
Autonomous Virtual Mobile Nodes
(Extended Abstract)

Shlomi Dolev
Dept. of Computer Science

Ben-Gurion University
dolev@cs.bgu.ac.il

Seth Gilbert
CSAIL, MIT

Cambridge, MA 02139, USA
sethg@mit.edu

Elad Schiller
Research Academic Computer

Technology Institute
schiller@cti.gr

Alex A. Shvartsman
Dept. of Comp. Sci. & Engin.

University of Connecticut
aas@cse.uconn.edu

Jennifer Welch
Dept. of Computer Science

Texas A&M University
welch@cs.tamu.edu

ABSTRACT
This paper presents a new abstraction for virtual infrastruc-
ture in mobile ad hoc networks. An Autonomous Virtual
Mobile Node (AVMN) is a robust and reliable entity that
is designed to cope with the inherent difficulties caused by
processors arriving, leaving, and moving according to their
own agendas, as well as with failures and energy limitations.
There are many types of applications that may make use
of the AVMN infrastructure: tracking, supporting mobile
users, or searching for energy sources.

The AVMN extends the focal point abstraction in [9] and
the virtual mobile node abstraction in [10]. The new ab-
straction is that of a virtual general-purpose computing en-
tity, an automaton that can make autonomous on-line de-
cisions concerning its own movement. We describe a self-
stabilizing implementation of this new abstraction that is
resilient to the chaotic behavior of the physical processors
and provides automatic recovery from any corrupted state
of the system.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; F.1.1
[Models of Computation]: Models of Computation; D.1.3
[Programming Techniques]: Concurrent Programming—
Distributed Programming

General Terms
Algorithms,Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIALM-POMC’05, September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-092-2/05/0009 ...$5.00.

Keywords
mobile networks, ad hoc networks, distributed algorithms,
fault-tolerance, location-aware, virtual infrastructure

1. INTRODUCTION
Ad hoc infrastructure for mobile ad hoc networks is des-

perately needed to make these systems usable by applica-
tions, allowing developers to overcome the numerous inher-
ent difficulties, such as processors arriving, leaving and mov-
ing according to their own agendas, as well as by failures and
energy limitations.

This paper introduces a new abstraction that extends the
focal point abstraction in [9] and the virtual mobile node
abstraction in [10]. The new abstraction is that of a vir-
tual general-purpose computing entity, an automaton that
can make autonomous on-line decisions concerning its own
movement. We call this abstraction an Autonomous Vir-
tual Mobile Node (AVMN). We describe an implementation
of this new abstraction that is resilient to the chaotic be-
havior of the underlying network. Moreover, it guarantees
automatic recovery from any corrupted system state.

At any given point in time, the AVMN resides at a dis-
tinct location. The AVMN is implemented by the processors
that happen to be near the AVMN’s current location, thus
enhancing the robustness as processors fail and move out
of range. The set of processors implementing the AVMN
changes over time as the AVMN moves and as the imple-
menting processors move (not necessarily in the same direc-
tion). Despite the continually changing set of participants,
from a client’s perspective, the AVMN acts like a single,
monolithic entity.

One of the primary differences between an AVMN, intro-
duced in this paper, and a virtual mobile node (see [10]) is
that an AVMN can move autonomously, choosing to move

This work is supported in part by the following grants:
NSF CCR-0098305, NSF ITR 0121277, NSF 64961-CS,
NSF 9988304, NSF 0311368, NSF Career Award 9984774,
AFOSR Contract #FA9550-04-1-0121, DARPA Contract
#F33615-01-C-1896, and NTT Grant MIT9904-12. The
first author and third authors are partially supported by
an IBM faculty award, the Israeli ministry of defense, NSF,
and the Rita Altura trust chair in computer sciences.

based on its current state and sensor inputs from the phys-
ical environment. For instance, if the area to the west of
the AVMN appears deserted, then it may decide to move
east instead. On the other hand, the AVMN may decide to
“hitch a ride” with a subset of the processors currently em-
ulating it. In contrast, the virtual mobile node was required
to fix a predetermined path in advance, when the algorithm
was deployed, thus significantly limiting the flexibility of the
virtual node.

Allowing the AVMN to move autonomously introduces
several challenges. First, the algorithm must ensure that a
consistent set of processors is used to implement the AVMN.
When an AVMN decides to move, however, the set of pro-
cessors participating in the emulation may change; in tran-
sitioning from the old set of processors to the new set of pro-
cessors, the emulator must ensure an orderly transition while
maintaining consistency and liveness. The second problem
introduced by autonomy is the lack of an a priori location
at which the AVMN can be found. Therefore, when the
AVMN fails (for example, when it enters an empty region
where there are no processors to participate in the emula-
tion), it can be difficult to detect this failure and restore the
AVMN.

