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Abstract. We study the problem of contention resolution for different-
sized jobs on a simple channel. When a job makes a run attempt, it
learns only whether the attempt succeeded or failed. We first analyze
binary exponential backoff, and show that it achieves a makespan of

V 2Θ(
√

log n) with high probability, where V is the total work of all n con-
tending jobs. This bound is significantly larger than when jobs are con-
stant sized. A variant of exponential backoff, however, achieves makespan
O(V log V ) with high probability. Finally, we introduce a new protocol,
size-hashed backoff, specifically designed for jobs of multiple sizes that
achieves makespan O(V log3 log V ). The error probability of the first two
bounds is polynomially small in n and the latter is polynomially small
in log V .

1 Introduction

Randomized backoff is a common mechanism for reducing contention on a
shared resource. Processes/jobs make competing attempts to access the resource,
but only one can gain control of the resource at a time. If an access attempt fails
due to contention, then that process waits for a random amount of time before
trying again. On subsequent failed attempts, the waiting time increases, thereby
reducing the probability of a collision and increasing the chance of successful
resource acquisition.

Backoff is used in many contexts, for example, network access (e.g., an
Ethernet bus [1]), wireless communication [2], transactional memory [3], and
speculative-lock elision [4]. In these and other applications of randomized back-
off, the lengths of jobs fluctuate substantially. Most theoretical analyses, however,
assume unit-length jobs. In a transactional shared-memory system, for example,
jobs (transactions) can vary by four to five orders of magnitude [5]. In a wireless
network, jobs (packet transmissions) can vary by over three orders of magni-
tude. The job length is proportional to both transmission length (in bits) and
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the transmission speed; the speed of the transmitters alone varies considerably
(e.g., from roughly 10Kb/s to 10Mb/s).

This paper gives the first theoretical analysis of randomized backoff when
jobs have variable sizes. We analyze a system consisting of jobs 1, . . . , n. Job i
has size ti ≥ 1, which indicates that i must run for ti consecutive units of time in
order to complete. We define the volume of the jobs as V =

∑n
i=1 ti. Each job

knows its own size, but does not know any other job size or the number of other
jobs. For simplicity, we assume that ti is integral and that time is divided into
unit-sized time slots, but our analyses extend to the case of nonintegral sizes.

The jobs are competing for access to a simple channel and have no other
means of communication. Whenever a job of size ti makes a run attempt, it must
execute for the full ti consecutive timeslots. If a job’s run is uncontested, then
the job completes successfully. If multiple jobs make overlapping run attempts,
then all attempts fail and the jobs must retry. A job i learns whether its run
attempt is successful only after the full ti time slots, not instantly when the
collision occurs. A job gains information only by making run attempts—there
is no “listening” on the channel. No other information (e.g., the number of jobs
that made attempts in a time slot) is available to the job. (These assumptions are
roughly the worst case, in terms of information learned when a collision occurs.)

In this paper, we consider the batch problem (also called the control-tower
problem [6] or shopping-cart problem [7,8]), where all jobs arrive at time 0.
We analyze the worst-case makespan of the protocols, which is the maximum
completion time among all the jobs.

This paper discusses windowed backoff protocols in which time is divided
into a sequence of windows 〈W1,W2,W3, . . .〉. A job makes at most one run
attempt in any window. Notice that a job can make a run attempt only if the
window is larger than the job size. Even if a job does fit in a window, it may
choose not to make a run attempt. If the job does choose to execute, it randomly
chooses a position in the window such that there is sufficient time left for the
job to execute fully within the window.

Results

Binary exponential backoff and generalizations. We begin by presenting results
on binary exponential backoff. Since a single large job can slow down many small
jobs, the performance for heterogeneous job sizes is significantly worse than
for unit-sized jobs. We show that it achieves a makespan of V 2Θ(

√
log n) with

error probability polynomially small in n. We next give a variant of exponential
backoff that backs off more slowly and yields a makespan of Θ(V log V ) also
with error probability small in n. A key tool is a tight analysis of “fixed-window
backoff,” where all windows have size Θ(V ). These protocols achieve the specified
makespan with error probability polynomially small in the number of jobs.

Size-hashed backoff. The principle result in this paper is a backoff protocol that
achieves makespan O(V log3 log V ). The main technique is to group jobs by size.



