
Algorithms	at	Scale
(Week	11)

Map-Reduce	(MPC)	Algorithms

Summary

Last	Week:	Multicore

Models	of	Parallelism
• Fork-Join	model
• Work	and	Span
• Greedy	schedulers
Algorithms
• Sum
• MergeSort
• Parallel	Sets
• BFS
• Prefix-Sum
• (Luby’s)

Today:	Map-Reduce

Map-Reduce	Model
• Cluster	computing

Some	simple	examples
• Word	count
• Join

Algorithms
• Bellman-Ford
• PageRank

Announcements	/	Reminders

Today:

MiniProject explanatory	section	due	today.

Next	week:	

MiniProject talk	due

Recap:	Prefix	Sum

2 1 -1 3 -2 7 3 -1

5 23

7

2

5

12

Recap:	Prefix	Sum

2 1 -1 3 -2 7 3 -1

5 23

7

2

5

12

Recap:	Prefix	Sum

2 3 2 5 3 10 13 12

5 23

7

2

5

12

Recap:	Binary	Prefix	Sum

0 1 2 0 0 3 0 4

1 11

2

1

2

4

0 1 1 0 0 1 0 1

binary	prefix	sum

A[j]	=	number	of	1’s	in	A[1..j]	

Recap:	Partition

3 2 2 4 7 9 5 8

7 9 3 2 5 8 4 2

Goal:	partition	array	around	key	k

Example:	k	=	4

Recap:	Partition

7 9 3 2 3 8 4 2
0 0 1 1 1 0 0 1

Step	1:	mark	items	<	k

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
0 0 1 1 1 0 0 1

0 0 1 2 3 0 0 4

Step	2:	prefix	sums

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
0 0 1 2 3 0 0 4

Step	2:	prefix	sums

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
0 0 1 2 3 0 0 4

1 1 0 0 0 1 1 0

Step	3:	mark	items	≥	k

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
0 0 1 2 3 0 0 4

1 1 0 0 0 1 1 0

1 2 0 0 0 3 4 0

Step	4:	prefix	sum

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
0 0 1 2 3 0 0 4

1 2 0 0 0 3 4 0

Step	4:	prefix	sum

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
0 0 1 2 3 0 0 4

1 2 0 0 0 3 4 0

5 6 0 0 0 7 8 0

Step	5:	add	size	from	(<	k)	prefix-sum	to	(≥	k)	prefix	sum.

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
0 0 1 2 3 0 0 4

5 6 0 0 0 7 8 0

Step	5:	add	size	from	(<	k)	prefix-sum	to	(≥	k)	prefix	sum.

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
0 0 1 2 3 0 0 4

5 2 0 0 0 7 7 0

5 6 1 2 3 7 8 4

Step	6:	compress

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
5 6 1 2 3 7 8 4

Step	6:	compress

Example:	k	=	4

7 9 3 2 3 8 4 2

Work:	O(n)
Span:	O(log	n)

Recap:	Partition

7 9 3 2 3 8 4 2
5 6 1 2 3 7 8 4

Step	6:	copy	to	final	location

Example:	k	=	4

3 2 3 2 7 9 8 4
1 2 3 4 5 6 7 8

Work:	O(n)
Span:	O(log	n)

7 9 3 2 3 8 4 2

Recap:	Partition

7 9 3 2 3 8 4 2
5 6 1 2 3 7 8 4

Partition	around	k:

Example:	k	=	4

3 2 3 2 7 9 8 4
1 2 3 4 5 6 7 8

Work:	O(n)
Span:	O(log	n)

7 9 3 2 3 8 4 2

Recap:	Partition

7 9 3 2 3 8 4 2
5 6 1 2 3 7 8 4

Partition	around	k:

3 2 3 2 7 9 8 4
1 2 3 4 5 6 7 8

Work:	O(n)
Span:	O(log	n)

7 9 3 2 3 8 4 2

Exercise:

Write	down	the	algorithm	precisely	for	each	of	the	steps.
(Combine	several	steps	together!)

