
CS5330: Randomized Algorithms

Summary of CS5330 (first half)

So far in CS5330, we have covered many randomized algorithms and many techniques for analyzing
randomized algorithms. I am going to list below some of the most important techniques we have
used, and also some of the most interesting algorithms. This is not intended to be comprehensive:
there are important topics that we have covered (and that are in the lecture notes) that are not
included here.
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1 Basic Probability

Technique Key example

Condition probability (and chain rule for condi-
tional probability)

Analysis of Karger’s MinCut algorithm.

Probabilistic recurrences Analysis of the FastCut algorithm.

Expected value / linearity of expectation Coupon collected analysis (expected number of
tries): E [tries] = O(n log n). Also, many, many
others (e.g., balls and bins analysis, hashing,
etc.)

Conditional expectation Analysis of QuickSort (high probability version)

Principle of deferred decisions Stable marriage analysis.

Stochastic dominance Stable marriage analysis.

2 Tail Bounds

Technique Key example

Markov’s Inequality Too many to even try to choose one.

Chebychev’s Inequality Bounding the max load on a bin, approximate
counting.

Fourth Moment Method Linear probing analysis

Chernoff Bounds Polling/Sampling (and many, many more: coin
flipping, balls and bins, hashing, load balancing,
approximate median, approximating counting,
two-choices analysis, etc.)
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3 Algorithms

Here is an incomplete list of topics we have covered:

Problem Algorithms

Min-Cut in a graph KargerCut, FastCut

Stable marriage Gale-Shapley Greedy matching

Sorting QuickSort

Search trees Treaps, random binary search trees

Hashing Chaining (average cost, max cost), Linear prob-
ing, Cuckoo hashing

Load balancing Max load, average load

Sampling Polling, approximate counting, approximate me-
dian
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4 Basic probability facts

In this section, I will list some basic probability facts that we have relied on over and over again in
this class. For more details regarding these facts, please see the Mitzenmacher-Upfal textbook.

Fact 1 (Union Bound) Given a collection of events E1, E2, . . . , En:

Pr

 n⋃
j=1

Ej

 ≤ n∑
j=1

Pr [Ej ]

If all the events Ej are distinct, then:

Pr

 n⋃
j=1

Ej

 =
n∑
j=1

Pr [Ej ]

Fact 2 (Linearity of Expectation) Let X1, X2, . . . , Xn be a collection of arbitrary random vari-
ables. Then:

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] .

Fact 3 (Definition of Expectation 1) For any random variable X that takes value in domain
D:

E [X] =
∑
v∈D

v · Pr [X = v]

Fact 4 (Definition of Expectation 2) For any non-negative random variable X that takes in-
teger values:

E [X] =
∞∑
j=1

Pr [X ≥ j]

Fact 5 (Definition of Variance) For any random variable X:

VarX = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2

Fact 6 (Conditional Probability) For any two events X and Y : Pr [X and Y ] = Pr [X | Y ]Pr [Y ].
For any collection of events X1, X2, . . . , Xn:

Pr

 ⋂
j∈[1,n]

Xj

 = Pr [X1]Pr [X2|X1]Pr [X3|X1, X2]Pr [X4|X1, X2, X3] · · ·

Two events X and Y are independent if Pr [X and Y ] = PrXPr [Y ].

4



Fact 7 (More Variance) Given a set of independent random variables X1, . . . , Xn:

Var
n∑
j=1

Xj =
n∑
j=1

VarXj

Given a constant a:
Var aX = a2 VarX

Fact 8 (Law of Total Probability) Given any collection of disjoint possible outcomes B1, X2, . . . Bn
where

∑n
j=1 Pr [Bj ] = 1 (i.e., all possible outcomes are accounted for), then for any random variable

X (with outcomes in the domain specified by the Bj):

Pr [X] =
∑
j∈[1,n]

Pr [X | Bj ]Pr [Bj ]

