
Algorithms	at	Scale
(Week	12)

k-Machine	Models

Summary

Last	Week:	Map-Reduce

Map-Reduce	Model
• Cluster	computing

Some	simple	examples
• Word	count
• Join

Algorithms
• Bellman-Ford
• PageRank

Today:	k-Machine

k-Machine	Model
• Cluster	computing

Some	simple	examples
• Luby’s
• Bellman-Ford

Minimum	Spanning	Tree
• Basic	algorithm
• Fully	distributed	algorithm
• Lower	bound

Announcements	/	Reminders

Today:

MiniProject presentation	due	today.

Next	week:	

Six	groups	(TBA)	to	present	in	class

Nov.	17:	

Final	report	due

A	few	comments…

On	writing	a	report:	

1. Begin	with	an	overview	/	introduction.

What	is	this	report	about?

What	will	I	learn	if	I	read	it?

What	are	the	“results”	or	conclusions?

(Maybe:	why	is	this	topic	important?)

A	few	comments…

On	writing	a	report:	

2. Explain	so	that	everyone	can	understand.

Anyone	in	this	class	should	understand	the	algorithm.

Goal:	more	clear	than	a	Wikipedia	page!

A	few	comments…

On	writing	a	report:	

3. Give	technical	details	of	the	algorithm.

From	your	description,	can	I	implement	the	algorithm?

Did	you	include	enough	detail	that	I	know	how	every	step	works?

A	few	comments…

On	writing	a	report:	

4. Give	intuition.

From	your	description,	do	I	understand	WHY	the	algorithm	works?

Which	steps	are	important?

Which	steps	are	just	optimization?

Why	do	we	do	it	this	way?

A	few	comments…

On	writing	a	report:	

5. Draw	pictures.		Use	examples

Illustrate	how	the	algorithm	works.

Draw	a	picture	of	the	data	structure.

Go	through	a	step-by-step	example.

A	few	comments…

On	writing	a	report:	

6. Cite	properly

Did	you	invent	the	algorithm?		If	not,	cite.

Did	you	invent	this	proof?		If	not,	cite.

Do	not	simply	copy	proofs	directly	from	existing	sources.		(Do	cite	
sources	you	used.)		Your	goal	is	to	give	a	better proof.

Don’t	plagiarize.

A	few	comments…

On	dimensionality	reduction:	

1. Think	about	the	trade-offs.

Cost	of	doing	the	dimensionality	reduction	vs.	benefit	of	lower	dimensions.

2. For	non-linear	methods	especially,	think	about	cost.

Is	the	method	reusable	(with	a	high	one-time	cost)	or	is	each	use	expensive?

3. The	final	dimension	is	an	important	parameter.

Many	techniques	do	better	then	the	theory	would	predict	on	real-world	
data.

A	few	comments…

On	discrete	elements	with	windows:	

1. It	is	interesting	to	adapt	FM	and	HLL	to	generic	windowed	
techniques.

For	example,	using	smoothed	histogram	techniques.

2. If	you	look	more	closely,	there	is	a	simpler	direct	technique.

You	don’t	need	histograms.

3. Interesting	variants?

Queries	on	different	window	lengths?	Other	types	of	sketches?

A	few	comments…

On	write-optimized	data	structure:	

1. LSM	is	used	a	lot	in	practice.		COLA	is	not.

Why?		Is	that	a	correct	evaluation?

2. Are	there	hybrid	LSM/COLA	algorithms	that	might	be	good?

Imagine	using	the	COLA	for	x	levels	and	the	LSM	for	levels	>	x.

3. Can	you	speed	up	the	COLA	with	LSM-optimizations?

For	example,	a	LSM	often	uses	a	Bloom	filter	to	speed	up	queries.		A	COLA?

Summary

Last	Week:	Map-Reduce

Map-Reduce	Model
• Cluster	computing

Some	simple	examples
• Word	count
• Join

Algorithms
• Bellman-Ford
• PageRank

Today:	k-Machine

k-Machine	Model
• Cluster	computing

Some	simple	examples
• Luby’s
• Bellman-Ford

Minimum	Spanning	Tree
• Basic	algorithm
• Fully	distributed	algorithm
• Lower	bound

Assumptions:
– Tightly synchronized
– Shared memory

Advantages:
– Simple algorithm design
– Focus on parallelism (computational)
– Easy analysis: work and span is enough!
– Minimizes race conditions, deadlocks, etc.

Fork-Join algorithms

Good model for multicore /
multithreaded CPUs.

Assumptions:
– Loosely synchronized
– No shared memory
– Data exchanged over fast interconnect

Issues:
– Communication cost?
– Coordination among cores?
– Fine-grained parallelism?

High Performance Clusters

Fork/Join is not a good
model for clusters.

