
CS369G: Algorithmic Techniques for Big Data Spring 2015-2016

Lecture 12: Graph Stream Algorithms

Prof. Moses Charikar Scribe: Nolan Skochdopole

1 Overview

In this lecture, we continue our discussion of graph streaming algorithms. In particular, we establish
some space lower bounds for approximating the all-pairs shortest paths problem. We define cut
and spectral sparsifiers and go over an algorithm to compute a spectral sparsifier of a graph G in
a streaming environment. Finally, we go over a couple streaming algorithms for counting triangles.
Note that throughout this lecture, we are assuming all streaming is just edge additions (no edge
deletions).

2 Space lower bound for shortest paths

Last time we saw a streaming algorithm for the all-pairs shortest paths problem, which gave an
α-approximation (i.e. d(u, v) ≤ d̂(u, v) ≤ αd(u, v), ∀u, v ∈ V). The algorithm keeps a sketch of
the graph in the form of a subgraph. When α = 2k − 1, the sketch has space O(n1+1/k), which
we proved last class. We will now show that this space is essentially tight, even for sketches/data
structures that aren’t necessarily spanners (subgraphs of the original graph). That is, any sketch
that gives an α-approximation to all-pairs shortest paths requires space Ω(n1+1/k).

2.1 Exact all-pairs shortest paths

We will first consider solving the problem exactly, which corresponds to k = 1 (we assume un-

weighted graphs, but analysis for weighted graphs should be similar). On n nodes, there are 2(n2)

labeled graphs, each with distinct sets of distances. To see this fact, consider that any pair of dis-
tinct labeled graphs on n nodes differ on at least one edge, say (u, v); then, in one graph, d(u, v) = 1
and in the other graph, d(u, v) > 1. Therefore, if we want to distinguish exactly between any of

these graphs, we need a sketch with log 2(n2) =

(
n

2

)
bits.

2.2 Lower bound for general k

We will use a similar argument for the space lower bound for k > 1, and we will make use of the
following fact.

Fact 1. There exists a graph with n1+1/k edges and no cycles of length ≤ c · k for some constant c.

We omit the proof of this fact, but it can be done with the probabilistic method1. Suppose we

1Erdos’ girth conjecture states that there exists a graph on Ω(n1+1/k) edges and no cycles of length ≤ 2k + 2

1

wished to approximate all-pairs shortest paths for this graph. This graph has 2n
1+1/k

subgraphs.
We must be able to distinguish between any two of these subgraphs; every pair of subgraphs must
be different on at least one edge, say (u, v). In one subgraph, d(u, v) = 1 and in the other that does
not contain that edge, d(u, v) > ck − 1 because2 the original graph has no cycles of length ≤ ck.

Therefore, to exactly distinguish between any of these subgraphs, we need log(2n
1+1/k

) = n1+1/k

bits, and the space required for the α-approximation for all-pairs shortest path is Ω(n1+1/k).

3 Approximating cuts via sparsifiers

A cut of a graph G is a partition of the vertices into two disjoint sets, S and S̄ (= V \ S). We are
interested in the weight of the edges of G going between these two sets, called the cut-set, i.e. we

want to know the value given by EG(S, S̄) =
∑

(u,v)∈E|u∈S,v∈S̄

wuv, or at least approximate this for

any cut in G. One such method to approximate cuts is to find a suitable cut sparsifier[1].

Definition 2. A (weighted) subgraph H of G is called cut sparsifier of G if:

EG(S, S̄) ≤ EH(S, S̄) ≤ (1 + ε)EG(S, S̄), ∀S ⊆ V

3.1 Notation

For a weighted graph G(V,E) we define the Laplacian of the graph, LG, to be an n×n matrix with
the following entries3:

LG(i, j) = −wij if i 6= j

LG(i, i) =
∑
j

wij

Definition 3. A (weighted) subgraph H of G is called a spectral sparsifier[2] if:

xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx, ∀x ∈ Rn

Note that spectral sparsifers are more general than cut sparsifers and were originally motivated by
work on fast solvers for symmetric diagonally dominant systems.

Observation 4. xTLGx =
∑

(i,j)∈E

(xi − xj)2wij.

We can easily see this observation by viewing the graph Laplacian as the the sum of edge Laplacians:

LG =
∑

(i,j)∈E

L(i,j) =
∑

(i,j)∈E

wij(ei − ej)(ei − ej)T

⇒xTLGx =
∑

(i,j)∈E

wijx
T (ei − ej)(ei − ej)Tx =

∑
(i,j)∈E

wij(xi − xj)2

2Given the Erdos girth conjecture, we approximate c as 2 to recover the fact that there is a distance on any pair
of subgraphs that differs by > 2k − 1 = α

3Note that if (i, j) /∈ E, we suppose wij = 0.

2

where we have used ei to denote the ith standard basis vector for Rn.

Notice that when x ∈ {0, 1}n, xTLGx = EG(S, S̄) where S = {i|xi = 1}. That is, the quadratic
form with the Laplacian gives cut sizes on these x vectors. Therefore, all spectral sparsifiers are
cut sparsifiers. However, the other direction does not hold.

3.2 Computing spectral sparsifiers in a non-streaming environment

If we think of graphs as electrical networks, we may compute effective resistances for every edge.
Spielman and Srivastava [3] showed that if we sample edges proportional to effective resistances, we
may get a (1 + ε)-spectral sparsifer with O(ε−2n log n) edges. Note that this result is a randomized
construction. Intuitively, this construction should make sense; if any edge is part of a cut with very
few edges in it, its effective resistance will be higher and so we will have a higher chance to sample
it.