Thus, we “hash” jobs based on their size to specific windows in which they can
make run attempts. An explicit construction, based on the modulo hash function
results in a makespan of O(V

√
log V log2 log V ). By grouping the job sizes using

specially designed “good” hash functions, we obtain makespan O(V log3 log V ).
We use the probabilistic method to show that such hash functions exist. These
protocols achieve the specified makespans with error probability polynomially
small in log V .

Related Work

The most closely related work is that of Gereb-Graus and Tsantilas [9] (see
also [10]) and Bender et al. [11]. Gereb-Graus and Tsantilas [9] show that for
unit-size jobs in the batch setting, there is a backoff-backon protocol (which is
sometimes called “sawtooth”) that achieves an optimal makespan of O(n); a
similar backoff-backon approach also appears in Greenberg and Leiserson [10]
in the context of routing. Bender et al. [11] analyze fixed backoff, exponen-
tial backoff, polynomial backoff, and optimal monotone backoff in the batch
setting; they analyze exponential backoff in an adversarial queuing-theory set-
ting. For binary exponential backoff (Wi = 2i) with unit-size jobs, they prove a
makespan of Θ(n log n). (With variable-length jobs the situation is quite differ-
ent; see Theorems 3 and 4.) Batch arrivals have been considered by several other
authors [12–15] with the goal of routing h-relations, involving multiple channels.

In the wireless-networking literature, this batch problem is known as the
shopping-cart problem [7, 8] and models a shopping cart full of items with
RFID tags passing through a sensor all at the same time. Currently implemented
protocols are far from achieving the linear makespan described in [9, 10].

2 Traditional Backoff with Variable-Sized Jobs

In this section we analyze classic backoff protocols. We first consider fixed back-
off , where the window size is fixed at Θ(V ). (This models the case where an
estimate of the volume is known in advance.) We then turn to binary expo-
nential backoff , where the window size repeatedly doubles, i.e., Wi+1 = 2Wi.
If a job fits in window, it makes a random run attempt. In both cases the
makespan of these strategies is worse for variable-size jobs than for unit-size
jobs, with binary exponential backoff significantly worse. We end by giving a
faster monotone backoff strategy, whose performance matches fixed backoff to
within constant factors, even when the volume V is not known in advance.

Fixed-Volume Backoff

We first analyze the protocol Fixed-BackoffW , where the volume V of the
jobs is known in advance. Fixed-BackoffW is the windowed protocol in which
Wi = W = Θ(V ), where W is the (unchanging) window size throughout the
protocol. We first show that Fixed-BackoffΘ(V ) has the following lower bound:



Theorem 1. Let W = (1 + ε)V for any constant ε ∈ R+. There exists n suf-
ficiently large such that the makespan of Fixed-BackoffW is Ω(W log n) with
error probability polynomially small in n.

Proof (sketch). Consider an execution with one large job of size n + 1 and n− 1
small jobs of size 1. As long as a polylogarithmic number of small jobs remain, at
least one small job collides with the large job (w.h.p.); hence the large job does
not complete. As long as the large job remains, only a constant fraction of small
jobs completes (w.h.p.). Applying a Chernoff bound concludes the proof. ut

We now give a matching upper bound for Fixed-BackoffW , when W ≥ 3V .

Theorem 2. Let W = αV , for any α ≥ 3. Then the makespan of Fixed-
BackoffW is O(W log n) with error probability polynomially small in n.

Proof (sketch). In each round, we argue that a constant fraction of the jobs
completes. First, notice that a constant fraction of the jobs are “small,” i.e., less
than twice the average size. Next, notice that a constant fraction of the small
jobs completes: the big jobs can only block 2V of the window; the remaining V
space is sufficient for each small job to complete with constant probability. ut

Notice the difference between fixed backoff in the variable-size and the unit-
size case. If all jobs are unit size, then the makespan is n lg n±O(n) with high
probability [11]. Moreover, the makespan improves when the window size dips
slightly below the volume V = n, say to W = 3n/ lg lg lg n, at which point
the makespan attains its optimal value of Θ(n log log n/ log log log n) [11]. With
variable-length jobs, the makespan grows arbitrarily large if W = V .