Our AVMN implementation is also self-stabilizing, in that
it can tolerate the processors starting from an arbitrary con-
figuration. If a state corruption causes two sets of processors
to begin emulating the same AVMN, the emulation algo-
rithm detects this situation and corrects it. Moreover, if the
emulating processors become inconsistent (for example, due
to network abnormalities), the emulator can recover from
the state corruption, and continue to operate correctly.

Roadmap
In the rest of this section, we discuss prior work, in partic-
ular focusing on virtual infrastructures in wireless ad hoc
networks. In Section 2, we present the underlying model
for wireless ad hoc networks. In Section 3, we define the
required properties of an AVMN in more detail. In the fol-
lowing two sections, we proceed to present a self-stabilizing
algorithm to emulate an AVMN. Our implementation con-
sists of two parts. The first part, a basic emulator that
operates correctly once a consistent set of participants has
been determined, is presented in Section 4. The second part
ensures that the set of participants eventually stabilizes to
a consistent set, and is presented in Section 5. We present
some discussion and optimizations in Section 6.

Previous work
In [9], we presented a new approach, called GeoQuorums,
for implementing atomic read/write shared registers in mo-
bile ad hoc networks. This approach is based on associat-
ing abstract atomic objects with certain geographic loca-
tions called “focal points”. These geographic locations are
assumed to be normally populated by mobile processors.
In [10], we generalized our approach from [9] from station-
ary atomic objects to mobile virtual nodes. We assumed
that the virtual nodes moved on a fixed trajectory that was
globally known in advance. We presented a new replicated
state machine algorithm to implement the virtual node us-
ing a constantly changing set of processors in the vicinity of
the virtual node’s current location.

In contrast with [10], our current work relaxes the assump-
tion that the trajectory of each virtual entity is fixed and

known in advance. Furthermore, the new abstraction is self-
stabilizing and automatically regenerating. Fixed-location
self-stabilizing virtual stationary automata for different set-
tings appear in [8,11]. As discussed above, the introduction
of autonomy introduces several new difficulties.

The idea of executing algorithms on virtual mobile entities
was inspired by compulsory protocols [6, 14, 19], which as-
sume that some subset of the processors can control their
own motion. They showed that this assumption signifi-
cantly simplifies the design of protocols, compared to an
environment in which processors move in an unpredictable
or adversarial manner. The work in [10] on virtual mobile
nodes generalizes Beal’s Persistent Node abstraction [1, 2],
in which nodes travel in a static network carrying limited
state. The work of Nath and Niculescu [22], in which mes-
sages are routed along a particular trajectory, and Geocast
(e.g., [5, 17, 23]), in which data is routed geographically, are
connected to this work in that they can be seen as attempts
to simulate a traveling processor with limited functionality.

2. BASIC SYSTEM MODEL
The system consists of a set of communicating mobile en-

tities, which we call processors. We denote the set of pro-
cessors by P, where |P| = n ≤ N ; N is an upper bound on
the number of processors, and is known by the processors
themselves. In addition we assume that every processor has
a unique identifier.

The processors communicate among themselves using a
local broadcast primitive, with radius Rlb. The local broad-
cast is assumed to be reliable, meaning that every processor
that stays within distance Rlb of the sending processor is
guaranteed to receive the message exactly once, and to de-
liver the message within d time of its being sent. This is an
abstraction of some Ethernet-like service. The operations
are denoted LBcast and LBrecv.

There is a Geocast service, by which a processor can send
a message to all processors in some specified geographic area.
We also assume the Geocast is reliable and that there is an
upper bound D � d on the latency of Geocast messages.
A number of Geocast routing protocols have been proposed
for mobile ad hoc networks (see [25] for a survey and com-
parison). The operations are denoted Geocast and Georecv.

Finally, we assume that there is a reliable time and lo-
cation service available to each processor, such as would be
provided by GPS. The existence of a reliable time and lo-
cation service makes it easy to implement the local broad-
cast and Geocast communication services in a self-stabilizing
way, by differentiating current messages from previous (pos-
sibly corrupted) messages.

Several processes can run in a single processor. The in-
puts to a process include the receipt of a message destined
for itself, either from another processor or from the same
processor. For instance, there could be a process associated
with a sensor on the processor that sends data to another
process on the same processor. Every processor pi executes a
program that is a sequence of steps. For ease of description,
we assume the interleaving model where steps are executed
atomically, a single step at any given time. Each step of
pi is triggered by an input, which is either the receipt of a
message or a timer going off. The state si of a processor
pi consists of the value of all the variables of the processor
including the value of its program counter. The execution of
a step in the algorithm can change the state of a processor.

We let the undirected graph G(V, E) denote the current
communication graph of the system, where V is the set of
processors, together with their coordinates in the plane, and
there is an edge in E between processors pi and pj if and only
if the two processors can communicate with each other using
the local broadcast service. (This depends on whether the
two processors are within Rlb of each other). Notice that G
changes over time.

