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Midterm Solution Sketches

• Don’t Panic.

• The midterm contains six problems (and one just for fun). You have 100 minutes to earn 100 points.

• The midterm contains 20 pages, including this one and 4 pages of scratch paper.

• The midterm is closed book. You may bring one double-sided sheet of A4 paper to the midterm. (You
may not bring any magnification equipment!) You may not use a calculator, your mobile phone, or
any other electronic device.

• Write your solutions in the space provided. If you need more space, please use the scratch paper at
the end of the midterm. Do not put part of the answer to one problem on a page for another problem.

• Read through the problems before starting. Do not spend too much time on any one problem.

• Show your work. Partial credit will be given. You will be graded not only on the correctness of your
answer, but also on the clarity with which you express it. Be neat.

• Draw pictures and give examples.

• Good luck!

Problem # Name Possible Points Achieved Points

1 A Few Random Variables 10

2 A Simple Game of Chance 10

3 In the Dungeon 10

4 Average Case Insertion Sort 20

5 Scheduling Exams 15

6 Random Graphs 35

Total: 100

Student Number:
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Problem 1. A few random variables [10 points]

Let x1, x2, . . . , xn be a collection of n independent indicator random variables where each
xj = 1 with probability p and xj = 0 with probability (1− p). Let X =

∑n
i=1 xi.

Let S be a subset of k of the random variables, and let ES be the event that:

∀xj ∈ S, xj = 1 .

For example, if S = {x1, x2}, then k = 2 and ES is the event that the first two random
variables are 1.

For each part below, give an exact answer (not an approximation) as a function of n, p,
and k.

Problem 1.a. What is E [X]? np

Problem 1.b. What is variance Var [X]? np(1− p)

Problem 1.c. What is Pr [X = 0]? (1− p)n

Problem 1.d. For an arbitrary k > 0, what is Pr [X = k]?
(
n
k

)
pk(1− p)n−k

Problem 1.e. Given some S and k, what is E [X|ES]? (n− k)p+ k
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Problem 2. A simple game of chance [10 points]

Alice has a 5-sided die. (Weird, I know.) When you roll the die, each number from 1 to 5
comes up with equal probability. Alice also has a coin. On one side of the coin is the number
2 and on the other side of the coin is the number 4.

5-sided die coin with 2 and 4 on each side

Problem 2.a. (Expected Value.)

What is the expected value of rolling the die? 3

What is the expected value of flipping the coin? 3

Problem 2.b. (Variance.)

What is the variance of rolling the die? 4

What is the variance of flipping the coin? 1
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Problem 2.c. Alice proposes the following fun game:

• You roll the die and get a number from 1 to 5.

• You flip the coin and get either a 2 or a 4.

• You multiply the results together.

For example, if the die rolls a 5 and the coin flips a 4, then the result is 20.

Alice reasons that we can find the expected value of the game using your answers from the
previous part:

If d is the expected value of the die and c is the expected value of the coin, then d · c
is the expected value of the game.

Is Alice’s reasoning right or wrong? (Circle your answer.)

RIGHT WRONG

Explain your answer: if Alice is correct, explain why; if Alice is wrong, give the correct
expected value of the game.

Solution: Alice is right. Since the events are independent, we can conclude that E [DC] =
E [D] E [C] = dc.
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Problem 2.d. Alice also reasons that we can find the variance of the game using your
answers from the previous part:

If v1 is the variance of the die and v2 is the variance of the coin, then v1 · v2 is the
variance of the game.

Is Alice’s reasoning right or wrong? (Circle your answer.)

RIGHT WRONG

Explain your answer: if Alice is correct, explain; if Alice is wrong, give the correct variance.

Solution: Alice is wrong. The variance of two events cannot be multiplied together. As-
sume X and Y are independent events, then:

Var [XY ] = E
[
X2Y 2

]
− E [XY ]2

= E
[
X2
]

E
[
Y 2
]
− E [X]2 E [Y ]2

It is not true that this is always equal to Var [X] Var [Y ], since E [X2] 6= E [X]2. In this case,
we can directly calculate:

E
[
X2
]

= (1 + 4 + 9 + 16 + 25)/5 = 11

E
[
Y 2
]

= (4 + 16)/2 = 10

E
[
X2
]

E
[
Y 2
]

= 110

E [X]2 E
[
Y 2
]

= 9 · 9 = 81

Therefore, the expected variance of the game is 110− 81 = 29.
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Problem 3. In the dungeon [10 points]

Redmore the Red, an adventurer of yore, is arrested by the king and thrown in the dungeon.
Also in the dungeon are two other adventurers, Alice and Bob.1 The prison guard informs
them that one of them has been selected, uniformly at random, for execution.