Do	the	work	and	span	analysis.

Recap:	QuickSort

QuickSort(A,	begin,	end)

pivot =	random(begin,	end)

split	=	partition(A,	begin,	end,	pivot)

mid	=	(begin+end)/2

in	parallel:
1. QuickSort(A,	begin,	mid)

2. QuickSort(A,	mid+1,	end)

Recap:	QuickSort Work

QuickSort(A,	begin,	end)

pivot =	random(begin,	end)

split	=	partition(A,	begin,	end,	pivot)

mid	=	(begin+end)/2

in	parallel:
1. QuickSort(A,	begin,	mid)

2. QuickSort(A,	mid+1,	end)

O(1)

O(n)

O(1)

2W(n/2)

W(n)	=	2W(n/2)	+	O(n)	=	O(n	log	n)

**	Assume	random	pivot	is	the	exact	median.
Precise	randomized	analysis	is	identical	to	the	sequential	version.

Recap:	QuickSort Span

QuickSort(A,	begin,	end)

pivot =	random(begin,	end)

split	=	partition(A,	begin,	end,	pivot)

mid	=	(begin+end)/2

in	parallel:
1. QuickSort(A,	begin,	mid)

2. QuickSort(A,	mid+1,	end)

O(1)

O(log	n)

O(1)

S(n/2)

S(n)	=	S(n/2)	+	O(log	n)	=	O(log2n)

**	Assume	random	pivot	is	the	exact	median.
Precise	randomized	analysis	is	identical	to	the	sequential	version.

Recap:	QuickSort Span

QuickSort(A,	begin,	end)

pivot =	random(begin,	end)

split	=	partition(A,	begin,	end,	pivot)

mid	=	(begin+end)/2

in	parallel:
1. QuickSort(A,	begin,	mid)

2. QuickSort(A,	mid+1,	end)

O(1)

O(log	n)

O(1)

S(n/2)

S(n)	=	S(n/2)	+	O(log	n)	=	O(log2n)Exercise:

Modify	the	algorithm	to	efficiently	sort	arrays	with	repeated	
elements.		(As	described,	this	is	very	slow	for	an	array	of	all	1’s.)	

Assumptions:
– Tightly synchronized
– Shared memory

Advantages:
– Simple algorithm design
– Focus on parallelism (computational)
– Easy analysis: work and span is enough!
– Minimizes race conditions, deadlocks, etc.

Fork-Join algorithms

Good model for multicore /
multithreaded CPUs.

Yahoo TeraSort:
– Each node has:

• 8 cores: 2GHz

• 8 GB RAM

• 4 disks: 4TB each

– 40 nodes / rack (interconnect: 1GB/s switch)
– 25-100 racks (interconnect: 8GB/s switch)

è ~ 16,000 cores

High Performance Clusters

Yahoo TeraSort:
– Each node has:

• 8 cores: 2GHz

• 8 GB RAM

• 4 disks: 4TB each

– 40 nodes / rack (interconnect: 1GB/s switch)
– more racks (interconnect: 8GB/s switch)

è 50,400 cores

High Performance Clusters

2013:
Yahoo (Hadoop) sorts
100TB of data in 72
minutes.

DataBricks TeraSort:
– 206 nodes
– 6,592 cores

DataBricks PetaSort:
– 190 nodes
– 6,080 cores

High Performance Clusters

Record (2014):
DataBricks (Spark) sorts
1PB of data in 234
minutes.

Record (2014):
DataBricks (Spark) sorts
100TB of data in 23
minutes.

Assumptions:
– Loosely synchronized
– No shared memory
– Data exchanged over fast interconnect

High Performance Clusters

Fork/Join is not a good
model for clusters.

Assumptions:
– Loosely synchronized
– No shared memory
– Data exchanged over fast interconnect

Issues:
– Communication cost?
– Coordination among cores?
– Fine-grained parallelism?