Basic round:
1. Map: process each (key, value) pair
2. Shuffle: group items by key
3. Reduce: process items with same key together

Key goals:
Target: high-performance clusters.
Focus: data (not computation)

Map-Reduce Model

Advantages:
– Based on real working systems (e.g., Hadoop)

– Focus on data processing

– Simple programming model: Map and Reduce

– Scales well in practice

Disadvantages:
– Bandwidth issues are invisible

– Expensive sorting operation is hidden

– Hard to coordinate data movement

– Stateless model is tricky

Map-Reduce

Advantages:
– Based on real working systems (e.g., Hadoop)

– Focus on data processing

– Simple programming model: Map and Reduce

– Scales well in practice

Disadvantages:
– Bandwidth issues are invisible

– Expensive sorting operation is hidden

– Hard to coordinate data movement

– Stateless model is tricky

Map-Reduce Today’s Goal:

A more abstract model.

Stateful.

Easier to design algorithms.

Easier to get a realistic sense of algorithm
performance.

Basic assumptions:
– k servers: system is a collection of cores/CPUs/etc.
– all-to-all communication: communicate via messages
– bandwidth limit B: limited data transfer

k-Machine Model

k = 4

Basic assumptions:
– k servers: system is a collection of cores/CPUs/etc.
– all-to-all communication: communicate via messages
– bandwidth limit B: limited data transfer

k-Machine Model

B bits/round

B bits/round

B bits/round

machine can
send kB
bits total

Basic assumptions:
– k servers: system is a collection of cores/CPUs/etc.
– all-to-all communication: communicate via messages
– bandwidth limit B: limited data transfer

k-Machine Model

B bits/round

B bits/round

B bits/round

machine can
receive kB
bits total

Basic assumptions:
– k servers: system is a collection of cores/CPUs/etc.
– all-to-all communication: communicate via messages
– bandwidth limit B: limited data transfer

k-Machine Model

k = 4

Total ”switch” bandwidth:
Bk(k-1) ≅ k2B

Basic assumptions:
– k servers: system is a collection of cores/CPUs/etc.
– all-to-all communication: communicate via messages
– bandwidth limit B: limited data transfer

k-Machine Model

k = 4

Total ”switch” bandwidth:
Bk(k-1) ≅ k2B

Example numbers:

k = 5000,
10 Gbps switch

è
B = 400 bits/sec

Basic assumptions:
– k servers: system is a collection of cores/CPUs/etc.
– all-to-all communication: communicate via messages
– bandwidth limit B: limited data transfer

k-Machine Model

k = 4

Total ”switch” bandwidth:
Bk(k-1) ≅ k2B

Example numbers:

k = 5000,
100 Gbps switch

è
B = 4000 bits/sec

Space restriction:
– Problem size: assume size n
– Per server: approximately O(n/k)

k-Machine Model

k = 4

Example numbers:

k = 5000,
1 TB data

è
space/core = 200MB

Space restriction:
– Problem size: assume size n
– Per server: approximately O(n/k)

k-Machine Model

k = 4

Example numbers:

k = 5000,
1 TB data

è
space/core = 200MB

Difference from Map-Reduce:

All the data always needs to be stored
somewhere.

Size O(n/k) is optimal.

Implement Map-Reduce:
– Map:

1. Each server locally runs map function on every key-
value pair, saving the new key-value pairs.

– Reduce:
1. Use hash function h to map each key to a machine.

2. Send (k, v) to machine h(k).

3. Each machine execute reduce function locally.

– Repeat

k-Machine Model

Implement Map-Reduce:
– Map:

1. Each server locally runs map function on every key-
value pair, saving the new key-value pairs.

– Reduce:
1. Use hash function h to map each key to a machine.

2. Send (k, v) to machine h(k).

3. Each machine execute reduce function locally.

– Repeat

k-Machine Model
Works correctly if bandwidth/space
are sufficient to send/store key-values
pairs during the reduce phase.

Implement Map-Reduce:
– Map:

1. Each server locally runs map function on every key-
value pair, saving the new key-value pairs.

– Reduce:
1. Use hash function h to map each key to a machine.

2. Send (k, v) to machine h(k).

3. Each machine execute reduce function locally.

– Repeat

k-Machine Model
Works correctly if bandwidth/space
are sufficient to send/store key-values
pairs during the reduce phase.

ToDo: Implement associated reduce
functions.

Conclusion:

If you can solve the problem in T rounds of Map-
Reduce, then you can solve it in the k-Machine
model in T rounds.

k-Machine Model

Where is the data?

Random Partition Model:
Initially, data is randomly divided among the machines.

k-Machine Model

6,7

1,5

2,3

4,8

Example: sorting n integers.

Each integer is assigned to a random machine.

k-Machine Model

6,7

1,5

2,3

4,8

Example: sorting n integers.

