2

key



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, R, x) = split(T2, key)
fork:

…

Parallel Sets

T1
T2

key



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, R, x) = split(T2, key)
fork:

…

Parallel Sets

T1

key

L R



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync

…

Parallel Sets

right 
child

root

L R

left 
child



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync

…

Parallel Sets

right 
child

L

R

left 
child

UNION

UNION



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync

…

Parallel Sets

TR =
recursive

right union

TL =
recursive 
left union



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Parallel Sets

TR =
recursive

right union

TL =
recursive 
left union

JOIN

Note:
TL < TR



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Parallel Sets

T



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Parallel Sets

T

root

insert root



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Work Analysis

O(1)



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Work Analysis

O(log n+ logm)



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Work Analysis

Recursive calls
where T1 is
half the size.



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Work Analysis

Recursive calls
where T1 is
half the size.

T (n,m) = 2T (n/2,m) +O(log n+ logm)

= O(n logm)



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Work Analysis

Lying (a little):
Left and right subtrees are not 
exactly sized n/2.

Still true…

T (n,m) = 2T (n/2,m) +O(log n+ logm)

= O(n logm)



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Work Analysis

Be more careful
if m < n then:

Work = O(m log(n/m))

T (n,m) = 2T (n/2,m) +O(log n+ logm)

= O(n logm)



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Span Analysis

Recursive calls
where T1 is
half the size.

S(n,m) = T (n/2,m) +O(log n+ logm)

= O(log

2 n)



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Span Analysis

S(n,m) = T (n/2,m) +O(log n+ logm)

= O(log

2 n)

Use a different type of 
model / scheduler:
if m < n then:

Span = O(log n)



Union(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Union(key.left, L)
2. TR = Union(key.right, R)
sync
T = join(TL, TR)
insert(T, key) 
return T

Span Analysis

S(n,m) = T (n/2,m) +O(log n+ logm)

= O(log

2 n)

Use a different type of 
model / scheduler:
if m < n then:

Span = O(log n)

Not in CS5234



Other operations?



Intersection(T1, T2)
if T1 = null: return null
if T2 = null: return null
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Intersection(key.left, L)
2. TR = Intersection(key.right, R)
sync
T = join(TL, TR)
if (x = key) then insert(T, key) 
return T

Other operations?



SetDifference(T1, T2)
if T1 = null: return T2
if T2 = null: return T1
key = root(T1)
(L, G, x) = split(T2, key)
fork:
1. TL = Intersection(key.left, L)
2. TR = Intersection(key.right, R)
sync
T = join(TL, TR)
if (x = null) then insert(T, key) 
return T

Other operations?



Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s

source



Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s

• assume	each	node	stores	its	
adjacency	list	as	a	(parallel)									
set,	using	the	data	structure	
from	before.

source



Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s

Layer-by-layer…



BFS(G, s)
F = {s}
repeat until F = {}

F’ = {}
for each u in F:

visited[u] = true 
for each neighbor v of u:

if (visited[v] = false) then F’.insert(v)
F = F’

Sequential Algorithm



BFS(G, s)
F = {s}
repeat until F = {}

F’ = {}
for each u in F:

visited[u] = true 
for each neighbor v of u:

if (visited[v] = false) then F’.insert(v)
F = F’

Sequential Algorithm

Problems to solve:

• need to do parallel exploration of 
the frontier

• visited is hard to maintain in 
parallel



parBFS(G, s)
F = {s}
D = {}
repeat until F = {}

D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Parallel Algorithm

F and D are parallel 
sets, built using the 
parallel data 
structure we saw 
earlier!



parBFS(G, s)
F = {s}
D = {}
repeat until F = {}

D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Parallel Algorithm

Mark everything already 
explored as done.



parBFS(G, s)
F = {s}
D = {}
repeat until F = {}

D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Parallel Algorithm

Mark everything already 
explored as done.

Explore all the neighbors
of every node in F.



parBFS(G, s)
F = {s}
D = {}
repeat until F = {}

D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Parallel Algorithm

Mark everything already 
explored as done.

Explore all the neighbors
of every node in F.

Remove already visited
nodes from the new 
frontier.



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Parallel Algorithm

Base case: return the set
containing the neighbors 
of one node.



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Parallel Algorithm

Base case: return the set
containing the neighbors 
of one node.

Divide the set 
(approximately)
in half.



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Parallel Algorithm

Base case: return the set
containing the neighbors 
of one node.