High Performance Clusters

Fork/Join is not a good
model for clusters.

Recap:	Prefix	Sum

2 1 -1 3 -2 7 3 -1

5 23

7

2

5

12

Recap:	Prefix	Sum

2 1 -1 3 -2 7 3 -1

5 23

7

2

5

12

send	to
node	2

send	to
node	1

Recap:	Prefix	Sum

2 1 -1 3 -2 7 3 -1

5 23

7

2

5

12

send	to
node	2

send	to
node	1

Open	question:	
Could	a	scheduler	translate	fork-join	algorithms	to	a	cluster?

Assumptions:
– Loosely synchronized
– No shared memory
– Data exchanged over fast interconnect

Issues:
– Communication cost?
– Coordination among cores?
– Fine-grained parallelism?

High Performance Clusters

Fork/Join is not a good
model for clusters.

Map-Reduce Model:
– Target: high-performance clusters
– Focus: data (not computation)

Inventor: Google
– processing web data

Today: ubiquitous (Amazon, Yahoo, Facebook, etc,.)
– Hadoop, etc.

High Performance Clusters

Data: (key, value) pairs
– All data is stored as key/value pairs.
– Initially stored on some shared disk.

• e.g., GFS (Google File System), HDFS (Hadoop FS)

– During the computation, route (key/value) pairs to
different servers to perform the computation.

Map-Reduce Model

Basic round:
1. Map: process each (key, value) pair
2. Shuffle: group items by key
3. Reduce: process items with same key together

Plan:
Load data from disk.
Execute several rounds.
Save (key, value) pairs, sorted by key.

Map-Reduce Model

Input: A = [3, 2, 1, 6, 4]

Compute: ∑ 𝐴[𝑗]&'	∈	odd , ∑ 𝐴[𝑗]&'	∈	even

Map-Reduce Example

Input: A = [3, 2, 1, 6, 4]

Compute: ∑ 𝐴[𝑗]&'	∈	odd , ∑ 𝐴[𝑗]&'	∈	even

Step 1: Load (key, value) pairs: A[j] è (j, A[j])

(1, 3), (2, 2), (3, 1), (4, 6), (5, 4)

Map-Reduce Example

key = position value = array entry

map(key, value) è (key, value)

Step 2:

map(key, value)
if (key is even)

then emit(2, value*value)
else if (key is odd)

then emit(1, value*value)

Map-Reduce Example

map(key, value) è (key, value)

Step 2:

map(key, value)
if (key is even)

then emit(2, value*value)
else if (key is odd)

then emit(1, value*value)

Map-Reduce Example
Properties of map function:
• processes one (key, value) pair at a time
• no saved state
• scheduler allocates map processes to cores

Input: A = [3, 2, 1, 6, 4]

Compute: ∑ 𝐴[𝑗]&'	∈	odd , ∑ 𝐴[𝑗]&'	∈	even

Step 2: Map

(1, 3), (2, 2), (3, 1), (4, 6), (5, 4)

(1, 9), (2, 4), (1, 1), (2, 36), (1, 16)

Map-Reduce Example

Input: A = [3, 2, 1, 6, 4]

Compute: ∑ 𝐴[𝑗]&'	∈	odd , ∑ 𝐴[𝑗]&'	∈	even

Step 3: Shuffle

(1, 9), (2, 4), (1, 1), (2, 36), (1, 16)

(1, 9), (1, 1), (1, 16), (2, 4), (2, 36

Map-Reduce Example

reduce(key, [v1, v2, …]) è (key, value) pair(s)

Step 3:

reduce(key, V[…])
sum = 0
for (j = 1 to |V|)

sum = sum + V[j]
emit(key, sum)

Map-Reduce Example

reduce(key, [v1, v2, …]) è (key, value) pair(s)

Step 3:

reduce(key, V[…])
sum = 0
for (j = 1 to |V|)

sum = sum + V[j]
emit(key, sum)