The term system configuration is used for a tuple of the
form (s1, s2, · · · , sn, G(V, E)), where each si is the state of
processor pi (including messages in transit for pi)and G(V, E)
is the current communication topology. Therefore the vector
of individual processor states and the current communica-
tion graph fully describes the system state.

We define an execution E = c0, st0, c1, st1, . . . as an alter-
nating sequence of system configurations ci and steps sti,
such that each configuration ci+1 (except the initial config-
uration c0) is obtained from the preceding configuration ci

by the execution of the step sti. In addition, sti may re-
flect a change in the communication graph. Thus, the only
components that can be changed due to the execution of
sti are the state of p, the state of a neighbor of p and the
communication graph G(V, E). An execution is fair if every
processor executes a step infinitely often. An external trace
of an execution is the subset of execution steps consisting of
Geocast and Georecv events.

In some of our algorithms, random walks are used for
broadcasting information. We consider the subset of fair
executions in which a message sent in a random walk fash-
ion succeeds in arriving at all processors in the system in
a timely fashion. In more detail, a nice execution [12] is
defined to be an execution in which a message sent in a ran-
dom walk fashion arrives at every processor after no more
than M consecutive message send operations, where M is
a function that depends on n. The probability of having a
nice execution in several common cases is computed in [12]
using techniques from random walks. The probability is cal-
culated assuming an arbitrary initial configuration and relies
on known results about the cover time of random walks in
graphs. (See, for example, [20] for standard calculations of
cover times in various graphs). For our algorithms that use
random walks, we prove that in every nice execution our
algorithms are correct. In this way we abstract away the
probabilistic analysis, which allows us to present and ana-
lyze our algorithms in a deterministic framework.

3. AUTONOMOUS VMNS
An Autonomous Virtual Mobile Node (AVMN) is an arbi-

trary automaton that resides, at any given time, at a specific
location in the network; it can communicate with nearby
processors, using the local broadcast service (LBcast), and
can send and receive Geocast messages in the same way as a
real processor residing at its location. The AVMN is speci-
fied in terms of (1) a set of states, V , (2) an initial state, v0,
(3) a set of inputs, inputs, (4) a set of outputs, outputs,
and (5) a transition function, δ, mapping from states and
inputs to states and outputs. An algorithm implementing
an AVMN must satisfy the following property:

Property 1 (Correct emulation of the AVMN).
For every execution of the emulator, there exists an execu-
tion 〈c0, st0, c1, st1, . . .〉 of the AVMN automaton such that
the external traces are equivalent.

Unlike a (mobile) processor, an AVMN controls its own
motion: an AVMN moves in discrete steps from one location
to another. An AVMN specification, then, also includes a
movement function, calculate-location, which determines a
new location for the AVMN as a function of its current lo-
cation, current time, and current state.

Finally, an AVMN is robust. As long as there are real
processors near the AVMN, it remains alive. There are two
ways an AVMN can fail: either it enters an empty region of
the network, or it suffers a state corruption, potentially caus-
ing multiple copies of the AVMN to appear in the network.
(A state corruption may occur when some network assump-
tion, such as reliable wireless communication, is temporarily
violated.) In either case, the AVMN can recover.

Property 2 (Exactly one AVMN). For every exe-
cution of the emulator, in every configuration, there is ex-
actly one copy of an AVMN in the network.

An AVMN emulator is self-stabilizing when in every fair
execution (respectively, nice execution, for algorithms that
depend on random walks), starting from an arbitrary con-
figuration there is a suffix in which Properties 1 and 2 are
satisfied.

The program (including the AVMN code) of the proces-
sors is assumed to be (hardwired and) correct, namely, we
do not assume Byzantine behavior of the processors. Note
that an AVMN-simulation process needs to be running all
the time, even if just listening to messages to see if it should
start participating. We also assume that the program has
information concerning N , the upper bound on the number
of processors and the identifier of the processor.

We remark that an application that uses an AVMN as a
computing platform should be self-stabilizing as well, since
the AVMN may start correct execution of the application
itself in an arbitrary state.

4. AVMN IMPLEMENTATION
In this section we describe the basic algorithm to emulate

an AVMN, assuming all the participants in the emulation are
near, within some fixed Ravmn < Rlb of, the unique location
of the AVMN, that is, assuming the AVMN has a consistent
set of participants. In Section 5, we show how to ensure that
there is a consistent set of participants. The pseudocode for
the basic AVMN emulator appears in Figure 1 (and all line
numbers refer to this figure).

Replication
Each participating processor keeps a replica of the AVMN’s
current state and a buffer of input events waiting to be ap-
plied to the state. It is sufficient to keep only the events
that have occurred within the last 2d time units, where d is
an upper bound on the latency of the local broadcast service
(see lines 42–43).