Exponential Backoff

We next analyze binary exponential backoff with variable-size jobs. In binary
exponential backoff, Wi = 2i, for i = 1, 2, . . ., and for any job j in the system, j
must make a run attempt in window Wi, as long as tj ≤ Wi.

Theorem 3. Consider n jobs with total volume V running binary exponential
backoff. The makespan is V 2O(

√
log n) with error probability polynomially small

in n (for sufficiently large n).

Proof (sketch). In each round we divide the jobs into classes of “small” and
“large” jobs. We show that as the window size increases, an increasingly large
fraction of jobs completes (with high probability). Specifically, “small” is defined
to include an increasingly large fraction of all jobs, and an increasingly large
fraction of small jobs complete in each round (with high probability). Within
O(
√

log n) rounds after the window size is W , there are only O(log n) jobs re-
maining. Another argument shows that these O(log n) stragglers complete in the
next O(

√
log n) rounds, with high probability. ut

We now give a lower bound on the performance of binary exponential backoff.



Theorem 4. There exists an instance of (c + 3)m lnm + 1 jobs for which the
makespan of exponential backoff is Ω(V 2

√
lg V /2) rounds with probability (1 −

1/mc), for any c > 1.

Proof (sketch). Consider an instance with one large job of size m and (c +
3)m lnm small jobs of size 1, resulting in a total volume of V = (c+3)m lnm+m.
There are two regimes, which we analyze separately. While Wi < m, the small-
window regime, only small jobs attempt to execute. When Wi ≥ m, the large-
window regime, the large job also attempts to execute. No job completes in the
small-window regime (w.h.p.) since the small jobs collide with each other. For
the first Ω(

√
log m) windows of the large-window regime, there exists some small

job that collides with the large job in each window (w.h.p.), since the large job
blocks a geometrically decreasing fraction of the window. ut

Optimized Exponential Backoff

We develop a variant of exponential backoff that achieves better performance by
backing off more slowly, nearly matching the performance of fixed backoff.

The idea is to double window sizes (as in exponential backoff) but only after
repeating a window of size W Θ(log W ) times, allowing all jobs to complete
when W is an accurate guess of V . Thus, we effectively back off by a factor of
only 1 + O(1/ log V ) (rather than 2 as with binary exponential backoff). This
algorithm matches the asymptotic performance of Fixed-BackoffΘ(V ):

Theorem 5. There exists a parameter choice for exponential backoff achieving
makespan O(V log V ) with high probability, i.e., error probability polynomially
small in n. ut

3 Size-Hashed Backoff

This section describes more efficient backoff protocols that improve on the tradi-
tional ones analyzed in Section 2. The main difficulty in dealing with different-
sized jobs is that larger jobs are not likely to succeed until enough of the smaller
jobs complete. This fact is exploited in Theorem 1’s proof, where just one large
job interferes with all the other jobs. The approach in this section groups jobs
by size so that jobs with different sizes cannot interfere with each other for too
long. In particular, we divide jobs into dlg V e job classes based on size. Jobs
of size ti belong to the (dlg tie+ 1)th job class.

We first review a “backon” protocol for constant-sized jobs, which forms a
subcomponent of our new strategy. We then overview the general strategy for
size-hashed backoff. Next, we discuss the mapping “hash” functions (for which
the protocol is named). We present the detailed protocol and two specific map-
ping functions resulting in specific instantiations of size-hashed backoff. Applying
our first mapping yields a protocol with makespan O(V

√
log V log2 log V ). We

then show the existence of a mapping that achieves O(V log3 log V ) makespan.
Both of these versions achieve the specified makespan with probability 1 −
1/ logc V for any constant c > 1 with a linear dependence on c in the makespan.



Backon Protocol for Constant-Sized Jobs

A key component of our strategy is the Descend “backon” subprotocol. The
protocol (i.e., the participating jobs) takes three parameters: (1) jclass, the job
class, (2) W , the window size, and (3) r, a number of repetitions. It guarantees
that if m processes in the same job class, having total volume V ′, V ′ < W , all
start Descend at the same time, then within O(rW ) time all the jobs finish
with probability 1− 1/2r. The main idea is that once the window has size 3V ′,
then a constant fraction of the jobs should complete. At this point, the protocol
can “back on,” using a window that is a constant fraction smaller. The process
continues shrinking the window size until it has decreased to W/ lg W . After
that point, we repeat the W/ lg W -sized window approximately lg W times. In
order to achieve the desired probability, this entire process is repeated r times.

