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Graph Streams: Basic Algorithms

13.1 Streams that Describe Graphs

We have been considering streams that describe data with some kind of structure, such as geometric structure, or more

generally, metric structure. Another very important class of structured large data sets is large graphs. This motivates

the study of graph algorithms that operate in streaming fashion: the input is a stream that describes a graph.

The model we shall work with in this course is that the input stream consists of tokens .u; v/ 2 Œn�� Œn�, describing

the edges of a simple1 graph G on vertex set Œn�. We assume that each edge of G appears exactly once in the stream.

There is no easy way to check that this holds, so we have to take this as a promise. The number n is known beforehand,

but m, the length of the stream and the number of edges in G, is not. Though we can consider both directed and

undirected graphs in this model, we shall only be studying problems on undirected graphs; so we may as well assume

that the tokens describe doubleton sets fu; vg.
Unfortunately, most of the interesting things we may want to compute for a graph provably �.n/ space in this

model, even allowing multiple passes over the input stream. We shall show such results when we study lower bounds,

later in the course. These include such basic questions as “Is G connected?” and even “Is there a path from u to v in

G?” where the vertices u and v are known beforehand. Thus, we have to reset our goal. Where .logn/O.1/ space used

to be the holy grail for basic data stream algorithms, for several graph problems, it is n.logn/O.1/ space. Algorithms

achieving such a space bound are sometimes called “semi-streaming” algorithms.2

13.2 The Connectedness Problem

Our first problem is: decide whether or not the input graphG, which is given by a stream of edges, is connected. This

is a Boolean problem — the answer is either 0 (meaning “no”) or 1 (meaning “yes”) — and so we require an exact

answer. We could consider randomized algorithms, but we won’t need to.

For this problem, as well as all others in this lecture, the algorithm will consist of maintaining a subgraph of G

satisfying certain conditions. For connectedness, the idea is to maintain a spanning forest, F , ofG. AsG gets updated,

F might or might not become a tree at some point. Clearly G is connected iff it does.

The algorithm below maintains F as a set of edges. The vertex set is always Œn�.

We have already argued the algorithm’s correctness. Its space usage is easily seen to be O.n logn/, since we

always have jF j � n � 1, and each of F requiresO.logn/ bits to describe.

The well known UNION-FIND data structure can be used to do the work in the processing section quickly. To test

1A simple graph is one with no loops and no parallel edges.
2The term does not really have a formal definition. Some authors would extend it to algorithms running in O.n3=2/ space, say.
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Initialize : F  ¿, X  0 ;

Process fu; vg:
if :X ^ .F [ ffu; vgg does not contain a cycle/ then1

F  F [ ffu; vgg ;2

if jF j D n � 1 then X  1 ;3

Output : X ;

acyclicity of F [ ffu; vgg, we simply check if root.u/ and root.v/ are distinct in the data structure. Note that this

algorithm assumes aninsertion-only graph stream: edges only arrive and never depart from the graph. All algorithms

in this lecture will make this assumption.

13.3 The Bipartiteness Problem

A bipartite graph is one whose vertices can be partitioned into two disjoint sets, S and T say, so that every edge is

between a vertex in S and a vertex in T . Equivalently, a bipartite graph is one whose vertices can be properly colored

using two colors.3 Our next problem is to determine whether the input graphG is bipartite.

Note that being bipartite is a monotone property (just as connectedness is): that is, given a non-bipartite graph,

adding edges to it cannot make it bipartite. Therefore, once a streaming algorithm detects that the edges seen so far

make the graph non-bipartite, it can stop doing more work. Here is our proposed algorithm.

Initialize : F  �, X  1 ;

Process fu; vg:
if X then1

if F [ ffu; vgg does not contain a cycle then2

F  F [ ffu; vgg ;3

else if F [ ffu; vgg contains an odd cycle then4

X  0 ;5

Output : X ;

Just like our connectedness algorithm before, this one also maintains the invariant that F is a subgraph of G and

is a forest. Therefore it uses O.n logn/ space. Its correctness is guaranteed by the following theorem.

Theorem 13.3.1. The above algorithm outputs 1 iff the input graph G is bipartite.

Proof. Suppose the algorithm outputs 0. Then G must contain an odd cycle. This odd cycle does not have a proper

2-coloring, so neither does G. ThereforeG is not bipartite.

Next, suppose the algorithm outputs 1. Let � W Œn� ! f0; 1g be a proper 2-coloring of the final forest F (such a �

clearly exists). We claim that � is also a proper 2-coloring of G, which would imply that G is bipartite and complete

the proof.