The emulation protocol must ensure that state transitions
of the AVMN are atomic and identical in all replicas. A state
transition can be triggered by inputs, such as the messages
arriving (via Geocast) at a participating processor, sensor
inputs, or the clock reaching a certain value. When a pro-
cessor receives a Geocast message, it broadcasts a georecv

message using the LBcast service indicating that an event
occurred (line 34). Similarly, when a processors detects a
sensor input, it broadcasts a sensor message (37). When a

Variables:

1 status, in {idle, joining, active}
2 state, state of the replica
3 location, current AVMN location
4 buffer, buffer for incoming messages
5 last−refresh, last time a state refresh occurred
6 clock, real time clock

Externally specified functions/constants:

8 v0, the initial state of the AVMN
9 δ, the AVMN transition function

10 calculate−location(. . .), calculates the next location of the AVMN
11 recover(. . .), deterministically chooses a new state
12 tmove, frequency of AVMN movement
13 trefresh, frequency at which state is refreshed
14 tprocess, frequency at which AVMN takes spontaneous steps

Transition functions:

16 init(`)
17 location ← `
18 state ← v0

19 buffer ← ∅
20 last−refresh ← clock
21 status ← active

22 settimer(next−multiple(tprocess, clock), Process)
23 settimer(next−multiple(trefresh, clock), Refresh)
24 settimer(next−multiple(tmove, clock), Move)
25

26 LBrecv(m)
27 if (m = 〈new−loc, ` 〉) and (status = idle) then
28 location ← `
29 else
30 buffer ← buffer ∪ 〈m, clock〉
31 settimer(clock+d, NewMessage)
32

33 Georecv(m)
34 LBcast(〈georecv, m)〉)
35

36 onSensor(s)
37 LBcast(〈sensor, s〉)
38

39 onTimer(Process)
40 if ∃ x : δ(state, Geocast(x)) 6= ⊥ then
41 LBcast(geocast, x)
42 ∀〈m, t〉 ∈ buffer : t < clock−2d do
43 buffer ← buffer \ 〈m, t〉
44 settimer(next−multiple(tprocess, clock), Process)
45

46 onTimer(Move)
47 LBcast(move, location, clock)
48 settimer(next−multiple(tmove, clock), Move)
49

50 onNewLocaction(`)
51 if (|` −location|) < R then
52 if (status = idle) then
53 status ← joining

54 last−refresh ← clock
55 cleartimers()
56 else
57 status ← idle

59 onTimer(Refresh)
60 LBcast(〈state, state, buffer, clock〉)
61 last−refresh ← clock
62 settimer(next−multiple(trefresh, clock), Refresh)
63

64 onTimer(NewMessage)
65 let m = min(m : 〈m, t〉 ∈ buffer, t = clock−d)
66 if (m = 〈new−loc, ` 〉) then
67 location ← `
68 if (status = active) then
69 if m = 〈sensor, x〉 then
70 states ← δ(state, onSensor(m))
71 else if m = 〈georecv, x〉 then
72 states ← δ(state, Georecv(m))
73 else if m = 〈geocast, x〉 then
74 states ← δ(state, Geocast(m))
75 Geocast(x)
76 else if m = 〈move, loc, move−time〉 then
77 if (loc = location) then
78 location ← calculate−location(location, clock, state)
79 LBcast(new−loc, `)
80 else if m = 〈state, x, y, lr〉 then
81 let S = {m : m = 〈state, w, z, lr〉}
82 if (|S| > 1) or (status = joining) then
83 state ← recover(S)
84 if (|S| = 1) then
85 buffer ← ∅
86 else if (status = joining) then
87 let J = {〈m, t〉 ∈ buffer : lr−d < t ≤ clock−d}
88 while J 6= ∅
89 let m′ = min(J)
90 if m = 〈sensor, x〉 then
91 states ← δ(state, onSensor(m))
92 else if m = 〈georecv, x〉 then
93 states ← δ(state, Georecv(m))
94 else if m = 〈geocast, x〉 then
95 states ← δ(state, Geocast(m))
96 J ← J \ m′

97 buffer ← buffer \ m′

98 status ← active

99 settimer(next−multiple(trefresh, clock), Refresh)

Figure 1: The AVMN emulation algorithm. When the emulator is started, the init function is
called, which initializes three timers: a Process timer that allows the emulator to take steps, a
Refresh timer that performs consistency checks, and a Move timer that causes the AVMN to move.
From that point onwards, the emulator is driven by timer interupts, message interupts, and sensor
interupts: when a timer expires, the appropriate onTimer function is invoked; when a message is
received, either LBrecv or Georecv is invoked; when a sensor produces a reading, onSensor is invoked.

processor decides to send a Geocast message (lines 39–44),
it broadcasts a geocast message.

On receiving a message (lines 26–31), an additional de-
lay of d (the maximum broadcast delay) is imposed (via
a timer—line 31) to ensure that all processors process the
events in the same order. This ensures that the state is
updated consistently at all replicas.