Since a close variant of Descend has been previously analyzed by Gereb-
Graus and Tsantilas [9], we omit the proof here. (It also follows from Lemma 3.)

Overview of Size-hashed Backoff

As in exponential backoff, size-hashed backoff proceeds by repeated doubling on
the estimated volume. We refer to each iteration as a round . The algorithm com-
pletes in (or before) the first round in which the estimated volume is sufficiently
large (V ′ > V ). Each round of the protocol proceeds in phases. When the esti-
mated volume is sufficiently large, in each phase the number of nonempty job
classes—those with jobs remaining—is reduced by a constant fraction.

In the first phase, each job class runs separately. That is, we take a time
interval of size Θ(rV ), where r = Θ(log log V ) is a number of repetitions for the
Descend protocol, and divide it into lg V size-Θ(rV/ log V ) “buckets,” one for
each job class. Specifically, bucket i is designated for the jobs in job class i (i.e.,
those jobs j with size 2i−2 < tj ≤ 2i−1). During the ith bucket, each job in the
ith job class runs the Descend subprotocol for time Θ(rV/ log V ). If the volume
in the job class is small enough—specifically, O(V/ log V )—then that job class
completes, i.e., becomes empty. Since the volume is distributed among various
job classes, a constant fraction of the job classes have small enough volume to
complete. In particular, a simple counting argument shows that at least 1/2
of the lg V job classes have volume at most 2V/ lg V . We conclude that after
O(rV ) = O(V log log V ) time, at least half the job classes are empty.

It would be ideal if, during a second phase, we could allocate buckets for
only the nonempty job classes. Since at least half the job classes are empty,
we can, in principle, allocate half as many buckets of twice the size and run
Descend for each bucket. Once again, at least half of the job classes have a
small enough volume to complete. After lg lg V phases following this process,
there is a single nonempty job class in a Θ(rV )-size bucket, and hence this
last job class completes. Since each of the phases takes time Θ(V log log V ), the
resulting makespan is O(V log2 log V ).

The problem with this approach is that jobs have no a priori knowledge as to
which job classes become empty during a given phase, and they cannot observe
this information. Surprisingly, we can still resurrect the spirit of this idea.



To generalize, we create a mapping from lg V job classes to a set of buckets
smaller than lg V . Given any small set of nonempty job classes, the mapping
has the property that a constant fraction are assigned to their own bucket,3 thus
allowing them to complete using Descend. To ensure this property, we use extra
buckets, resulting in a makespan of O(V log3 log V ) for our fastest protocol.

Mapping Job Classes to Buckets

We define the mapping problem more formally. We are given η objects X =
{x1, x2, . . . , xη} and some integer m < η. Consider a mapping Fm,η : X → ℘(B)
of objects to subsets of buckets B = {B1, B2, . . .}. For example, Fm,η(x1) =
{B1, B7, B10} indicates that object x1 maps to buckets B1, B7, and B10.

A mapping is an α-good mapping , with 0 < α ≤ 1, if for all size-m sub-
sets Y = {y1, y2, . . . , ym} ⊆ X, there exists a size-dαme subset of Y in which
each object is assigned its own bucket. More formally, ∃Z ⊆ Y where |Z| =
αm and ∀z ∈ Z,∃b ∈ Fm,η(z) s.t. b 6∈

⋃
y∈Y \z Fm,η(y).

This “good mapping” property is exactly what we need for size-hashed back-
off. In the backoff setting, η = dlg V e is the number of job classes. In any phase,
we maintain an estimate of the number m of nonempty job classes; we do not,
however, know which classes are nonempty. We want at least a constant fraction
of them to end up assigned to their own buckets. We can then ensure that a con-
stant fraction of job classes complete. For example, if a phase has buckets of size
2rV/m (i.e., at most m/2 job classes are “too big” to complete) and the mapping
is a 3/4-good mapping, then at least m/4 of the nonempty job classes must be
small enough to complete in a bucket and be mapped to a unique bucket.