Map-Reduce Example
Properties of reduce function:
• processes all values with the same key
• scheduler allocates reduce processes to cores
• scheduler routes all (key, *) pairs to that reducer

Input: A = [3, 2, 1, 6, 4]

Compute: ∑ 𝐴[𝑗]&'	∈	odd , ∑ 𝐴[𝑗]&'	∈	even

Step 4: Reduce

(1, 9), (1, 1), (1, 16), (2, 4), (2, 36)

(1, 26), (2, 40)

Map-Reduce Example

Input: A = [3, 2, 1, 6, 4]

Compute: ∑ 𝐴[𝑗]&'	∈	odd , ∑ 𝐴[𝑗]&'	∈	even

Step 5: Write back to disk

(1, 26), (2, 40)

Out = [26, 40]

Map-Reduce Example

Map-Reduce Schematic
Data

MapMapMapMap Map

Shuffle

ReduceReduce

Map-Reduce Schematic
Data

MapMapMapMap Map

Shuffle

ReduceReduce

Note:

Just like Fork-Join,
Map-Reduce relies on a
scheduler to assign
Map and Reduce
processes to cores.

Metric: number of rounds

Example: 1 round

Goal: algorithms that run in O(1) rounds.

èEach map-reduce round is expensive.

Map-Reduce

analogous to span

There exists a 1 round Map-Reduce algorithm for
every computable problem.

Map-Reduce

There exists a 1 round Unrestricted Map-Reduce
algorithm for every computable problem.

Algorithm:
1. Map all data to key 1.
2. Reduce key 1: compute the answer on a single

core.

Unrestricted Map-Reduce

Not very useful!
Not very parallel!

Restrictions:

(Real) Map-Reduce

Restriction on computation:
Each Map and Reduce process should be efficient, fast,
polynomial time.

• Cannot solve NP-hard problems.

• Map and Reduce processes should not be expensive.

(Real) Map-Reduce

Restriction on memory:
Each Map and Reduce process should use “sublinear”
memory in the size of the problem.

• If the data is initially size n, no map or reduce process
should use more than O(n𝜀) memory.

• For example: no more then O(√n) memory.

(Sometimes we relax this restriction, but the memory
use should be much smaller than the entire dataset.)

(Real) Map-Reduce

Restriction on communication:
Each Map and Reduce process should input/output a
“sublinear” number of (key, value) pairs.

• If the data is initially size n, no map or reduce process
should take as input more than O(n𝜀) pairs.

• If the data is initially size n, no map or reduce process
should emit more than O(n𝜀) pairs.

• For example: no more then O(√n) key/value pairs.

(Sometimes we relax this restriction, but the number of
keys should be much smaller than the entire dataset.)

(Real) Map-Reduce

Restriction on communication:
Each (key, value) pairs should not be too big.

• A (key, value) pair should be size O(polylog n).

• Should not store too much information in a single
key/value pair.

(Real) Map-Reduce

What is the speed bottleneck?

• Data movement
• Communication bandwidth
• Shuffling
• Reading / writing from disk

Map-Reduce

Basic round:
1. Map: process each (key, value) pair
2. Shuffle: group items by key
3. Reduce: process items with same key together

Plan:
Load data from disk.
Execute several rounds.
Save (key, value) pairs, sorted by key.

Map-Reduce Model

Input:
– File IN where IN[j] is a word

Output:
– File OUT where OUT[j] is a (word, count) pair.
– Each pair indicates how many times the word

appears in the input file.

Example 1: Word Count

Example 1: Word Count

map(key, value)
emit(word, 1)

Example 1: Word Count

map(key, value)
emit(word, 1)

Notes:
• File is translated into (key, value) pairs.

Example 1: Word Count

map(key, value)
emit(word, 1)

Notes:
• File is translated into (key, value) pairs.
• Using a string as a key.