To ensure that the replica states remain identical among
all the processors that emulate the AVMN, in spite of faults
and corruptions, each processor, at a fixed interval, trefresh ,
sends its replica state and message buffer (or a hash function
thereof) to all the other emulating processors (lines 59–62).
Upon receiving all the messages, each processor waits un-
til at least d time has elapsed since the checkpoint messages
were sent (by examining the timestamps). Then, if there are
any conflicts, that is, the checkpoints received are not iden-
tical (line 82), a predetermined recovery function is applied
(line 83), and the buffers are flushed (lines 84–85).

Joining
When a processor enters the “sphere of influence” of an
AVMN, that is, within Ravmn, it should start participating
in the simulation of the AVMN (lines 50–57). The joining
processor sets is status to joining, and waits for a state re-
fresh. During this time, it listens, saving the events in its
buffer. After d time passes, it has the same buffer as all
other actively participating processors. Therefore, the first
time the processor receives a state refresh that was initiated
at least d time after it began listening, it can complete the
join protocol by adopting the new state (lines 86–99). (Note
that in an optimized version where only a hash is sent, the
joining processor will have to request the state explicitly.)

Suppose, as in Figure 2, the joiner starts the join proce-
dure at time t (setting its own last − refresh to t). The
joiner takes the first replica state that it receives with times-
tamp (i.e., the lr component of the message) at least t + d.
Call this timestamp t′. The joiner collects all the replica
states with timestamp t′, checking for consistency. The
joiner then adopts this state and replays all messages that it
has received with timestamp greater than last−refresh−d
using the usual delivery algorithm, processing the messages
in order of their timestamp, ignoring message sent in the
last d time and breaking ties in some consistent way.

Navigation
A key feature of the AVMN abstraction is that it can decide
autonomously where to move. The decision is a function
of the current state of the AVMN, which may encode infor-
mation concerning the current environment. With a fixed
frequency, tmove, a processor participating in the emulation
initiates movement by broadcasting a move message using
the LBcast service (lines 46–48). Notice that this broadcast
message does not actually specify the location, as might be
expected. In fact, each processor independently calculates
the new location, based on the old location, the time of the
move, and the current state (line 78). The primary purpose
of this broadcast message is to order the movement with re-
spect to the other messages and events being processed, in
order to ensure that the move occurs consistently at all pro-
cessors. As a result, when the new location is calculated, all
the processors have the same replicated state, and therefore
choose the same new location.

After the new location is calculated, a new-loc message

is broadcast notifying all the processors of the new AVMN
location (line 79). Only participating processors can cal-
culate the new location themselves; other processors that
are not participating receive the new-loc message, updating
themselves on the current location. Without this additional
message, no new nodes would be aware of the new location
and would be unable to join the emulation.

In order that enough old nodes remain participants, and
that enough nodes near the new location can receive the
notification, we impose an additional limitation on the speed
of motion. Let ε be the maximum distance moved by the
AVMN in a single transition. Then we assume that Rlb ≥
2 ·Ravmn + ε.

Theorem 3. Consider an execution E of the AVMN em-
ulator. Assume that there is a suffix of the execution, E ′ =
ci, sti, ci+1, sti+1, . . ., such that in configuration ci there is a
consistent set of participants. Then there exists some j ≥ i
and an execution E′′ of the AVMN automaton such that the
external trace of E′′ is equal to the external trace of the suffix
of E′ beginning with configuration cj .

Proof sketch. First, notice that after some period of
time all messages sent prior to ci in execution E have been
delivered and then removed from the processor’s buffers
(in line 43). Moreover, notice that time d after the next
RefreshState, each processor examines the state messages
sent when the Refresh timer expired (lines 80 −−99). If all
the active processors sent the same checkpoint (i.e., |S| =
1), then we let cj be the configuration when the Refresh

timer expired. Otherwise, we let cj be the configuration im-
mediately after each processor has completed the recovery
(lines 83–85). In either case, every processor has the same
state and buffer in configuration cj ; we therefore choose the
state component of one of the processors in configuration
cj as the initial state in execution E′′.

It remains to show that the participants continue to con-
sistently update their replicated state; since all the proces-
sors update their state according to δ, we can use the se-
quence of updates to devise the rest of execution E′′.

Notice that every participating processor that is within
distance Ravmn of the AVMN location processes messages in
the same order. Before processing a message, m, a processor
delays d time, therefore by the time m is removed from the
buffer, every message sent prior to m has been received.
Therefore, there exists a total ordering of all messages, based
on the time they were sent; every processor removes them
from the buffer in that order.