Each integer is assigned to a random machine.

k-Machine Model

6,7

1,5

2,3

4,8

E[ints per machine] =
n

k

With high probability??

Random process:
– Take n balls and k < n bins.
– Put each ball in a random bin.

Theorem:
Each bin has balls with high
probability.

Detour: balls-in-bins

O
⇣n
k
+ log n

⌘

�
✓
1� 1

nc

◆

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Pick one bin.

Detour: balls-in-bins

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Define xi = 1 if ball i is in the bin.
Define xi = 0 if ball i is NOT in the bin.

Detour: balls-in-bins

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Define xi = 1 if ball i is in the bin.
Define xi = 0 if ball i is NOT in the bin.

Detour: balls-in-bins

E[xi] = Pr(xi = 1) =
1

k

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Define xi = 1 if ball i is in the bin.
Define xi = 0 if ball i is NOT in the bin.

Detour: balls-in-bins

number of balls in bin = X =

nX

i=1

xi

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:

Detour: balls-in-bins

number of balls in bin = X =

nX

i=1

xi

E[X] =
nX

i=1

E[xi] =
n

k

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Chernoff Bound: δ > 1

Detour: balls-in-bins

E[X] =
nX

i=1

E[xi] =
n

k

Pr
⇣
X � (1 + �)

n

k

⌘
 e�

n
k

�
3

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Case 1: (n/k) > log(n)

Detour: balls-in-bins

E[X] =
nX

i=1

E[xi] =
n

k

δ =5

Pr
⇣
X � (1 + 5)

n

k

⌘
 e�

n
k

�
3

 e�2 logn

 1/n2

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Case 2: (n/k) < log(n)

Detour: balls-in-bins

Pr

✓
X �

✓
1 + 6 log(n)

k

n

◆
n

k

◆
 e�

n
k

�
3

 e�6 logn k
n

n
k

1
3

 e�2 logn

 1/n2

� = 6 log n
k

n

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Conclusion: w.p. > (1 – 1/n2)

Detour: balls-in-bins

� = 6 log n
k

n

X  6

n

k
or

X 
✓
1 + 6 log n

k

n

◆
n

k
 7 log n

n/k < log(n)

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Conclusion: w.p. > (1 – 1/n2)

Detour: balls-in-bins

� = 6 log n
k

n

X  O
⇣n
k
+ log n

⌘

Random process:
– Take n balls and k bins.
– Put each ball in a random bin.

Proof:
Conclusion: w.p. > (1 – 1/n2)

Union bound over all k<n bins…

Detour: balls-in-bins

� = 6 log n
k

n

X  O
⇣n
k
+ log n

⌘

Random process:
– Take n balls and k < n bins.
– Put each ball in a random bin.

Theorem:
Each bin has balls with high
probability.

Detour: balls-in-bins

O
⇣n
k
+ log n

⌘

�
✓
1� 1

nc

◆

Example: sorting n integers.

Each integer is assigned to a random machine.

k-Machine Model

6,7

1,5

2,3

4,8

With high probability, per machine:

O
⇣n
k
+ log n

⌘

Let G = (V, E) be a graph
with n nodes and m edges.

Graph Algorithms
Assume k < n½

Let G = (V, E) be a graph
with n nodes and m edges.

Randomly assign nodes to machines.

Graph Algorithms
Assume k < n½

Let G = (V, E) be a graph
with n nodes and m edges.

Randomly assign nodes to machines.

Graph Algorithms
Assume k < n½

Let G = (V, E) be a graph
with n nodes and m edges.

Randomly assign nodes to machines.

Graph Algorithms

With high probability, node per machine:

O
⇣n
k
+ log n

⌘
 O

⇣n
k

⌘

Assume k < n½

How many edges stored on each machine?

???

Graph Algorithms
Assume k < n½

O
⇣m
k

⌘

How many edges stored on each machine?

???

one node è 7 edges!

m = 11

Graph Algorithms
Assume k < n½

O
⇣m
k

⌘

How many edges stored on each machine?

???

Why doesn’t
Chernoff Bound work?

Graph Algorithms
Assume k < n½

O
⇣m
k

⌘

How many edges stored on each machine?

???

Why doesn’t
Chernoff Bound work?

Edges are not independent!

Graph Algorithms
Assume k < n½

O
⇣m
k

⌘

Theorem:
With high probability, each machine has

edges, where Δ = maximum degree of G.

Graph Algorithms Assume k < n½

O
⇣m
k

+� log n
⌘

Proof:
Let nj = number of nodes with degree [2i, 2i+1)

– N1 = nodes with degree {1}
– N2 = nodes with degree {2,3}
– N3 = nodes with degree {4,5,6,7}
…

Graph Algorithms Assume k < n½

Proof:
Let ni = number of nodes with degree [2i, 2i+1)

Balls and bins:
Each machine has at most O(ni/k + log n)
nodes with degree [2i, 2i+1), w.h.p.