A common application of this law is when there is some event E that either happens or does not
happen. In that case, for any random variable X:

Pr [X] = Pr [X | E]Pr [E] + Pr [X | 6 E]Pr [6 E]

This yields the following useful bound:

Pr [X | E]Pr [E] ≤ Pr [X] ≤ Pr [X | E]Pr [E] + Pr [ 6 E]

Fact 9 (Law of Total Expectation) For any random variables X,Y :

E [X] = E [E [X | Y ]]

This is related to the following fact that follows from the law of total probability: Given any collection
of disjoint possible outcomes B1, X2, . . . Bn where

∑n
j=1 Pr [Bj ] = 1 (i.e., all possible outcomes are

accounted for), then for any random variable X (with outcomes in the domain specified by the Bj):

E [X] =
∑
j∈[1,n]

E [X | Bj ] Pr [Bj ]
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5 Standard tail bounds

In this section, I will list some of the important tail bounds that we have used repeatedly throughout
the semester so far. These are immensely useful tools when you want to understand the performance
of a randomized algorithm.

Theorem 10 (Markov’s Inequality) For any non-negative random variable X, for any value a:

Pr [X ≥ a] ≤ E [X]

a

Of note: Pr [X ≥ 2E [X]] ≤ 1/2.

Theorem 11 (Chebychev’s Inequality) For any non-negative random variable X:

Pr [|X − E [X] | ≥ a] ≤ VarX

a2

Theorem 12 (Chernoff Bound (upper tail)) For any collection of independent random vari-
ables X1, X2, . . . , Xn where each Xj ∈ [0, 1]: Let X =

∑n
j=1Xj and µ = E [X]. Fix a positive

constant δ.

Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
As an application of this, we observe that:

Pr [X ≥ eµ] ≤ e−µ

Alternatively, we can simplify the bound:

Pr [X ≥ (1 + δ)µ] ≤ e−
µδ2

2+δ

For δ ≤ 1, we get:
Pr [X ≥ (1 + δ)µ] ≤ e−µδ2/3

Theorem 13 (Chernoff Bound (lower tail)) For any collection of independent random vari-
ables X1, X2, . . . , Xn where each Xj ∈ [0, 1]: Let X =

∑n
j=1Xj and µ = E [X]. Fix a positive

constant δ ≤ 1.

Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
Alternatively, we can simplify the bound:

Pr [X ≤ (1− δ)µ] ≤ e−µδ2/2

Theorem 14 (Hoeffding Bound) For any collection of independent random variables X1, X2, . . . Xn

where each Xj ∈ [0, 1]: Let X =
∑n

j=1Xj and µ = E [X]. For any value t:

Pr [|X − µ| ≥ t] ≤ 2e−2t
2/n
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6 A few useful mathematical inequalities

Below are a few useful mathematical facts that have appeared in some of the algorithm analysis we
have done. These are standard facts and not particularly specific to randomized algorithms. But
they are useful!

The following fact follows from the Taylor expansion of the function ex = 1 + x+ x2/2 + . . .:

Fact 15 If 0 < x ≤ 1: 1− x ≤ e−x ≤ 1− x/2.

From this we immediately derive the following fact.

Fact 16 If 0 < p ≤ 1: e−2 ≤ (1− p)1/p ≤ e−1.

Notice that we often use this fact when p = 1/n, concluding that (1− 1/n)n ≤ 1/e.

It is often useful to be able to approximate
(
a
b

)
, i.e., the number of ways to choose a items from a

set of b items:

Fact 17
(
a
b

)b ≤ (ab) ≤ ( eab )b.
There are also a variety of standard summations that are useful.

Fact 18 If 0 < α < 1:
∑∞

i=0 α
i = 1

1−α

Fact 19 ln(n− 1) ≤
∑n

i=1
1
i ≤ ln(n) + 1

Fact 20
∑j

i=0 2i = 2j+1 − 1
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