The proof then follows by induction on the sequence of
messages processed. The following two invariants are main-
tained: (1) all processors have the same replica state after
processing message mk, (2) the set of participating proces-
sors is consistent. This follows by a case analysis of the
messages processed. If mk is a simulation message, that is,
sensor, geocast, or georecv, then the state is consistently up-
dated at all processors by applying m to the current state,
which by induction and consistent message ordering is the
same at all nodes. If mk is a state message, then either
the states are already consistent, or recovery begins. In the
case of recovery, the buffers are cleared and the state is set
to a deterministically calculated value. In the case of join-
ing, a new processor has acquired the same buffer as each
of the current participants by listening to the messages for
an interval of at least time d, and thus the state is updated

t t′

mjmj

mimj

t′ + dt′ − d

〈state, t′〉

active

joiner

time

t′ ≥ t + d

Figure 2: The joiner adopts state received at time t′ +d, quickly replays the mi, mj messages, and
then is caught up. Note that in the figure, the mi, mj messages are sent in the interval [t′ − d, t′]
and delivered in [t′, t′ + d].

consistently, resulting in a successful join. If mk is a move

message, then each processor that receives the message is
either still near the new center, in which case it remains a
participant, or it is far from the new center, in which case
it leaves; the set of participants remains consistent. If mk is
a new-loc message and pi is not active, it simply adopts the
new location; since it was previously not a participant, the
set of participants is still consistent. If pi is active, then it
already has updated its location.

Since the replicated state of the emulator is updated con-
sistently, we can apply the same updates to execution E′′,
generating an execution of the AVMN automaton. Since
Geocast messages are only generated by a processor when
such a broadcast is a legal step of the AVMN, it is clear
that the external trace of the emulator—after configuration
cj—is equal to the external trace of E′′.

5. ENSURING EXACTLY ONE AVMN
Recall that Theorem 3 guarantees a consistent execution

from that point at which there is a consistent set of par-
ticipants. In this section, we describe how to stabilize on a
consistent set of processors to emulate the AVMN, present-
ing three schemes for ensuring the existence of exactly one
instance of an AVMN.

Virtual Stationary Automata Scheme
The first scheme uses a virtual stationary automaton (VSA)
to keep track of the AVMN. A VSA is another type of vir-
tual infrastructure component, introduced in [11]. Unlike an
AVMN, it is stationary, fixed in a single predetermined loca-
tion. Much like an AVMN, it is emulated by a set of contin-
ually changing participants. Since it is stationary, however,
the issues of autonomy do not arise. In particular, for a VSA
it is trivial to ensure a consistent set of participants: they
are exactly the set of participants that are near the VSA’s
fixed location. One could therefore implement a VSA using
the algorithm in Section 3, instead of the algorithm in [11].

A VSA, if available, can be used to simplify the problem
of maintaining a consistent set of participants in an AVMN.
The AVMN uses a Geocast service to send “I am alive”
messages to the region containing the VSA. If the VSA does
not receive an “I am alive” message for too long a period,
the VSA creates a new AVMN. The VSA is also responsible
for the elimination of undesired copies of an AVMN. Each
“I am alive” message carries the location of the AVMN and

the timestamp at which the message was sent. The VSA can
easily detect that more than one copy of the AVMN exists
and send an elimination message to all but one of them. The
scheme can be naturally extended to a more fault tolerant,
distributed version in which several VSAs are responsible for
the existence of the AVMN, each having a different time-out
period to avoid simultaneous creation of multiple copies.

Lemma 4. Starting from an arbitrary initial state, the
VSA Scheme ensures a consistent set of participants in any
nice execution.

Proof sketch. If there is no AVMN in the network,
then eventually the VSA stops receiving “I am alive” mes-
sages and creates a unique new one. If there is more than
one AVMN in the network, then eventually the VSA elimi-
nates all but one.

We note that, in the VSA Scheme, starting from an arbi-
trary configuration, we reach a consistent set of participants
within: (1) the time it take the VSA to stabilize, plus (2)
the Geocast time.

Token Random Walk Scheme
In the second scheme, the mobile processors themselves ver-
ify the existence of the AVMN, without relying on an aux-
iliary VSA. The AVMN repeatedly sends out a token con-
taining the message “I am alive.” The token travels on a
random walk through the ad hoc network, until its time-
to-live expires. If a processor does not receive an “I am
alive” token for, say twice, the expected random walk cover
time (see [12,20], for example, for cover time bounds), then
it generates a token containing a “formation” message and
the processor’s identifier and a time-to-live that bounds the
token’s lifetime. The formation token itself travels on a ran-
dom walk. When two formation tokens collide, they merge,
maintaining a collection of processor identifiers. When a
formation token contains d(N + 1)/2e processor identifiers,
the (single) processor that holds the token creates a new
AVMN.

To ensure that there is eventually only one copy of the
AVMN, each AVMN monitors the “I am alive” messages
in the network, each of which includes a timestamp and
a location. The AVMN, which maintains a bounded lo-
cation history, can thus determine if a token belongs to a
duplicate AVMN, and determine using a deterministic func-
tion whether to eliminate itself. Only a bounded history is

needed since there exist bounds on how long it takes a token
to cover the network in nice executions.