Example 1: Word Count

map(key, value)
emit(word, 1)

Notes:
• File is translated into (key, value) pairs.
• Using a string as a key.
• Assumes a hash function translates string to

integer.

Example 1: Word Count

reduce(word, count[…])
sum = 0
for (i=1 to |count|)

sum = sum + count[i]
emit(word, count)

Example 1: Word Count

reduce(word, count[…])
sum = 0
for (i=1 to |count|)

sum = sum + count[i]
emit(word, count)

Problem: what if all the words in the input
file are the same?

Size is not sublinear!

Example 1: Word Count

reduce(word, count[…])
sum = 0
for (i=1 to |count|)

sum = sum + count[i]
emit(word, count)

Reduce function is associative!

Scheduler can call reduce function on a few
keys at a time.

Example 1: Word Count

reduce(word, count[…])
sum = 0
for (i=1 to |count|)

sum = sum + count[i]
emit(word, count)

(“gaa”, 1), (”gaa”, 1), (“gaa”, 1), (“gaa”, 1)

(“gaa”, 2), (“gaa”, 2)

Example 1: Word Count

reduce(word, count[…])
sum = 0
for (i=1 to |count|)

sum = sum + count[i]
emit(word, count)

(“gaa”, 2), (”gaa”, 2)

(“gaa”, 4)

Example 1: Word Count

reduce(word, count[…])
sum = 0
for (i=1 to |count|)

sum = sum + count[i]
emit(word, count)

Reduce function is associative!

Scheduler can call reduce function on a few
keys at a time.

Example 1: Word Count

reduce(word, count[…])
sum = 0
for (i=1 to |count|)

sum = sum + count[i]
emit(word, count)

Note: analogous to a summation tree in the
fork-join model.

Input:
– Set A = (x1, y1), (x2, y2), (x3, y3), …
– Set B = v1, v2, v3, v4, …

Output:
– Items in A selected by keys in B.
– More precisely:

Example 2: Join

{yi : 9j, xi = vj}

Input:
– Set A = (x1, y1), (x2, y2), (x3, y3), …
– Set B = v1, v2, v3, v4, …

Output:
– Items in A selected by keys in B.
– More precisely:

Example 2: Join

{yi : 9j, xi = vj}

Sequential solution:
• double-loop
• hashing
• etc.

Example 2: Join

mapB(key, (x,y))
emit(v, BVALUE)

Notes:

mapA(key, (x,y))
emit(x, y)

Example 2: Join

mapB(key, (x,y))
emit(v, BVALUE)

Notes:
• Set A and set B map to different keys.
• Use key to indicate which mapper to use.

mapA(key, (x,y))
emit(x, y)

Example 2: Join

Notes:
• Set A and set B map to different keys.
• Use key to indicate which mapper to use.

map(key, (x,y))
if (key = A) then…
else if (key = B) then…

Example 2: Join

mapB(key, (x,y))
emit(v, BVALUE)

Notes:
• Set A and set B map to different keys.
• Use key to indicate which mapper to use.

mapA(key, (x,y))
emit(x, y)

Example 2: Join

reduce(key, values[…])
if BVALUE in values

for j = 1 to |values|
if values[j] != BVALUE then

emit(key, values[i])

Example 2: Join

Is this associative?

reduce(key, values[…])
if BVALUE in values

for j = 1 to |values|
if values[j] != BVALUE then

emit(key, values[i])

Example 2: Join

Is this associative?