Graph Algorithms Assume k < n½

Proof:

Graph Algorithms Assume k < n½

edges 
log�X

i=1

⇣ni

k
2

i+1

+ 2

i+1

log n
⌘

=

1

k

log�X

i=1

(ni2
i+1

) + log n
log�X

i=1

2

i+1

=

1

k

log�X

i=1

(ni2
i+1

) + 2� log n

=

1

k
(4m) + 2� log n

balls and bins

degree

Proof:

Graph Algorithms Assume k < n½

edges 
log�X

i=1

⇣ni

k
2

i+1

+ 2

i+1

log n
⌘

=

1

k

log�X

i=1

(ni2
i+1

) + log n
log�X

i=1

2

i+1

=

1

k

log�X

i=1

(ni2
i+1

) + 2� log n

=

1

k
(4m) + 2� log n

edges 
log�X

i=1

⇣ni

k
2

i+1

+ 2

i+1

log n
⌘

=

1

k

log�X

i=1

(ni2
i+1

) + log n
log�X

i=1

2

i+1

=

1

k

log�X

i=1

(ni2
i+1

) + 4� log n

=

1

k
(4m) + 4� log n

Proof:

Graph Algorithms Assume k < n½

sum:
2Δ+Δ+Δ/2 + Δ/4 + Δ/8 + …

edges 
log�X

i=1

⇣ni

k
2

i+1

+ 2

i+1

log n
⌘

=

1

k

log�X

i=1

(ni2
i+1

) + log n
log�X

i=1

2

i+1

=

1

k

log�X

i=1

(ni2
i+1

) + 4� log n

=

1

k
(4m) + 4� log n

Proof:

Graph Algorithms Assume k < n½

sum:
each edge in the graph, twice

Theorem:
With high probability, each machine has

edges, where Δ = maximum degree of G.

Graph Algorithms Assume k < n½

O
⇣m
k

+� log n
⌘

Theorem:
With high probability, each pair of machines has

edges connecting them.

Graph Algorithms Assume k < n½

O

✓
m

k2
+

�

k
log n

◆

Theorem:
With high probability, each pair of machines has

edges connecting them.

Balls-and-bins?
Chernoff Bound?

Graph Algorithms Assume k < n½

O

✓
m

k2
+

�

k
log n

◆

Theorem:
With high probability, each pair of machines has

edges connecting them.

Balls-and-bins?
Chernoff Bound? YES

Graph Algorithms Assume k < n½

O

✓
m

k2
+

�

k
log n

◆

Theorem:
With high probability, each pair of machines has

edges connecting them.

Proof:
Fix a machine.
The other endpoint of
each edge is independent.

Graph Algorithms Assume k < n½

O

✓
m

k2
+

�

k
log n

◆

Theorem:
With high probability, each pair of machines has

edges connecting them.

Proof:
W.h.p., machine has

edges.

Graph Algorithms Assume k < n½

O

✓
m

k2
+

�

k
log n

◆

O
⇣m
k

+� log n
⌘

Theorem:
With high probability, each pair of machines has

edges connecting them.

Proof:
W.h.p., machine has

edges.
So w.h.p. 1/(k-1) got to each other machine.

Graph Algorithms Assume k < n½ / log n.

O

✓
m

k2
+

�

k
log n

◆

O
⇣m
k

+� log n
⌘

Key Theorems

edges between two
machines, w.h.p.

nodes per machine, w.h.p.O
⇣n
k

⌘

edges per machine, w.h.p.O
⇣m
k

+� log n
⌘

O

✓
m

k2
+

�

k
log n

◆

Example 1: Send information

Each node in the graph sends 1 bit to
each of its neighbors.

Example 1: Send information

Each node in the graph sends 1 bit to
each of its neighbors.

Time:
O
�
1
B

⇥
m
k2 +

�
k log n

⇤�

Example 2: Luby’s Algorithm
Repeat log(n) times:
1. Mark and send to neighbors.
2. Unmark and send to neighbors.
3. Delete and send to neighbors.

Time:
O
�
1
B

⇥
m
k2 +

�
k log n

⇤�

Example 2: Luby’s Algorithm
Better analysis:
• Each node sends same message to all

neighbors.
• Only need to send (n/k) messages per link.

one message, not two!

Example 2: Luby’s Algorithm
Repeat log(n) times:
1. Mark and send to neighbors.
2. Unmark and send to neighbors.
3. Delete and send to neighbors.