Redmore is naturally quite afraid, and he asks the guard which of them is to be executed.
The guard responds that he is not allowed to tell Redmore his fate, but that he would provide
the following information:

• If Redmore was not selected for execution, then the guard will tell Redmore accurately
whether Alice or Bob is to be executed.

• If Redmore was selected for execution, then the guard will randomly flip a coin and
with probability 1/2 indicate Alice, and with probability 1/2 indicate Bob.

Redmore agrees to this plan. (He did not have much choice, did he?) The guard then tells
Redmore that Alice is going to be executed.

Given the guard’s information:

• What is the probability that Alice is executed? 2/3

• What is the probability that Bob is executed? 0

• What is the probability that Redmore is executed? 1/3

Explain your answer:

Solution: Let A, B, and R be the events that Alice, Bob, and Redmore are selected for
execution, respectively. We know that Pr [A] = Pr [B] = Pr [R] = 1/3.
Let GA be the event that the guard says Alice. We calculate this probability as follows:

Pr [GA] = Pr [GA|R]Pr [R] + Pr [GA|A]Pr [A] + Pr [GA|B]Pr [B]

= (1/2)(1/3) + (1)(1/3) + (0)(1/3)

= 1/2

We can now calculate Pr [R|GA] = Pr [R ∩GA]/Pr [GA]. We know that Pr [R ∩GA] = 1/6,
and hence Pr [R|GA] = 1/3.
We can similarly calculate that Pr [A|GA] = Pr [A ∩GA]/Pr [GA] = 2/3, and Pr [B|GA] = 0.

1Alice was arrested for cheating in a weird game involving a five-sided die.
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Problem 4. Average-Case Analysis of InsertionSort [20 points]

One of the first methods that we teach for sorting is InsertionSort. The algorithm proceeds
through the array, sorting each element into place, one at a time, by comparing to all the
preceding items in the list. The details are unimportant for this problem, but the pseudocode
is as follows:

InsertionSort(Array A, integer n)

for i=1 to (n-1) do

item = A[i];

int slot = i;

while (slot > 0) and (A[slot] > item) do

A[slot] = A[slot-1];

slot = slot-1;

A[slot] = item;

}

The key property that is important is that the running time of InsertionSort depends on
the number of inversions in the permutation being sorted. Given a sequence of integers
{a1, a2, . . . , an}, an inversion is a mis-ordered pair (aj, ak) where j < k but aj > ak. For
example, in the sequence:

S1 = {1 2 5 3 10}

there is one inversion: the pair (5, 3). As another example, consider the sequence:

S2 = {1 2 10 5 3}

This sequence contains three inversions: (10, 5), (10, 3), and (5, 3). The following theorem
relates the running time of InsertionSort to the number of inversions in the input:

Theorem 1 If a permutation S of length n contains I inversions, then InsertionSort(S,n)

runs in time Θ(n+ I).

Continued on the next page.
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Analyze the average-case performance of InsertionSort. Let S be a permutation of the
integers [1, . . . , n] chosen uniformly at random from the set of all permutations. Show that
the expected running time of InsertionSort on S is Θ(n2).

Solution to Problem 5:

Solution: Let S = {a1, a2, . . . , an} be the random input sequence. Fix two elements of the
sequence i and j. Without loss of generality, assume i < j. Since the input sequence is a
random permutation, Pr [ai > aj] = 1/2. That is, elements i and j create an inversion with
probability 1/2.

For every pair (i, j) where i < j, let Xi,j be the indicator random variable that equals 1 if
ai > aj and 0 otherwise. We know that Pr [Xi,j] = 1/2, and hence E [Xi,j] = 1/2.

Let X be the total number of inversions in the random input sequence. Notice that X =∑
i<j Xi,j. Thus:

E [X] = E

[∑
i,j

Xi,j

]
=

∑
i<j

E [Xi,j]

=
∑
i<j

1

2

=
n(n− 1)

2
· 1

2

=
n(n− 1)

4

Thus, the expected number of inversions is Θ(n2), and hence the expected running time of
InsertionSort is Θ(n+ n2) = Ω(n2).
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Problem 5. Scheduling exams [15 points]

Imagine a university with n students and m modules. Each module has a final exam. And
each student takes at least k different modules. (Some may take more than k modules!) You
may assume that k ≥ c log n for some constant c. (Do not worry if c is a large integer.)

The exam period consists of two weeks: Week A and Week B. Each exam is randomly
assigned to Week A with probability 1/2 or Week B with probability 1/2.

Your goal is to prove that, with high probability, no student has too many exams in either
week: if a student is taking x exams, then no more than 3/4 of her exams should be in Week
A and no more than 3/4 of her exams should be in Week B.

Example: Perhaps Alice is taking {CS1001, CS2001, CS3001, and CS4001}. Perhaps Bob
is taking {CS2001, CS2002, CS2003, CS2004}. Perhaps the random assignment assigns to
Week A the following exams: {CS1001, CS2001, CS2002, CS2003}; it assigns to Week B the
following exams: {CS2004, CS3001, CS4001}.