No! Not as written.
If BVALUE is processed by a different reducer, then
important values may be lost.

reduce(key, values[…])
if BVALUE in values

for j = 1 to |values|
if values[j] != BVALUE then

emit(key, values[i])

Example 2: Join

Reducer can process values in a stream:

(“gaa”, BVALUE”), (“gaa”, 2), (“gaa”, 7), (“gaa”, 1), …

As long as BVALUE is the first (key, value) pair in stream.

reduce(key, v1, v2, v3, …)
if BVALUE = v1

for each vj

if vj != BVALUE then
emit(key, vj)

Input:
– Array A = [x1, x2, x3, x4, x5, x6, …]

Output:
– Sorted array

Example 3: Sorting

Example 3: Sorting

reduce(key, V)
for (v in V)

emit(v, v)

map (key, value)
emit(value, value)

Example 3: Sorting

reduce(key, V)
for (v in V)

emit(v, v)

Notes:
• Map and Reduce functions do nothing.
• Sorting occurs inside the framework.
• Shuffle and output phases do sort.

map (key, value)
emit(value, value)

Basic round:
1. Map: process each (key, value) pair
2. Shuffle: group items by key
3. Reduce: process items with same key together

Plan:
Load data from disk.
Execute several rounds.
Save (key, value) pairs, sorted by key.

Map-Reduce Model

Is your Map-Reduce framework any good?

How fast can it sort?

Example 3: Bucket Sort

reduce(key, V)
sort(V)
for (j = 1 to |V|)

emit(key*B+j, v)

map (key, value)
choose j : (jB ≤ value < (j+1)B)
emit(j, value)

Fix B = number of buckets.

Example 3: Bucket Sort

reduce(key, V)
sort(V)
for (j = 1 to |V|)

emit(key*B+j, v)

map (key, value)
choose j : (jB ≤ value < (j+1)B)
emit(j, value)

Only reasonable if: B is large (e.g., n½)
values are well distributed

Map-Reduce and Graphs

Single-Source Shortest Paths
– graph G = (V,E), n=|V|, m=|E|

– source s ∊ V
– weights w : VàR

Output:
For each vertex v: distance d(v) from the source.

Map-Reduce and Graphs

Bellman-Ford
Map-Reduce and Graphs

BF(V, E, s, w)
s.est = 0
for each node u: u.est = ∞
repeat |V| times:

for each node u:
for each neighbor v of u:

if v.est > u.est + w(u,v)
v.est = u.est + w(u,v)

Bellman-Ford
– Time: O(nm)
– Order of edge relaxation does not matter.
– Easy to parallelize: can relax all edges at the same

time.

Map-Reduce and Graphs

What keys should we use?
– Each node has a nodeID.
– Use nodeID as th ekey.

Bellman-Ford

What keys should we use?
– Each node has a nodeID.
– Use nodeID as th ekey.

What should the value be?
– nodeID
– est
– nbrIDs = [x1, x2, …]
– nbrWeights = [w1, w2, …]

Bellman-Ford

Distributed version of
adjacency list!

What keys should we use?
– Each node has a nodeID.
– Use nodeID as th ekey.

What should the value be?
– nodeID
– est
– nbrIDs = [x1, x2, …]
– nbrWeights = [w1, w2, …]

Bellman-Ford

What if this is too big?

How else do you want to store
the adjacency list?

What keys should we use?
– Each node has a nodeID.
– Use nodeID as th ekey.

What should the value be?
– nodeID
– est
– nbrID = [x1, x2, …]
– nbrWeight = [w1, w2, …]

Bellman-Ford

What if this is too big?

How else do you want to store
the adjacency list?

Remember how we stored
the graph as a list of edges
to build cache-efficient algs?

Bellman-Ford

map (nodeID, u)
emit(nodeID, u)
for i = 1 to |u.nbrIDs|

emit(u.nbrID[i], u.est+u.nbrWeight[i])

