
CS5234: Counting Triangles
A tale of three sampling algorithms

Counting Triangles in a Graph

Counting Triangles in a Graph

Counting Triangles in a Graph

What would this be useful for?

● Computing the transitivity coefficient of a graph.

● Motif detection in protein interaction networks.

● Social network analysis

● Etc

BUT!

Now we want to do this in a stream!

BUT!

Now we want to do this in a stream!

And in one pass!

In the streaming model:

Assume the algorithm
already knows what the
vertices are

In the streaming model:

And now the edges appear
one by one from the stream

In the streaming model:

And now the edges appear
one by one from the stream

In the streaming model:

And now the edges appear
one by one from the stream

In the streaming model:

And now the edges appear
one by one from the stream

In the streaming model:

In the streaming model:

The stream ends when all
the edges have arrived!

Say we didn’t have a space constraint:

If we have O(m) space, then
we could just store all the
edges and count the
triangles manually.

Say we didn’t have a space constraint:

But if we only had:
O(n poly log n) space, and
therefore we can’t really
store all the edges,
especially for a dense
graph.

Say we didn’t have a space constraint:

But if we only had:
O(n poly log n) space, and
therefore we can’t really
store all the edges,
especially for a dense
graph.

So what should we do?

Our solution?

RANDOMISE!

Our solution?

RANDOMISE!Flip s
ome coi

ns!!

Our solution?

RANDOMISE!Flip s
ome coi

ns!! Sample edges!

Our solution?

RANDOMISE!Flip s
ome coi

ns!! Sample edges!

Use a Chernoff bound somewhere!

Okay hold on...

● As it turns out counting triangles in a graph if we only had constant passes on the stream is
quite impossible! [Braverman, Ostrovsky, Vilenchik, 13’] (How Hard is Counting Triangles in the
Streaming Model?)

● In actual fact, algorithms will need at least Ω(m / T) space, where T is the number of triangles in
the graph.

● As it turns out counting triangles in a graph if we only had constant passes on the stream is
quite impossible! [Braverman, Ostrovsky, Vilenchik, 13’] (How Hard is Counting Triangles in the
Streaming Model?)

● In actual fact, algorithms will need at least Ω(m / T) space, where T is the number of triangles in
the graph.

It didn’t stop people from trying though. :| The algorithms are still performant provided you have a
large number of triangles.

Counting Triangles
With lots of space so make of it what you will.

3 Shades of Sampling

● An edge and a vertex

3 Shades of Sampling

● An edge and a vertex

● Two neighbouring edges

3 Shades of Sampling

● An edge and a vertex

● Two neighbouring edges

● An entire subgraph

3 Shades of Sampling

● An edge and a vertex

● Two neighbouring edges

● An entire subgraph

Want to return, a count of
triangles that is:

Within (1+ε) factor, with
probability (1-δ).

But first! Reservoir Sampling:

1/1

But first! Reservoir Sampling:

1/1

But first! Reservoir Sampling:

1/2

But first! Reservoir Sampling:

1/3

But first! Reservoir Sampling:

1/4

Sampling Idea 1

Sampling Idea 1:

1. Sample an edge at random
2. Sample a vertex at random
3. Now (fingers crossed) we really hope that there are two other edges that

will come and connect the vertex and the edge we sampled earlier.

Idea 1 in action:

Idea 1 in action:

Sample an edge using
reservoir sampling

Idea 1 in action:

Sample an vertex at
random.

Idea 1 in action:

Now we wait...

Idea 1 in action:

Now we wait….

Idea 1 in action:

Now we wait…..

Idea 1 in action:

Now we wait… aand wait..

Idea 1 in action:

Now we wait… aand wait..

Idea 1 in action:

And zing!

Idea 1 in action:

And zing!

Algorithm 1:

1. Run r copies of this sampling idea, which are independent of each other.

2. Count the number of triangles sampled, and return: count * m * (n - 2) // r

And now, some
math

Goal: Show our algorithm
in expectation returns the
number of triangles.

1. The probability that we sample any edge and vertex pair is give
as:

And now, some
math

Goal: Show our algorithm
in expectation returns the
number of triangles.

1. The probability that we sample any edge and vertex pair is give
as:

2. Now there are T many triangles, so the probability that we
sample a triangle is actually:

And now, some
math

Goal: Show our algorithm
in expectation returns the
number of triangles.

1. The probability that we sample any edge and vertex pair is give
as:

2. Now there are T many triangles, so the probability that we
sample a triangle is actually:

3. So the expected value of our output is:

And now, some
math

Goal: Show our algorithm
in expectation returns the
number of triangles.

1. The probability that we sample any edge and vertex pair is give
as:

2. Now there are T many triangles, so the probability that we
sample a triangle is actually:

3. So the expected value of our output is:

Chernoff Bound!!

Sampling Idea 2

Sampling Idea 2:

1. Sample an edge at random
2. Sample a neighbouring edge at random (also using a separate reservoir

algorithm)
3. Keep a count of the number of neighbours the first edge has seen, c.
4. If we stick with a triangle by the end of the stream, we return m*c .
5. Else we return 0.

Counting Triangles in a Graph

Counting Triangles in a Graph

Counting Triangles in a Graph

Counting Triangles in a Graph

Counting Triangles in a Graph

Don’t forget to return m*3,
the count of the
neighbours times m!

And now, more
math

Again we want to show in expectation
this value is equals to the number of
triangles.

And now, more
math

Again we want to show in expectation
this value is equals to the number of
triangles.

And now, more
math

Again we want to show in expectation
this value is equals to the number of
triangles.

And now, more
math

Again we want to show in expectation
this value is equals to the number of
triangles.

And now, more
math

Again we want to show in expectation
this value is equals to the number of
triangles.

And now, more
math

Again we want to show in expectation
this value is equals to the number of
triangles.

And now, more
math

Again we want to show in expectation
this value is equals to the number of
triangles.

Chernoff Bound!!

Sampling Idea 3:

Sampling Idea 3:

1. Set N colours that we will randomly colour the vertices with.
2. For any edge that arrives in a stream such that both endpoints are the

same colour, we keep it in our new subgraph.
3. At the end of the stream, we count the triangles that remain in the

subgraph, and output that count, multiplied by N^2

Here N = 1/p.

Counting Triangles in a Graph

Counting Triangles in a Graph

Surprise surprise,
even more math

Would it be unexpected if I were to
again, say that we needed to show in
the value returned is in expectation the
number of triangles?

Surprise surprise,
even more math

Would it be unexpected if I were to
again, say that we needed to show in
the value returned is in expectation the
number of triangles?

Surprise surprise,
even more math

Would it be unexpected if I were to
again, say that we needed to show in
the value returned is in expectation the
number of triangles?

Surprise surprise,
even more math

Would it be unexpected if I were to
again, say that we needed to show in
the value returned is in expectation the
number of triangles? Chernoff Bound!!

Surprise surprise,
even more math

Would it be unexpected if I were to
again, say that we needed to show in
the value returned is in expectation the
number of triangles? Chernoff Bound!!

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Only 1 if both triangles are included
in the subgraph

= Only if all 4 vertices have
the same colour

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Only 1 if both triangles are included
in the subgraph

= Only if all 4 vertices have
the same colour

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Worst case how many triangles
correlated?

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Worst case how many triangles
correlated?

Every edge of every triangle is
also shared with every other
triangle.

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Every edge of every triangle is
also shared with every other
triangle.

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

Use Chebyshev
instead.

I guess the last method of bounding
varied from the previous two.

Chebyshev