Time:

O
�
1
B

n
k log n

�

Sparse graph:
• k = 5000
• n = 100,000
• m = 1,000,000
• B = 400 (10GBps switch)

Some possible numbers:

1
B

�
n
k

�
⇡ 50ms

1
B

�
m
k

�
⇡ 50s

1
B

�
m
k2

�
⇡ 10ms

fastest

Dense graph:
• k = 5000
• n = 100,000
• m = 3,000,000,000
• B = 400 (10GBps switch)

Some possible numbers:

1
B

�
n
k

�
⇡ 50ms

1
B

�
m
k2

�
⇡ 300ms

1
B

�
m
k

�
⇡ 25min

fastest

very slow

Example 2: Luby’s Algorithm
Repeat log(n) times:
1. Mark and send to neighbors.
2. Unmark and send to neighbors.
3. Delete and send to neighbors.

Time:

O
�
1
B

n
k log n

�

è < 20 seconds?

Example:
Can use this model to
predict running times.

Example 3: Bellman-Ford
Repeat D times:
1. Send your estimate to all your neighbors.
2. After receiving all neighbors estimates,

relax all neighboring edges.

Example 3: Bellman-Ford
Repeat D times:
1. Send your estimate to all your neighbors.
2. After receiving all neighbors estimates,

relax all neighboring edges.

O
�
D
B

n
k

�Time:

Summary

Last	Week:	Map-Reduce

Map-Reduce	Model
• Cluster	computing

Some	simple	examples
• Word	count
• Join

Algorithms
• Bellman-Ford
• PageRank

Today:	k-Machine

k-Machine	Model
• Cluster	computing

Some	simple	examples
• Luby’s
• Bellman-Ford

Minimum	Spanning	Tree
• Basic	algorithm
• Fully	distributed	algorithm
• Lower	bound

Minimum	Spanning	Tree

Assumptions:

Graph	G	=	(V,E)
• Undirected
• Weighted
• Connected
• n nodes
• m edges

Output:	
Each	machine	knows	which	edges	
adjacent	to	its	nodes	are	in	the	MST. Example:	output	16

1

1

1

2

2 2

2

2
3

3

3
3

Minimum	Spanning	Tree

Key	idea:

For	every	cut	in	the	graph,	the	
minimum	weight	edge	across	
the	cut	is	in	the	MST.

Boruvka’s Algorithm

1

1

1

2

2 2

2

2
3

3

3
3

Minimum	Spanning	Tree

Key	idea:

For	every	cut	in	the	graph,	the	
minimum	weight	edge	across	
the	cut	is	in	the	MST.

Boruvka’s Algorithm

1

1

1

2

2 2

2

2
3

3

3
3

Minimum	Spanning	Tree

Key	idea:

For	every	cut	in	the	graph,	the	
minimum	weight	edge	across	
the	cut	is	in	the	MST.

Boruvka’s Algorithm

1

1

1

2

2 2

2

2
3

3

3
3

Minimum	Spanning	Tree

Key	idea:

For	every	cut	in	the	graph,	the	
minimum	weight	edge	across	
the	cut	is	in	the	MST.

Boruvka’s Algorithm

1

1

1

2

2 2

2

2
3

3

3
3

Minimum	Spanning	Tree

Key	idea:

For	every	cut	in	the	graph,	the	
minimum	weight	edge	across	
the	cut	is	in	the	MST.

Boruvka’s Algorithm

1

1

1

2

2 2

2

2
3

3

3
3

Minimum	Spanning	Tree

Key	idea:

For	every	cut	in	the	graph,	the	
minimum	weight	edge	across	
the	cut	is	in	the	MST.
Proof	(sketch):
• Add	the	edge	e,	creating	a	cycle.
• Delete	e’,	heaviest	edge	on	cycle.
• Since	e is	smallest	across	cut,	there	

is	some	heavier	edge	on	cycle,	i.e.,	
e’	≠	e.

Boruvka’s Algorithm

1

1

1

2

2 2

2

2
3

3

3
3

Minimum	Spanning	Tree

Initially:	Every	node	is	in	its	own	component.

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Minimum	Spanning	Tree

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Every	component	finds	its	min	weight	outgoing	edge.

Minimum	Spanning	Tree

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Add	min	weight	outgoing	edges	to	MST.

Minimum	Spanning	Tree

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Merge	components	connected	by	MWOE.

Minimum	Spanning	Tree

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Repeat

Minimum	Spanning	Tree

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Find	and	add	MWOE

Minimum	Spanning	Tree

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Merge	components	connected	by	MWOE.

Minimum	Spanning	Tree

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Merge	components	connected	by	MWOE.

Minimum	Spanning	Tree

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Claim: in	each	step,	the	number	of	components	at	
least	divides	by	2.

Minimum	Spanning	Tree

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Claim: Terminates	in	O(log	n) iterations.