Bellman-Ford

map (nodeID, u)
emit(nodeID, u)
for i = 1 to |u.nbrIDs|

emit(u.nbrID[i], u.est+u.nbrWeight[i])

re-output same (key, value) pair

Bellman-Ford

map (nodeID, u)
emit(nodeID, u)
for i = 1 to |u.nbrIDs|

emit(u.nbrID[i], u.est+u.nbrWeight[i])

re-output same (key, value) pair

Two types of (key, value) pairs emitted:
1. Node type
2. estimate type

Bellman-Ford

map(nodeID, u)
emit(nodeID, u)
for i = 1 to |u.nbrIDs|

emit(u.nbrID[i], u.est+u.nbrWeight[i])

re-output same (key, value) pair

send (estimate+weight) to neighbor

if (v.est > u.est + w(u,v)) then…

Two types of (key, value) pairs emitted:
1. Node type
2. estimate type

Bellman-Ford

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then w.est = val[i]

emit(nodeID, w)

Bellman-Ford

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then w.est = val[i]

emit(nodeID, w)

Note: assumes we can distinguish the two different types of (key, value) pairs.

Bellman-Ford

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then w.est = val[i]

emit(nodeID, w)

Each node “receives” possible estimates from all of its neighbors.

It chooses the minimum possible estimate among them.

Bellman-Ford

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then w.est = val[i]

emit(nodeID, w)

At the end, it re-outputs the node.

Bellman-Ford

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then w.est = val[i]

emit(nodeID, w)

What if the degree is large?

Bellman-Ford

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then w.est = val[i]

emit(nodeID, w)

What if the degree is large?

The val array will be too large! Is it associative?

Bellman-Ford

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then w.est = val[i]

emit(nodeID, w)

What if the degree is large?

The val array will be too large! Is it associative? No!

But can handle streams of edges, if the “node” key is first.

Bellman-Ford: one iteration

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then w.est = val[i]

emit(nodeID, w)

map(nodeID, u)
emit(nodeID, u)
for i = 1 to |u.nbrIDs|

emit(u.nbrID[i], u.est+u.nbrWeight[i])

How many iterations?

Bellman-Ford

Simple version: n iterations

Running time: n Map-Reduce steps.

Bellman-Ford

Better version: stop early

Can stop if no estimates change during one
iteration.

Exercise: design a “termination detection” step.

Bellman-Ford

With termination detection

Running time: 2D Map-Reduce steps

D = diameter of the graph

Is this any good?

Bellman-Ford

Map-Reduce and PageRank

Goal:
– graph G = (V,E)
– PageRank assigns a value to each node in the graph

Map-Reduce and PageRank

Goal:
– graph G = (V,E)
– PageRank assigns a value to each node in the graph

PageRank(v) = probability that a random walks
ends at node v.

Map-Reduce and PageRank

Map-Reduce and PageRank

PageRank(G)
Choose a random node v (uniformly) from G
Repeat many times:
1. With probability ½: stay at node v.
2. With probability ½: choose a neighbor

of v uniformly at random and go to that
neighbor.

Assign to each node u the probability that
you are at node u when the process
terminates.

Goal:
– graph G = (V,E)
– PageRank assigns a value to each node in the graph

PageRank(v) = probability that a random walks
ends at node v.

Map-Reduce and PageRank

Goal:
– graph G = (V,E)
– PageRank assigns a value to each node in the graph

PageRank(v) = probability that a random walks
ends at node v.

Several equivalent formulations (e.g., related to the
second eigenvalue of the Laplacian/adjacency
matrix).

Map-Reduce and PageRank

Goal:
– graph G = (V,E)
– PageRank assigns a value to each node in the graph

PageRank(v) = probability that a random walks
ends at node v.

Several equivalent formulations (e.g., related to the
second eigenvalue of the Laplacian/adjacency
matrix).

Map-Reduce and PageRank

Inductive calculation:
• Assume we have already calculated the

probability distribution after t steps of the
random walk.
• Compute the distribution after step (t+1).

Notation:

PageRank

p(v)t = probability random walk is at v after step t

Initially, uniform distribution:

PageRank

p(v)0 = 1/n

Initially, uniform distribution:

Iterative computation:

PageRank

p(v)0 = 1/n

p(v)t+1 =
1

2
p(v)t +

1

2

X

u2v.nbrs

p(u)t
|v.nbrs|

probability ½, stay at node v

probability ½, used to be at node u
and chose to come to v.