To prove the claim, consider an edge e D fu; vg of G. If e 2 F , then we already have �.u/ ¤ �.v/. Otherwise,

F [ feg must contain an even cycle. Let � be the path in F obtained by deleting e from this cycle. Then � runs

between u and v and has odd length. Since every edge on � is properly colored by �, we again get �.u/ ¤ �.v/.
3A coloring is proper if, for every edge e, the endpoints of e receive distinct colors.
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13.4 Shortest Paths and Distance Estimation via Spanners

Now consider the problem of estimating the distance inG between two vertices that are revealed after the input stream

has been processed. That is, build a small data structure, in streaming fashion, that can be used to answer queries of

the form “what is the distance between x and y?”

Define dG.x; y/ to be the distance in G between vertices x and y:

dG.x; y/ D minflength.�/ W � is a path in G from x to yg ;

where the minimum of an empty set defaults to 1. The following algorithm computes an estimate Od.x; y/ for the

distance dG.x; y/. It maintains a suitable subgraphH of G which, as we shall see, satisfies the following property.

8 x; y 2 Œn� W dG.x; y/ � dH .x; y/ � t � dG.x; y/ ; (13.1)

where t � 1 is an integer constant. A subgraph H satisfying (13.1) is called a t-spanner of G. Note that the left

inequality trivially holds for every subgraphH of G.

Initialize : H  ¿ ;

Process fu; vg:
if dH .u; v/ � t C 1 then1

H  H [ ffu; vgg ;2

Output : On query .x; y/, report Od.x; y/ D dH .x; y/ ;

We now show that the final graphH constructed by the algorithm is a t-spanner ofG. This implies that the estimate
Od.x; y/ is a t-approximation to the actual distance dG.x; y/: more precisely, it lies in the interval ŒdG.x; y/; t �
dG.x; y/�.

Pick any two distinct vertices x; y 2 Œn�. We shall show that (13.1) holds. If dG.x; y/ D 1, then clearly

dH .x; y/ D 1 as well, and we are done. Otherwise, let � be the shortest path in G from x to y, and let x D
v0; v1; v2; : : : ; vk D y be the vertices on � , in order. Then dG.x; y/ D k.

Pick an arbitrary i 2 Œk�, and let e D fvi�1; vi g. If e 2 H , then dH .vi�1; vi / D 1. Otherwise, e … H , which

means that at the time when e appeared in the input stream, we had dH 0.vi�1; vi / � t , where H 0 was the value of

H at that time. Since H 0 is a subgraph of the final H , we have dH .vi�1; vi / � t . Thus, in both cases, we have

dH .vi�1; vi / D t . By the triangle inequality, it now follows that

dH .x; y/ �
kX

iD1

dH .vi�1; vi / � tk D t � dG.x; y/ ;

which completes the proof, and hence implies the quality guarantee for the algorithm that we claimed earlier.

How much space does the algorithm use? Clearly, the answer is O.jH j logn/, for the final graph H constructed

by it. To estimate jH j, we note that, by construction, the shortest cycle in H has length at least t C 2. We can then

appeal to a result in extremal graph theory to upper bound jH j, the number of edges in H .

13.4.1 The Size of a Spanner: High-Girth Graphs

The girth 
.G/ of a graph G is defined to be the length of its shortest cycle; we set 
.G/ D 1 if G is acyclic. As

noted above, the graph H constructed by our algorithm has 
.H/ � t C 2. The next theorem places an upper bound

on the size of a graph with high girth (see the paper by Alon, Hoory and Linial [AHL02] and the references therein for

more precise bounds).

Theorem 13.4.1. Let n be sufficiently large. Suppose the graph G has n vertices, m edges, and 
.G/ � k, for an

integer k. Then

m � nC n1C1=b k�1
2

c :
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Proof. Let d D 2m=n be the average degree of G. If d � 3, then m � 3n=2 and we are done. Otherwise, let F be

the subgraph of G obtained by repeatedly deleting from G all vertices of degree less than d=2. Then F has minimum

degree at least d=2, and F is nonempty, because the total number of edges deleted is less than n � d=2 D m.

Put ` D bk�1
2
c. Clearly, 
.F / � 
.G/ � k. Therefore, for any vertex v of F , the ball in F centered at v and of

radius ` is a tree (if not, F would contain a cycle of length at most 2` � k � 1). By the minimum degree property of

F , when we root this tree at v, its branching factor is at least d=2� 1 � 1. Therefore, the tree has at least .d=2� 1/`
vertices. It follows that

n �
�
d

2
� 1

�`

D
�m
n
� 1

�`

;

which impliesm � nC n1C1=`, as required.

Using bk�1
2
c � k�2

2
, we can weaken the above bound to

m D O
�
n1C2=.k�2/

�
:

Plugging in k D t C 2, we see that the t-spanner H constructed by our algorithm has jH j D O.n1C2=t /. Therefore,

the space used by the algorithm is O.n1C2=t logn/. In particular, we can 3-approximate all distances in a graph by a

streaming algorithm in space eO.n5=3/.
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