In this case, both students are happy since they have ≤ 3/4 of their exams in each week:
Alice has two exams in Week A and two exams in Week B; Bob has three exams in Week A
and one exam in Week B.

Problem 5.a. Give a one sentence overview of your proof strategy.

Solution: We fill fix a student and a week and use a Chernoff Bound to show that not too
many exams are assigned to that week; we will then take a union bound over all students
and all weeks.

Problem 5.b. Define the random variables that you will use.

Solution: For a fixed student (say, Alice) and a fixed week (say, Week A), if the student
is taking ` exams then we will define ` indicator random variables x1, x2, . . . , x` as follows:
xj = 1 if the student’s jth exam is assigned to this week; xj = 0 otherwise.

Continued on the next page.
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Problem 5.c. What probabilistic tools / tail bounds / etc. will you use to prove this?
Give the complete definition of the bound (not just its name).

Solution: We will use the following Chernoff Bound: Given a set of random variables
x1, . . . , x` where X =

∑
j xj and µ = E [X], and given δ < 1:

Pr [X ≥ (1 + δ)µ] ≤ e−µδ
2/3

We will also use a union bound: Given a set of events E1, E2, . . . , En where each event occurs
with probability at least p, then the probability that any such event occurs is at most np.

Problem 5.d. Recall that we assumed each student is taking at least k ≥ c log n modules,
for some constant c. What value of c will you require in your proof? (You can choose any
constant. Do not worry if it is unrealistically large.)

Choose c = 48 Solution: Choose c = 48.

Problem 5.e. Give the complete proof that with probability at least (1 − 2/n), every
student has no more than 3/4 of their exams in either week.
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Solution: As specified above, we have fixed a student and a week, and define the indicator
random variables as specified. Assume the student is taking ` ≥ k ≥ 48 log(n) exams. We
know that E [xj] = Pr [xj = 1] = 1/2. Define X =

∑
j xj, and µ = E [X] = `/2.

By a Chernoff Bound (see above) we know that:

Pr [X ≥ (3/4)`] = Pr [X ≥ (1 + 1/2)µ]

≤ e−`/2(1/4)(1/3)

≤ e−k/24

≤ e−48 logn/24

≤ 1/n2

That is, for this student and this week, the probability that there are more than 3/4 of the
student’s exams in this week is at most 1/n2.

In total, there are n students and 2 weeks, so there are 2n possible events
E1A, E1B, E2A, E2B, . . . where event EiA indicates that student i has too many exams in
week A, etc. We have just proved that each such event occurs with probability at most 1/n2.
Thus, by a union bound, we know that any of these events occurs with probability at most
2n/n2 ≤ 2/n. This completes the proof.
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Problem 6. Random Graphs [30 points]

Imagine we have a random graph G(n, p) that we con-
struct as follows:

• Begin with n nodes and no edges. Let V be the set
of n nodes. Let edges E = ∅.

• For each pair of nodes u, v ∈ V , add (undirected)
edge (u, v) to E with probability p.

Problem 6.a. Assume p = 18 logn
n

. Prove that with probability at least 1 − 1/n, every
node in graph G(n, p) has degree at most O(log n).

Solution: We can solve this using a Chernoff Bound (followed by a union bound). Fix a
specific node u. For each other node in the graph, there is a probability p of adding an
edge. Let xj be the indicator random variable where xj = 1 if u has an edge to node j. Let
X =

∑
xj be the degree of u. The expected degree of u is equal to E [

∑
xj] = p(n − 1) ≤

pn ≤ 18 log n. Also notice that p(n − 1) ≥ 18 log(n)/2 ≥ 9 log n. By a Chernoff Bound, we
conclude that:

Pr [X ≥ 36 log n] ≤ Pr [X ≥ (1 + 1)E [X]]

≤ e−p(n−1)/3

≤ e−9 logn/3

≤ 1/n2

By a union bound, we conclude that every node in n has a degree at most 36 log n with
probability at least 1− 1/n.
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Problem 6.b. Assume p = 1
3n

. Prove that with probability at least 1/2, graph G(n, p) is
not connected. (You may assume that n is sufficiently large, e.g., n > 10.)

Hint: What is the expected number of edges?

Solution: First, we observe that the expected number of edges is p
(
n
2

)
≤ pn2 ≤ n/3, by

linearity of expectation. Thus, by Markov’s Inequality:

Pr [|E| ≥ n− 1] ≤ E [|E|] /(n− 1) ≤ n

3(n− 1)
≤ n

2n
≤ 1/2

(Notice that here we assumed that 3(n− 1) ≥ 2n, which holds as long as n ≥ 3. Of course,
if n = 2, then the claim follows trivially!) Thus we have shown that with probability at least
1/2, the graph G(n, 1/3n) is disconnected. Notice, of course, that this is also true if p = 1/n
since the total number of possible edges is actually n(n− 1)/2.
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Problem 6.c. How many triangles are there in G(n, p)?