PageRank

PageRank(G)
Initialize, for all v:
Repeat many times:

For all v do:

p(v)0 = 1/n

p(v)t+1 =
1

2
p(v)t +

1

2

X

u2v.nbrs

p(u)t
|v.nbrs|

PageRank

map(nodeID, u)
emit(nodeID, u)
for i = 1 to |u.nbrIDs|

emit(u.nbrID[i], u.est/|u.nbrID|)

probability that random walk is at u
and goes to u.nbrID[i]

p(v)t+1 =
1

2
p(v)t +

1

2

X

u2v.nbrs

p(u)t
|v.nbrs|

Estimate est stores probability
random walk is at u.

Send critical info to nbrs.

PageRank

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
sum = 0
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then

sum = sum + val[i]
w.est = (1/2)w.est + (1/2)sum
emit(nodeID, w)

PageRank

reduce(nodeID, val[…])
Let w be the “node” in the array val[…].
sum = 0
for i = 1 to |val|

if val[i] is not a “node”
if w.est > val[i] then

sum = sum + val[i]
w.est = (1/2)w.est + (1/2)sum
emit(nodeID, w)

p(v)t+1 =
1

2
p(v)t +

1

2

X

u2v.nbrs

p(u)t
|v.nbrs|

Conclusion:

After (enough) iterations, the estimates are equal
to the PageRank of the nodes in the graph.

PageRank

Conclusion:

After (enough) iterations, the estimates are equal
to the PageRank of the nodes in the graph.

PageRank

Depends on the mixing time of the graph.

• For random graphs, O(log n) steps.
• For worst-case graphs, O(n3) steps.
• For cliques, O(log n) steps.

Discussion:
Is this a good framework for building high-
performance cluster computing solutions?
Pros:
– It has been very successful (e.g., at Google).
– There exist (pretty) good implementations.
Cons:
– Other frameworks may be easier today.
– E.g., SPARK…
– Better for some types of problems than others.

Map-Reduce

Discussion:
Is this a good way to design parallel algorithms?
Pros:
– Simple model of parallelism.
– Easy to analyze, to think about.
Cons:
– Tedious to carefully move data around.
– Does not really capture the costs of data management.

(See: sorting example.)
– Not easy to adjust parallelism (e.g., high-degree nodes)

Map-Reduce

Summary

Last	Week:	Multicore

Models	of	Parallelism
• Fork-Join	model
• Work	and	Span
• Greedy	schedulers
Algorithms
• Sum
• MergeSort
• Parallel	Sets
• BFS
• Prefix-Sum
• (Luby’s)

Today:	Map-Reduce

Map-Reduce	Model
• Cluster	computing

Some	simple	examples
• Word	count
• Join

Algorithms
• Bellman-Ford
• PageRank

Design	Some	Algorithms

A	little	more:

Can	you	design	a	Map-Reduce	
algorithm	for	Bellman-Ford	where	
key/value	pairs	are	small	(i.e.,	do	not	
contain	adjacency	lists)	and	all	functions	
are	associative	or	streamable?

How	would	you	add	termination	
detection	to	Bellman-Ford?

Design	a	k-median	or	an	(iterative)	k-
means	clustering	algorithm	for	Map-
Reduce.

Design	Map-Reduce	
algorithms	for:

BFS	(Breadth-First-Search)

Lubys (Maximal	Independent	Set)

Prefix-Sum

Can	you	design	an	MIS	algorithm?		
(Next	week…)

What	about	Dijkstra’s?		(Open…)

Discussion:
Is this a good way to design parallel algorithms?
Pros:
– Simple model of parallelism.
– Easy to analyze, to think about.
Cons:
– Tedious to carefully move data around.
– Does not really capture the costs of data management.

(See: sorting example.)
– Not easy to adjust parallelism (e.g., high-degree nodes)

Map-Reduce