Lemma 5. Starting from an arbitrary initial state, the
Token Random Walk Scheme ensures a consistent set of par-
ticipants.

Proof sketch. If there is no AVMN in the system, even-
tually each processor produces a formation token. Eventu-
ally, the formation tokens collide, forming a unique AVMN.
If there is more than one AVMN, eventually each AVMN re-
ceives “I am alive” tokens from the other AVMNs. All but
one AVMN will then be eliminated.

We note that, in the Token Random Walk Scheme, start-
ing from an arbitrary configuration, we reach a consistent
set of participants within O(M) time, where M is the time
it takes for a random walk to visit every node.

Stay Alive Scheme
The third scheme is different in the sense that the AVMN
itself does not send messages. Instead, processors at prede-
fined times (say every hour on the hour) send tokens contain-
ing a “stay alive” message on a random walk of the network.
Eventually the AVMN should receive the tokens. In every
time period the AVMN must collect at least d(N + 1)/2e
stay alive tokens in order to survive to the next time period.
Notice that if there is more than one copy of the AVMN, at
most one is able to collect a majority of stay alive tokens
in a time period. If a stay alive token survives for too long
without finding an AVMN, it begins to act like a formation
token in the Token Random Walk scheme: when two stay
alive formation tokens collide, they merge, and when a ma-
jority of stay alive formation tokens have merged, they form
a new AVMN.

Lemma 6. Starting from an arbitrary initial state, the
Stay Alive Scheme ensures a consistent set of participants
in any nice execution.

Proof sketch. If there is no AVMN in the system, even-
tually the tokens all become formation tokens, and eventu-
ally all merge and form a new AVMN. If there is more than
on AVMN in the system, at most one is able to collect a
majority of the tokens, and therefore at most one AVMN
survives.

As in the Token Random Walk Scheme, in the Stay Alive
Scheme, when starting from an arbitrary configuration, we
reach a consistent set of participants within O(M) time,
where M is the time for a random walk to visit every pro-
cessor.

Trade-Offs
The VSA scheme is the most efficient, in terms of messages
required. Unlike the other two schemes, messages can be
sent directly to a known location, rather than performing
a random walk of the network. For the same reason, the
VSA scheme is able to respond most rapidly to abnormali-
ties in the system. In fact, the simplicity of this scheme is
yet another example of the utility of having virtual, reliable
infrastructure in a mobile ad hoc network.

On the other hand, the VSA scheme requires maintaining
a stationary virtual automaton. The Token Random Walk
scheme is also relatively message efficient, in that in the

stable state when there exists one AVMN, there only needs
to be a small number of tokens performing random walks in
the network. It is only in the case of formation that all the
processors need to create tokens.

The Stay Alive scheme is the least efficient, in terms of
messages. All the processors need to create tokens at all
times. However, it is simpler than the Token Random Walk
scheme, in that only one type of token is needed. Moreover,
the AVMN does not have to send any heartbeat messages.

Using any of the three schemes, we can combine Lem-
mas 4–6 with Theorem 3 to conclude our main theorem:

Theorem 7. The AVMN emulator, using any of the three
schemes, is a self-stabilizing implementation of an arbitrary
automaton.

6. DISCUSSION
We have discussed in this paper how to implement a single

AVMN; one could instead implement multiple AVMNs using
the same techniques. It is possible to create the AVMNs dy-
namically, allowing them to collaborate to perform differing
tasks. Moreover, AVMNs might be organized into a hier-
archy, improving efficiency for tasks such as tracking and
communication.

There are a number of ways to optimize the movement of
the AVMN so as to minimize the energy needed. First, the
processor can use the minimum amount of power necessary
to reach everyone at the current AVMN location. Second,
we can use the mobile processors that are closer to the new
AVMN location to perform the broadcast, thus requiring
less energy to reach everyone. Third, if the AVMN motion
is dependent on the mobile processor’s motion (for example,
in the case of tracking), then we can take advantage of the
movement to minimize the energy needed.

The algorithm presented can be optimized in many ways,
for example, the communication overhead can be signifi-
cantly reduced by using checksums (instead of sending the
entire state) and/or using randomization to limit the num-
ber of processors broadcasting consistency-check messages.
When an inconsistency is detected, we can use an ethernet-
like algorithm to choose randomly which replica will survive
(it will be the first that succeeds in performing local broad-
cast).

We also note that there are ways to change the AVMN
program that is assumed to be hardwired in each processor.
One way to do so is by using a super-user message that is
sent to all the processors (say, with the assistance of VSAs)
to replace their code.

Our approach can also be generalized to work in three
dimensions, rather than two — instead of a disc around the
AVMNs location, we may consider a ball.

7. REFERENCES
[1] J. Beal, “Persistent nodes for reliable memory in

geographically local networks,” TR AIM-2003-11,
MIT, 2003.

[2] J. Beal, “A robust amorphous hierarchy from
persistent nodes,” Proc. of Communication Systems
and Networks, 2003.