A triangle is a set of nodes u, v, w ∈ V where all three
nodes are connected. That is, we say that T = (u, v, w)
is a triangle in graph G = (V,E) if: (u, v) ∈ E, (v, w) ∈
E, (u,w ∈ E).

u

v

w

Consider the random graph G(n, p) where p = 1
2n

. Show that with probability at least 1/2,
graph G(n, p) has no triangles.

Solution: For a given triangle T = (u, v, w), graph G contains triangle T with probability
p3. There are

(
n
3

)
≤ n3 triangles. Thus the total expected number of triangles is at most

n3p3 ≤ 1/8. Let C be the number of triangles in G(n, p). By Markov’s Inequality:

Pr [C ≥ 1] ≤ E [C] ≤ 1/8 .

So with probability at least 7/8, graph G(n, 1/2n) has no triangles.
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Problem 6.d. Now we want to show the opposite claim: that if p = α
n
, for some constant

α > 1, then graph G(n, p) has at least one triangle with constant probability. We will do this
in two steps: first, we will bound the variance on the number of triangles, and then we will
do the actual probability calculation. Assume here that α is some constant (e.g., α ≥ 10),
and that n is sufficiently large (e.g., n > 100α10).

Let C be the random variable representing the number of triangles in G(n, p). Assume that
we have already proven that the variance Var [C] ≤ 2α3. Use Chebychev’s Inequality to
show that with probability at least 1/2, graph G(n, p) has at least one triangle.

Solution: First, we observe that E [C] ≥ p3
(
n
3

)
≥ α3(1− 2/n)3 > α3/8 for n ≥ 4.

Pr [|C − E [C] | ≥ E [C]] ≤ Var [C]

E [C]2

≤ 2α3

α6/64

≤ 128

α3

≤ 1

2

From this we conclude that with probability at least 1/2, |C − E [C] | < E [C] and hence
C > 0. That is, with probability at least 1/2, there is at least 1 triangle in G(n, p).

15



CS5330 Midterm Exam Student number:

Problem 6.e. Prove that variance Var [C] ≤ 2α3.

Hint 1: For a triangle T , let xT be an indicator random variable where XT = 1 if triangle T
is in the graph G(n, p) and xT = 0 otherwise. Let C =

∑
T xT . The variance of C is:

Var [C] =
∑
T1

∑
T2

CoVar [T1, T2]

CoVar [T1, T2] = E [xT1xT2 ]− E [xT1 ] E [xT2 ]

Hint 2: You may want to divide this summation into three components: the set of triangle
pairs (T1, T2) that share: (i) zero edges, (ii) one edge, and (iii) three edges.

Hint 3: In some cases, you also may find it useful to observe that CoVar [T1, T2] ≤ E [xT1xT2 ].

Solution: We will consider the three cases separately. First, consider the case where T1 and
T2 are disjoint. In this case, xT1 and xT2 are independent. Thus E [xT1xT2 ] = E [xT1 ] E [xT2 ],
and so the covariance of these triangle pairs is 0.

Next, consider a triangle pair in C1, i.e., the case where T1 and T2 share one edge. These
two triangles contain 5 edges in total, and so the probability that both occur is p5, i.e.,
CoVar [T1, T2] ≤ E [xT1xT2 ] ≤ p5. There are at most n2 edges that might be shared by T1
and T2, and there are at most n2 ways to choose two more nodes to combine with the edge
to get two triangles. Hence there are at most n4 triangle pairs in the set C1. Hence the sum
of expectations for these triangle pairs in C1 is at most n4p5 ≤ α5/n.

Next, consider a triangle pair in C3, i.e., the case where T1 and T2 share all three edges.
(That is, the two triangles are identical.) In this case, the probability of all three edges being
added to the graph G is p3, and there are at most n3 such “pairs” of triangles T1 and T2 in
C3. Thus we conclude that the sum of the covariance of these triangle pairs in C3 is p3n3 ≤ α3.

Thus we conclude that Var [C] ≤ α5/n+ α3 ≤ 2α3 for n ≥ α2.
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Note: You will observe that we have shown something interesting here! The probability 1/n is a critical threshold

for the random graph G(n, p). If p > 1/n, then we are likely to have one triangle; if p < 1/n we are likely to have no

triangles. And a triangle is really just a cycle of length 3. What if we considered a cycle of length k? Does graph

G(n, p) contain a cycle of length k? Would it be surprising if 1/n were a critical threshold for this question as well?
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Scratch Paper
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Scratch Paper
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Scratch Paper
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Scratch Paper
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