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The Tug-of-War Sketch

At this point, we have seen a sublinear-space algorithm — the AMS estimator — for estimating the kth frequency

moment, Fk D f k
1 C � � � C f k

n , of a stream � . This algorithm works for k � 2, and its space usage depends on n

as eO.n1�1=k/. This fails to be polylogarithmic even in the important case k D 2, which we used as our motivating

example when introducing frequency moments in the previous lecture. Also, the algorithm does not produce a sketch

in the sense of Section 4.2.

But Alon, Matias and Szegedy [AMS99] also gave an amazing algorithm that does produce a sketch, of logarithmic

size, which allows one to estimate F2. What is amazing about the algorithm is that seems to do almost nothing.

6.1 The Basic Sketch

We describe the algorithm in the turnstile model.

Initialize :

Choose a random hash function h W Œn�! f�1; 1g from a 4-universal family ;1

x  0 ;2

Process .j; c/:

x  x C ch.j / ;3

Output : x2

The sketch is simply the random variable x. It is pulled in the positive direction by those tokens j with h.j / D 1,

and is pulled in the negative direction by the rest of the tokens; hence the name “Tug-of-War Sketch”. Clearly, the

absolute value of x never exceeds f1 C � � � C fk D m, so it takes O.logm/ bits to store this sketch. It also takes

O.logn/ bits to store the hash function h, for an appropriate 4-universal family.

6.1.1 The Quality of the Estimate

Let X denote the value of x after the algorithm has processed � . For convenience, define Yj D h.j / for each j 2 Œn�.
Then X DPn

j D1 fjYj . Therefore,

EŒX2� D E

� nX

j D1

f 2
j Y

2
j C

nX

iD1

nX

j D1
j ¤i

fifjYiYj

�
D

nX

j D1

f 2
j C

nX

iD1

nX

j D1
j ¤i

fifj EŒYi �EŒYj � D F2 ;
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where we used the fact that fYj gj 2Œn� are pairwise independent (in fact, they are 4-wise independent, because h was

picked from a 4-universal family), and then the fact that EŒYj � D 0 for all j 2 Œn�. This shows that the algorithm’s

output, X2, is indeed an unbiased estimator for F2.

The variance of the estimator is VarŒX2� D EŒX4� � EŒX2�2 D EŒX4� � F 2
2 . We bound this as follows. By

linearity of expectation, we have

EŒX4� D
nX

iD1

nX

j D1

nX

kD1

nX

`D1

fifjfkf` EŒYiYjYkY`� :

Suppose one of the indices in .i; j; k; `/ appears exactly once in that 4-tuple. Without loss of generality, we have

i … fj; k; `g. By 4-wise independence, we then have EŒYiYjYkY`� D EŒYi �EŒYjYkY`� D 0, because EŒYi � D 0. It

follows that the only potentially nonzero terms in the above sum correspond to those 4-tuples .i; j; k; `/ that consist

either of one index occurring four times, or else two distinct indices occurring twice each. Therefore we have

EŒX4� D
nX

j D1

f 4
j EŒY 4

j �C 6
nX

iD1

nX

j DiC1

f 2
i f

2
j EŒY 2

i Y
2

j � D F4 C 6
nX

iD1

nX

j DiC1

f 2
i f

2
j ;

where the coefficient “6” corresponds to the
�

4
2

�
D 6 permutations of .i; i; j; j / with i ¤ j . Thus,

VarŒX2� D F4 � F 2
2 C 6

nX

iD1

nX

j DiC1

f 2
i f

2
j

D F4 � F 2
2 C 3

�� nX

j D1

f 2
j

�2

�
nX

j D1

f 4
j

�

D F4 � F 2
2 C 3.F 2

2 � F4/ � 2F 2
2 :

6.2 The Final Sketch

As before, having bounded the variance, we can design a final sketch from the above basic sketch by a median-of-

means improvement. By Lemma 5.4.1, this will blow up the space usage by a factor of

O.1/ � VarŒX2�

"2 EŒX2�2
� log

1

ı
� O.1/ � 2F 2

2

"2F 2
2

� log
1

ı
D O

�
1

"2
log

1

ı

�

in order to give an ."; ı/-approximation. Thus, we have estimated F2 using space O."�2 log.ı�1/.logm C logn//,

with a sketching algorithm that in fact computes a linear sketch.

6.2.1 A Geometric Interpretation

The AMS Tug-of-War Sketch has a nice geometric interpretation. Consider a final sketch that consists of t independent

copies of the basic sketch. LetM 2 R
t�n be the matrix that “transforms” the frequency vector f into the t-dimensional

sketch vector x. Note that M is not a fixed matrix but a random matrix with ˙1 entries: it is drawn from a certain

distribution described implicitly by the hash family. Specifically, if Mij denotes the .i; j /-entry of M , then Mij D
hi .j /, where hi is the hash function used by the i th basic sketch.

Let t D 6="2. By stopping the analysis in Lemma 5.4.1 after the Chebyshev step (and before the “median trick”

Chernoff step), we obtain that

Pr
M

�ˇ̌
ˇ1
t

tX

iD1

x2
i � F2

ˇ̌
ˇ � "F2

�
� 1

3
:
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Thus, with probability at least 2=3, we have






1p
t
M f






2

D 1p
t
kxk2 2

hp
1 � " � kfk2;

p
1C "kfk2

i
� Œ.1 � "/kfk2; .1C "/kfk2� :

This can be interpreted as follows. The (random) matrix M=
p
t performs a “dimension reduction”, reducing an n-

dimensional vector f to a t-dimensional sketch x (with t D O.1="2/), while preserving `2-norm within a .1˙"/ factor.

Of course, this is only guaranteed to happen with probability at least 2=3. But clearly this correctness probability can

be boosted to an arbitrary constant less than 1, while keeping t D O.1="2/.

The “amazing” AMS sketch now feels quite natural, under this geometric interpretation. We are simply using

dimension reduction to maintain a low-dimensional image of the frequency vector. This image, by design, has the

property that its `2-length approximates that of the frequency vector very well. Which of course is what we’re after,

because the second frequency moment, F2, is just the square of the `2-length.

Since the sketch is linear, we now also have an algorithm to estimate the `2-difference kf.�/ � f.� 0/k2 between

two streams � and � 0.
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