Boruvka’s Algorithm
Repeat log n times:
1. Find minimum weight outgoing edge

(MWOE) for each component.
2. Merge components connected by MWOEs.

k-Machine	Boruvka’s Algorithm

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Tag	each	node	with	its	component	identifier.		

Initially,	each	node
is	in	its	own	component.

Component	id	=	node	id

k-Machine	Boruvka’s Algorithm

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Every	node	broadcasts	to	everyone its	component	id.		

Each	node	now	knows
the	component
id	of	each	neighbor	
in	the	graph.

k-Machine	Boruvka’s Algorithm

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Every	node	computes	its	MWOE.		

Each	node	now	knows
the	component
id	of	each	neighbor	
in	the	graph.

So	it	considers	only	edges
that	go	to	other	components.

k-Machine	Boruvka’s Algorithm

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Every	node	broadcasts	its	MWOE	to	everyone.		

Each	node	can	compute
MWOE	for	its	
component	because
it	knows	MWOE	for
every	node	in	its	
component.

k-Machine	Boruvka’s Algorithm

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Every	node	broadcasts	its	MWOE	to	everyone.		

Each	node	can	compute
MWOE	for	all	
components!

Can	find	all	components
that	you	will	merge	with.

Compute	new	component	id.		

Find	minimum	
component	id
of	any	component
that	you	merge	with.

k-Machine	Boruvka’s Algorithm

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Boruvka’s Algorithm
Repeat log n times:
1. Broadcast component id to all.
2. Broadcast MWOE to all.
3. Compute new component id.

Boruvka’s Algorithm
Repeat log n times:
1. Broadcast component id to all.
2. Broadcast MWOE to all.
3. Compute new component id.

What is the cost
of broadcasting
a message to “all”
nodes in the graph?

Boruvka’s Algorithm
Repeat log n times:
1. Broadcast component id to all.
2. Broadcast MWOE to all.
3. Compute new component id.

What is the cost
of broadcasting
a message to “all”
nodes in the graph?

O
�
1
B

n
k

�

Each machine needs to send n/k identifiers to
all k other machines.

Boruvka’s Algorithm
Repeat log n times:
1. Broadcast component id to all.
2. Broadcast MWOE to all.
3. Compute new component id.

Total running time:

O
�
1
B

n
k log n

�

Assume	each	node	in	the	graph	is	its	own	machine.

Fully	Distributed	Model

CONGEST	Model

1

1

1

2

3 2

5

2
2

3

1
1

Almost	like	k=n?

Assume	each	node	in	the	graph	is	its	own	machine.

Each	edge	in	the	graph
is	a	real	communication
edge.

Fully	Distributed	Model

CONGEST	Model

1

1

1

2

3 2

5

2
2

3

1
1

Cannot	send	message	to	everyone
like	in	k-machine	model.

Assume	each	node	in	the	graph	is	its	own	machine.

Each	edge	in	the	graph
is	a	real	communication
edge.

Each	edge	carries
1	message	per	round.

Fully	Distributed	Model

CONGEST	Model

1

1

1

2

3 2

5

2
2

3

1
1

Sort	of	like	B=log	n

Key	challenge:

Find	minimum	weight
outgoing	edge	for
a	component.

Fully	Distributed	Model

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Step	1:

Each	node	sends
a	message	to	all
its	neighbors
with	its	
component	id.

O(1)	rounds

Fully	Distributed	Model

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Step	2:

Each	node	computes
its	minimum	weight
outgoing	edge
to	a	different
component.

0	rounds

Fully	Distributed	Model

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Step	3:

Send	MWOE	on	the
MST	tree	edges	in
your	component.

Fully	Distributed	Model

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Detail:

Maintain	MST
fragment	in	
component	as	a	
rooted	tree.

Fully	Distributed	Model

Boruvka’s Algorithm

Detail:

Each	node
broadcasts
MWOE
up	the	tree
to	the	root.

Fully	Distributed	Model

Boruvka’s Algorithm

Detail:

Root	chooses
smallest	
weight	
MWOE.

Fully	Distributed	Model

Boruvka’s Algorithm

Detail:

Root	broadcasts
MWOE	to
everyone.

Fully	Distributed	Model

Boruvka’s Algorithm

Detail:

Merge	edge
is	found.

Fully	Distributed	Model

Boruvka’s Algorithm

Detail:

Flood	minimum
component	id
through	all
merged	components.

Fully	Distributed	Model

Boruvka’s Algorithm

Detail:

If	root	is	in
another	component,
reorient	tree.

Fully	Distributed	Model

Boruvka’s Algorithm

Step	3:

Send	MWOE	on	the
MST	tree	edges	in
your	component.

And	merge.

Fully	Distributed	Model

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Any	problem?

Detail:

Each	node
broadcasts
MWOE
up	the	tree
to	the	root.