[3] O. B. Bayazit, J.-M. Lien, and N. M. Amato,
“Roadmap-Based Flocking for Complex
Environments,” Proc. 10th Pacific Conference on
Computer Graphics and Applications (PG’02), 2002.

X
p

Ravmn

Rlb

a

q

X’X
p

Rlb

b

q

Ravmn

Figure 3: a) Processor p participates in an AVMN at location X and informs processor q about
relocation to X ′ using an Rlb broadcast. b) Processor q participates in an AVMN at new location
X ′ that is ε distance units away.

[4] J. Bohn and F. Mattern, “Super-Distributed RFID
Tag Infrastructers,” TR, Institute of Pervasive
Computing, ETH, 2004.

[5] T. Camp and Y. Liu, “An adaptive mesh-based
protocol for geocast routing,” Journal of Parallel and
Distributed Computing: Special Issue on Mobile
Ad-hoc Networking and Computing, pp. 196–213, 2002.

[6] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis,
“An efficient communication strategy for ad-hoc
mobile networks,” Proc. 15th International
Symposium on Distributed Computing, 2001.

[7] P. Chandler and M. Pachter, “Hierarchical Control for
Autonomous Teams”, AIAA Guidance, Navigation,
and Control Conference and Exhibit, 2001.

[8] S. Dolev and O. Gersten, “Robust Active Super Tier
Systems”, Proc. of the IEEE International Conference
on Software-Science, Technology and & Engineering,
2005.

[9] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J.
L. Welch, “GeoQuorums: Implementing Atomic
Memory in Ad Hoc Networks”, Proc. 17th
International Symposium on Distributed Computing
(DISC), pp. 306–320, 2003. To appear in Distributed
Computing.

[10] S. Dolev, S. Gilbert, N. Lynch, E. Schiller, A.
Shvartsman, and J. L. Welch, “Virtual Mobile Nodes
for Mobile Ad Hoc Networks,” Proc. 18th
International Symposium on Distributed Computing
(DISC), pp. 230–244, 2004.

[11] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T.
Nolte, “Virtual Stationary Automata for Mobile
Networks”, TR MIT-LCS-TR-979, MIT CSAIL,
Cambridge, MA 02139, January 2005.

[12] S. Dolev, E. Schiller, and J. L. Welch, “Random Walk
for Self-Stabilizing Group Communication in Ad-Hoc
Networks,” Proc. 21st Symp. on Reliable Distributed
Systems, pp. 70–79, 2002. To appear in IEEE
Transactions on Mobile Computing.

[13] D. Gillen and D. Jaques, “Cooperative Behavior
Schemes for Improving the Effectiveness of
Autonomous Wide Area Search Munitions”,
Proceedings of the Cooperative Control Workshop,
2000.

[14] K. P. Hatzis, G. P. Pentaris, P. G. Spirakis, V. T.
Tampakas, and R. B. Tan, “Fundamental control
algorithms in mobile networks,” Proc. of the 11th
ACM Symposium on Parallel Algorithms and
Architectures archive, Saint Malo, France, 1999.

[15] J. Hebert, “Cooperative Control of UAVs”, AIAA
Guidance, Navigation, and Control Conference and
Exhibit, 2001.

[16] E. Kivelevich and P. Gurfil “UAV Flock Taxonomy
and Mission Execution Performance”, Proc. of the
45th Israeli Conference on Aerospace Sciences, 2005.

[17] F. Kuhn, R. Wattenhofer, Y. Zhang, and A.
Zollinger., “Geometric Ad-Hoc Routing: Of Theory
and Practice”, Proc. of the 22nd Symp. on the
Principles of Distributed Computing, July 2003.

[18] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,” Communications of the
ACM, 21(7):558–565, 1978.

[19] Q. Li and D. Rus, “Sending messages to mobile users
in disconnected ad-hoc wireless networks,” Proc. 6th
MobiCom, 2000.

[20] R. Motwani and P.Raghavan, “Randomized
Algorithms.” Cambridge University Press, 1995.

[21] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a
global coordinate system from local information on an
ad hoc sensor network,” 2nd Workshop on
Information Processing in Sensor Networks, 2003.

[22] B. Nath and D. Niculescu, “Routing on a curve,”
ACM SIGCOMM Computer Communication Review,
33(1):150 – 160, 2003.

[23] J. C. Navas and T. Imielinski. “Geocast – geographic
addressing and routing,” Proc. of the 3rd MobiCom,
1997.

[24] N. B. Priyantha, A. Chakraborty, H. Balakrishnan.
“The cricket location-support system,” Proc. 6th
ACM MOBICOM, 2000.

[25] P. Yao, E. Krohne, and T. Camp, “Performance
Comparison of Geocast Routing Protocols for a
MANET,” Proc. of the 13th IEEE International
Conference on Computer Communications and
Networks (IC3N), pp. 213–220, 2004.

