
CS5234: Counting Triangles
A tale of three sampling algorithms
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What would this be useful for?

● Computing the transitivity coefficient of a graph.

● Motif detection in protein interaction networks.

● Social network analysis

● Etc



BUT!

Now we want to do this in a stream!
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And in one pass!



In the streaming model:

Assume the algorithm 
already knows what the 
vertices are
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In the streaming model:

The stream ends when all 
the edges have arrived!



Say we didn’t have a space constraint:

If we have O(m) space, then 
we could just store all the 
edges and count the 
triangles manually.
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But if we only had:
O(n poly log n) space, and 
therefore we can’t really 
store all the edges, 
especially for a dense 
graph.

So what should we do?
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Use a Chernoff bound somewhere!



Okay hold on...



● As it turns out counting triangles in a graph if we only had constant passes on the stream is 
quite impossible! [Braverman, Ostrovsky, Vilenchik, 13’] (How Hard is Counting Triangles in the 
Streaming Model?)

● In actual fact, algorithms will need at least Ω(m / T) space, where T is the number of triangles in 
the graph.



● As it turns out counting triangles in a graph if we only had constant passes on the stream is 
quite impossible! [Braverman, Ostrovsky, Vilenchik, 13’] (How Hard is Counting Triangles in the 
Streaming Model?)

● In actual fact, algorithms will need at least Ω(m / T) space, where T is the number of triangles in 
the graph.

It didn’t stop people from trying though. :| The algorithms are still performant provided you have a 
large number of triangles.



Counting Triangles
With lots of space so make of it what you will.
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3 Shades of Sampling

● An edge and a vertex

● Two neighbouring edges

● An entire subgraph

Want to return, a count of 
triangles that is:

Within (1+ε) factor, with 
probability (1-δ).
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But first! Reservoir Sampling:

1/4
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Sampling Idea 1:

1. Sample an edge at random
2. Sample a vertex at random
3. Now (fingers crossed) we really hope that there are two other edges that 

will come and connect the vertex and the edge we sampled earlier.



Idea 1 in action:



Idea 1 in action:

Sample an edge using 
reservoir sampling



Idea 1 in action:

Sample an vertex at 
random.
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Now we wait… aand wait..
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And zing!



Algorithm 1:

1. Run r copies of this sampling idea, which are independent of each other.

2. Count the number of triangles sampled, and return: count * m * (n - 2) // r
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math

Goal: Show our algorithm 
in expectation returns the 
number of triangles.

1. The probability that we sample any edge and vertex pair is give 
as: 
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And now, some 
math

Goal: Show our algorithm 
in expectation returns the 
number of triangles.

1. The probability that we sample any edge and vertex pair is give 
as: 

2. Now there are T many triangles, so the probability that we 
sample a triangle is actually:

3. So the expected value of our output is:

Chernoff Bound!!



Sampling Idea 2



Sampling Idea 2:

1. Sample an edge at random
2. Sample a neighbouring edge at random (also using a separate reservoir 

algorithm)
3. Keep a count of the number of neighbours the first edge has seen, c.
4. If we stick with a triangle by the end of the stream, we return m*c .
5. Else we return 0.
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Counting Triangles in a Graph

Don’t forget to return m*3, 
the count of the 
neighbours times m! 
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math
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this value is equals to the number of 
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And now, more 
math

Again we want to show in expectation 
this value is equals to the number of 
triangles. 

Chernoff Bound!!
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Sampling Idea 3:

1. Set N colours that we will randomly colour the vertices with.
2. For any edge that arrives in a stream such that both endpoints are the 

same colour, we keep it in our new subgraph.
3. At the end of the stream, we count the triangles that remain in the 

subgraph, and output that count, multiplied by N^2

Here N = 1/p.
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Surprise surprise, 
even more math

Would it be unexpected if I were to 
again, say that we needed to show in 
the value returned is in expectation the 
number of triangles?
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