Divide the set 
(approximately)
in half.

Recursively process
the two frontiers.



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Parallel Algorithm

Base case: return the set
containing the neighbors 
of one node.

Divide the set 
(approximately)
in half.

Recursively process
the two frontiers.

Merge the two 
frontiers and return.



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Work Analysis n = nodes in F
m = # adjacent edges to F



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Work Analysis n = nodes in F
m = # adjacent edges to F

O(1)



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Work Analysis n = nodes in F
m = # adjacent edges to F

O(log n)

O(1)



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Work Analysis n = nodes in F
m = # adjacent edges to F

O(log n)

O(1)

Two recursive calls
of size approximately n/2.



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Work Analysis n = nodes in F
m = # adjacent edges to F

O(log n)

O(1)

Two recursive calls
of size approximately n/2.

O(m logm)



O(1)

ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Work Analysis n = nodes in F
m = # adjacent edges to F

O(log n)

Two recursive calls
of size approximately n/2.

O(m logm)

W (n,m) = 2W (n/2,m) +O(m logm) +O(log n)

= O(m log n logm)

= O(m log

2 n)



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Span Analysis n = nodes in F
m = # adjacent edges to F

O(log n)

O(1)

One recursive calls
of size approximately n/2.

O(log

2 m)



ProcessFrontier(F)
if |F| = 1 then 

u = root(F)
return u.neighbors

else 
(F1, F2) = divide(F)
fork:
1. F1 = ProcessFrontier(F1)
2. F2 = ProcessFrontier(F2)
sync
return Union(F1, F2)

Span Analysis n = nodes in F
m = # adjacent edges to F

O(log n)

O(1)

One recursive calls
of size approximately n/2.

O(log

2 m)

S(n,m) = S(n/2,m) +O(log

2 m) +O(log n)

= O(log n log

2 m)

= O(log

3 n)



parBFS(G, s)
F = {s}
D = {}
repeat until F = {}

D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Parallel Algorithm

Work:

Span: O(log

3 n)

O(m log

2 n)



parBFS(G, s)
F = {s}
D = {}
repeat until F = {}

D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Work Analysis

O(m log

2 n)

O(m log n)

O(m log n)

Note: every edge appears in at most two iterations!

Note: every node appears in at most one frontier.

Fj = number of nodes in frontier in jth iteration.



parBFS(G, s)
F = {s}
D = {}
repeat until F = {}

D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Work Analysis

O(m log

2 n)

O(m log n)

O(m log n)

Note: every edge appears in at most two iterations!

Note: every node appears in at most one frontier.

Fj = number of nodes in frontier in jth iteration.

T1(n,m) = O(m log

2 n)



parBFS(G, s)
F = {s}
D = {}
repeat until F = {}

D = Union(D, F)
F = ProcessFrontier(F)
F = SetSubtraction(F, D)

Span Analysis

Assume the graph has diameter D.

O(log

2 m)

O(log

2 m)

O(log

3 m)

T1 = D log

3 m
Hard to do better than D.
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Layer	2

Layer	1

Layer	0

Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s

Layer-by-layer…



Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s

Layer-by-layer…
Tp = O

✓
m log

2 n

p
+D log

3 m

◆



Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s

Layer-by-layer…
Tp = O

✓
m log

2 n

p
+D log

3 m

◆

Interpretation:	
With	a	good scheduler	and	
enough	processors,	you	can	
perform	a	BFS	in	time	roughly
proportional	to	the	diameter.



Layer	4

Layer	3

Layer	2

Layer	1

Layer	0

Problem:	Breadth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s

Layer-by-layer…
Tp = O

✓
m log

2 n

p
+D log

3 m

◆

Caveat:	
Only	useful	if	p	>	log2n.



Problem:	Depth	First	Search

Searching	a	graph:

• undirected	graph	G	=	(V,E)
• source	node	s
• search	graph	in	depth-first	order

è Best	we	know	is	Ω(n)

Why	does	DFS	seem	so	much	harder	than	BFS?



Summary

Last	Week:	Caching

Breadth-First-Search
• Sorting	your	graph
MIS
• Luby’s Algorithm
• Cache-efficient	implementation

MST
• Connectivity
• Minimum	Spanning	Tree

Today:	Parallelism

Models	of	Parallelism
• How	to	predict	the	

performance	of	algorithms?

Some	simple	examples…

Sorting
• Parallel	MergeSort

Trees	and	Graphs