Fully	Distributed	Model

Boruvka’s Algorithm

Time:	Ω(n)

Step	3	(revised):

If	component	size
is	<	n½ ,	then	
send	MWOE	on	the
MST	tree	edges	in
your	component,
and	merge.

Fully	Distributed	Model

Boruvka’s Algorithm

1

1

1

2

3 2

5

2
2

3

1
1

Time:	O(n½)

Repeat	until	all	components	are	size	>n½ :

1. Find	MWOE	for	each	node.
2. Collect	MWOE	for	each	component	at	the	root	of	

the	component,	using	the	MST	fragment	edges.
3. Merge	components.

Fully	Distributed	Model

Boruvka’s Algorithm

Time:	O(n½ log	n)

Idea	2:	Use	a	BFS	tree.

1. Find	a	BFS	tree	for	the	entire	graph.
2. Collect	MWOE	for	each	component	at	the	root	of	

the	BFS	tree,	using	the	BFS	tree	edges.
3. Merge	components.

Fully	Distributed	Model

Boruvka’s Algorithm

Idea	2:	Use	a	BFS	tree.

Fully	Distributed	Model

Boruvka’s Algorithm

root

Idea	2:	Use	a	BFS	tree.

Easy	to	find.

Just	have	a	root
start	broadcasting
a	message	to	all	its
neighbors.

Fully	Distributed	Model

Boruvka’s Algorithm

root

Idea	2:	Use	a	BFS	tree.

Easy	to	find.

When	receive	BFS
message,	then
rebroadcast
to	your	neighbors.

Fully	Distributed	Model

Boruvka’s Algorithm

root

Idea	2:	Use	a	BFS	tree.

Easy	to	find.

Parent	in	BFS
tree	is	first	node
that	you	received
a	message	from.

Fully	Distributed	Model

Boruvka’s Algorithm

root

Idea	2:	Use	a	BFS	tree.

Max	depth:
O(D)	

D	=	diameter	of
graph.

Fully	Distributed	Model

Boruvka’s Algorithm

root

How	to	send	MWOE	up	tree?

Wait	until	you	
have	received
all	MWOE	from
all	your	children.

Fully	Distributed	Model

Boruvka’s Algorithm

root

How	to	send	MWOE	up	tree?

Compute	one
min	weight
edge	for
each	component.

Fully	Distributed	Model

Boruvka’s Algorithm

root

How	to	send	MWOE	up	tree?

Send	all	
to	your	parent.

Fully	Distributed	Model

Boruvka’s Algorithm

root

How	to	send	MWOE	up	tree?

Send	all	
to	your	parent.

At	most	n½ MWOE
to	send	to	parent.

Fully	Distributed	Model

Boruvka’s Algorithm

root

How	to	send	MWOE	up	tree?

Send	all	
to	your	parent.

At	most	n½ MWOE
to	send	to	parent.

Takes	at	most	Dn½ time
for	al	messages	to	reach	root.	

Fully	Distributed	Model

Boruvka’s Algorithm

root

How	to	send	MWOE	up	tree?

Send	all	
to	your	parent.

At	most	n½ MWOE
to	send	to	parent.

Takes	at	most	Dn½ time
for	al	messages	to	reach	root.	

Fully	Distributed	Model

Boruvka’s Algorithm

rootKey	reason	why	we	first	had	to	
build	components	of	size	n½ !

Improvement:	first	aggregate	in	n½ sized	base	fragments.	

Never	more	than
n½ MWOE	to
send	to	root	total.

Fully	Distributed	Model

Boruvka’s Algorithm

root

Key	reason	why	we	first	
had	to	build	components	
of	size	n½ !

Improvement:	pipeline.	

Send	on	MWOE	as
soon	as	you	receive	it.

Never	delayed	by
another	MWOE
more	than	once.	

Fully	Distributed	Model

Boruvka’s Algorithm

root

Conclusion.	

O(D	+	n½) time
to	aggregate	MWOE
and	perform
merge.

Fully	Distributed	Model

Boruvka’s Algorithm

root

Repeat:

1. Find	MWOE	for	each	node.
2. If	component	is	<	n½ then	aggregate	MWOE	in	

component.		Otherwise	aggregate	on	BFS	tree.
3. Merge	components.

Fully	Distributed	Model

Boruvka’s Algorithm

Time:	O((D	+	n½)log	n)

Can	we	do	better	than	n½?

Fully	Distributed	Model

Minimum	Spanning	Tree

Can	we	do	better	than	n½?

NO!

Fully	Distributed	Model

Minimum	Spanning	Tree

Lower	Bound

Minimum	Spanning	Tree

n½ by	n½ grid
Two	special	nodes:	A and	B

A B

Lower	Bound

Minimum	Spanning	Tree

Thick	green	edges:	light	weight	(should	go	in	MST).
Dashed	red	edges:	heavy	weight	(should	NOT	go	in	MST)

A B

Lower	Bound

Minimum	Spanning	Tree

How	do	A	and	B	decide	which	edges	to	include?
Must	communicate	with	each	other!