Batson, Spielman and Srivastava [4] later developed a deterministic algorithm to give (1+ε)-spectral
sparsifers with O(ε−2n) edges. We will use these results as black boxes.

3.3 Computing spectral sparsifiers in a streaming environment

We will use the following facts about compositions of sparsifiers.

Fact 5. Let H1 be a sparsifier of G1 and H2 be a sparsifier of G2, then H1 ∪H2 is a sparsifier of
G1 ∪G2.

Fact 6. Let H1 be an α-sparsifer of G and H2 a β-sparsifier of H1, then H2 is an αβ-sparsifier of
G.

The proofs of these facts are easy to see by the linearity of Laplacians and definition of sparsifiers.

To compute a spectral sparsifier of a graph in a streaming environment, consider processing the
stream in chunks, calculating sparsifiers for each chunk. We can then combine those sparsifiers to
a new sparsifier, and we can continue to do this in a binary-tree structure until we are left with
one final sparsifier. Please see the below figure for a representation of the sparsifier computations.

...
...

...
...

...
...

...
...

(1 + ε)

...

(1 + ε)(logn)−2

(1 + ε)(logn)−1

(1 + ε)logn

3

Note that the numbers on the right in the above figure represent the level of approximation at that
level assuming all sparsifiers are (1 + ε) originally. To have a useful final sparsifier, we need to set

ε =
δ

log n
(to give about a (1 + δ)-approximation in the end).

Each sparsifier needs O(ε−2n log2 n) edges if we use the deterministic algorithm of Batson, Spielman
and Srivastava. There are log n levels of the sparsifier computation tree. And notice that at most
one of the sparsifiers at each level of the tree is waiting for its sibling in order to be sparsified4.
Therefore, we have at most log n sparsifiers at any one time, for a total space of O(ε−2n log3 n).
Also, note that we can try to form a different tree structure (other than binary) and analyze the
tradeoffs between space and time of the algorithm with different structures.

If we want to construct and maintain spectral sparsifiers for streaming environments in which edges
can arrive and leave, we can do so in O(n polylog n) space [5], but we will not go into details here.

4 Counting subgraphs

One common problem people are interested in is counting the number of a certain subgraph within
a graph. We will focus on counting triangles, which is related to the clustering coefficient among

other things. The clustering coefficient is given by:
1

n

∑
v∈V

T3(v)(deg(v)
n

) , where T3(v) is the number of

triangles containing v.

Note that Ω(n2) space is required to distinguish between cases of 0 and 1 triangles. Typically we
assume T3 is large enough to approximate it so we do not need to worry about this limit.

Think of constructing a vector x of length

(
n

3

)
for the graph, such that xT = |{edges in T ∪ G}|

for all T = {i, j, k} triplets. That is, the vector keeps track of the number of edges in G for every
possible triangle. Then to compute the number of triangles of G, we simply need to compute the
number of coordinates of x with entries equal to 3.

4.1 Counting triangles with frequency moments

Of course, we do not want to keep this vector, it is too large. So to approximate the number of

triangles we can use sketches for frequency moments. Recall that Fk =
∑
T

xkT and that we can

approximate F0, F1 and F2 in a small amount of space.

It is easy to check that T3 = F0−1.5F1 +0.5F2 gives the number of triangles (number of coordinates
of x with value of 3)5. This sketch has very small space, but may require too much time. Each
new edge updates n2 coordinates of the vector x, so many updates per edge are needed. If we
disregard the update times, we want to analyze what sort of space we need to guarantee a (1 + ε)
approximation to triangle counting. Note that we are still assuming T3 is large enough so that we
do not run into bad lower bounds.

4Whenever we have two siblings in the tree, we will immediately sparsify them to save space.
5This is just a polynomial that has roots at 0, 1 and 2 and evaluates to 1 at 3.

4

Suppose we have (1 + γ)-approximations for F0, F1 and F2. Then it’s not hard to check the
following:

|T̂3 − T3| ≤ γ(F0 + 1.5F1 + 0.5F2)

≤ 8γ ·m · n

Thus we want
8γmn

T3
≈ ε, i.e. γ ≈ εT3

mn
. This requirement gives us spaceO(γ−2) = O

(
1

ε2

(
mn

T3

)2
)

.

This space is not great if the number of triangles is small, but can be good if the number of triangles
is large.

4.2 Counting triangles via sampling x

We can sample from non-zero coordinates and estimate the number of non-zero coordinates that

are 3. The number of non-zero coordinates is mn, so
T3

mn
is the fraction of triangles. If we sample

O

(
mn

T3
· poly log n

ε2

)
non-zero coordinates of x, we can get an estimate of T3. Note that we do not

know T3, but the space and number of samples of these algorithms depend on it, so in order for
these algorithms to make sense we need some good guarantee for T3, such as a good lower bound.

References

[1] A. Benczur, D. Karger, Randomized Approximation Schemes for Cuts and Flows in Capaci-
tated Graphs, SIAM Journal on Computing, 44(2), pp.290-319, 2015.

[2] D. A. Spielman, S. Teng, Spectral Sparsification of Graphs, SIAM Journal on Computing,
40(4), pp.981-1025, 2011.

[3] D. A. Spielman, N. Srivastava, Graph Sparsification by Effective Resistances, SIAM Journal
on Computing, 40(6), pp.1913-1926, 2011.

[4] J. Batson, D. A. Spielman, N. Srivastava, Twice-Ramanujan Sparsifiers, SIAM Review, 56(2),
pp.315-334, 2014.

[5] M. Kapralov, Y. T. Lee, C. Musco, C. Musco, A. Sidford, Single pass spectral sparsification
in dynamic streams, Foundations of Computer Science (FOCS), pp.561–570, 2014.

5