A B

Lower	Bound

Minimum	Spanning	Tree

How	do	A	and	B	decide	which	edges	to	include?
Must	communicate	with	each	other!

A B

Lower	Bound

Minimum	Spanning	Tree

Shortest	path	connecting	A	and	B	is	n½ so	algorithm	must	take	n½	time.

A B

Lower	Bound

Minimum	Spanning	Tree

Shortest	path	connecting	A	and	B	is	n½ so	algorithm	must	take	n½	time.

A B

Any	problem	here?

Lower	Bound

Minimum	Spanning	Tree

Diameter	is	n½ so	algorithm	runs	in	O(D) time.

A B

A B

Build	a	tree!

D	=	O(log	n)

A B

A and	B	still	have	to
decide	whether
their	adjacent
edges	are	
in	the	MST.

A B

But:
What	if	A	and	B	
exchange	information
via	the	root?

root

A B

Theorem
A	and	B	have	to	exchange
at	least	n½ bits	of
information.

root
Uses	2-party	
communication
complexity.	

A B

Theorem
A	and	B	have	to	exchange
at	least	n½ bits	of
information.

root To	send	n½ bits	of	
information	through	
the	root	takes	
Ω(n½	/	log	n)	time.

A B

Theorem
A	and	B	have	to	exchange
at	least	n½ bits	of
information.

root To	send	n½ bits	of	
information	through	
the	root	takes	
Ω(n½	/	log	n)	time.

Either	A	and	B	exchange	information	
through	the	grid	(which	has	long	
paths)	or	they	exchange	information	
via	the	tree/root	which	has	
congestion.

A B

Theorem
A	and	B	have	to	exchange
at	least	n½ bits	of
information.

root To	send	n½ bits	of	
information	through	
the	root	takes	
Ω(n½	/	log	n)	time.

Either	A	and	B	exchange	information	
through	the	grid	(which	has	long	
paths)	or	they	exchange	information	
via	the	tree/root	which	has	
congestion.

Theorem:

Finding	an	MST	takes	
Ω(D	+	n½	/	log	n)
time	(even	in	a	graph	with	D	=	O(log	n))

Summary

Last	Week:	Map-Reduce

Map-Reduce	Model
• Cluster	computing

Some	simple	examples
• Word	count
• Join

Algorithms
• Bellman-Ford
• PageRank

Today:	k-Machine

k-Machine	Model
• Cluster	computing

Some	simple	examples
• Luby’s
• Bellman-Ford

Minimum	Spanning	Tree
• Basic	algorithm
• Fully	distributed	algorithm
• Lower	bound

Design	Some	Algorithms

A	little	more:

What	about	PageRank?

Design	k-Machine	
algorithms:

Sorting

Finding	a	median

Prefix-Sum

Maximal	matching

PageRank (Last Week)

PageRank(G)
Choose a random node v (uniformly) from G
Repeat many times:
1. With probability ½: stay at node v.
2. With probability ½: choose a neighbor

of v uniformly at random and go to that
neighbor.

Assign to each node u the probability that
you are at node u when the process
terminates.

PageRank (Today)
PageRank(G) (Version 1)

Choose a random node v (uniformly) from G
Repeat many times:
1. With probability 𝜀: restart at a new node

chosen uniformly at random.
2. With probability (1- 𝜀): choose a

neighbor of v uniformly at random and
go to that neighbor.

Assign to each node u the probability that
you are at node u when the process
terminates.

Equivalent: (Version 2)
– Start a random walk at a random node v.
– At every step:

1. With probability 𝜀 stop and return v.

2. With probability (1-𝜀) choose a neighbor uniformly at
random and go there.

PageRank(v) = probability that process stops at v.

PageRank

1) Explain why the two versions are equivalent.

PageRank

Imagine running the process above n log n times.

If x random walks visit a node, then
(𝜀x / n log n)

is a good estimate of the PageRank.

(Prove it? Essentially, just Chernoff Bounds.)

PageRank

1) Explain why the two versions are equivalent.

2) Give an algorithm for the k–machine model
that runs the process n log n times in parallel
and computes the PageRank. How long does
it take?

PageRank

Design	Some	Algorithms

A	little	more:

What	about	PageRank?
1) Explain	why	the	two	versions	are	

equivalent.

2) Give	an	algorithm	for	the	k–
machine	model	that	runs	the	
process	n	log	n	times	in	parallel	
and	computes	the	PageRank.		
How	long	does	it	take?

Design	k-Machine	
algorithms:

Sorting

Finding	a	median

Prefix-Sum

Maximal	matching