Our size-hashed backoff algorithm considers good mappings of a simplified
form, making the functions easier to think about. Rather than having arbitrary
functions from objects to bucket sets, we split the buckets into “collections”
of consecutive buckets. Each object is mapped to exactly one bucket in each
collection. We construct our mapping Fm,η as a sequence of functions Fm,η ={
fm,η,1, fm,η,2, . . . , fm,η,sm,η

}
such that fm,η,i : X → B maps an object to a

single bucket in the ith collection. We define sm,η = |Fm,η| to be the size of the
set of functions in our mapping Fm,η. Adding more functions to Fm,η increases
the chance of achieving α-goodness. We define rm,η,i to be the range of, or the
number of buckets used by, the function fm,η,i.

Size-hashed Protocol

We now give the protocol for size-hashed backoff in more detail, assuming an α-
good mapping Fm,η = {fm,η,i}. (Pseudocode for the size-hashed protocol is given
below.) We argue that all jobs eventually make successful run attempts with
probability at least 1− 1/ lgc V for any constant c > 1. The makespan, however,

3 This property is similar to the collision property of a hash function. It also appears
to have close connections to expanders, specifically lossless, bipartite expanders.



Size-Hashed-Backoff(ti) � ti is the job size of process i.

1 V ′ ← 1
2 jclass ← dlg tie+ 1
3 repeat � Each iteration is a round.
4 V ′ ← 2V ′

5 η ← lg V ′

6 m← η � m bounds the number of nonempty job classes.
7 repeat � Each iteration is a phase.
8 wsize ← c1V

′/m � Window size for Descend.
9 bsize ← c3 wsize lg lg V ′ � Bucket for Descend iteration.

� sm,η is the number of functions in the mapping.
� Iterate over subphases/functions.

10 for i← 1 to sm,η

11 do � rm,η,i is the number of buckets used by fm,η,i.
� Iterate over buckets.

12 for bucket← 1 to rm,η,i

13 do if fm,η,i(jclass) = bucket
14 then Descend(jclass,wsize, c3 lg lg V ′)
15 else Wait bsize time.
16 m← bm/c2c
17 until m = 0 � End loop over phases.
18 until job i executes � Ends the loop over rounds.

depends on the size and range of the mapping, so we defer that discussion to the
particular variants later in the section.

Recall that size-hashed backoff executes in rounds (lines 3–18), and we re-
peatedly double the estimated volume in each round (line 4). Each round is
divided into phases (lines 7–17), and in each phase we expect a constant frac-
tion of the job classes to complete using the α-good mapping Fm,η. Each phase
is subdivided into subphases (lines 10–15) which correspond to each function
fm,η,i in the mapping Fm,η, so each job class maps to exactly one bucket in
each subphase. The α-goodness property guarantees that at least αm of the
m nonempty job classes are assigned to unique buckets. The buckets use the
geometrically-decreasing Descend protocol to ensure that jobs complete when
(1) the buckets are large enough, and (2) Fm,η assigns a unique bucket (line 14).

Consider the ith phase, during which there should be (at most) m nonempty
job classes remaining. During this phase, the protocol creates sm,η subphases,
where subphase j uses rm,η,j buckets of size bsize = Θ(rV/m) (lines 8–9). Thus,
the total length of the ith phase is

∑sm,η

j=1 rm,η,jΘ(rV/m). To understand what
these numbers mean, consider the “ideal” mapping in which each job knows
exactly which job classes are empty; in this case sm,η = 1 and rm,η,1 = m,
giving a total phase length of Θ(rV ) = Θ(V log log V ).

The following theorem states that Size-Hashed-Backoff completes all the
jobs in lg V +O(1) rounds (i.e., when the window size is Θ(V )). We later analyze
the length of each round—and hence the makespan—in the context of the specific
family of mappings F , which determines the number of buckets.



Theorem 6. Suppose n jobs with volume V execute Size-Hashed-Backoff,
beginning at the same time. Suppose also that F is an α-good mapping for some
constant α. If we set c1 = 2/α, c2 = 2/(2 − α), and c3 = c + 2, where c1, c2, c3

are the constants from the pseudocode, then all n jobs complete before the (lg V +
O(1))th round with probability at least 1− 1/ lgc V , for any c ≥ 1.

Proof (sketch). We show the following invariant holds with sufficient probability:
if V ′ > V , then m is an upper bound on the number of nonempty job classes.
Initially, there are ≤ m = η = lg V ′ job classes. We proceed by induction. Since
the total volume of jobs is O(V ′), there can be at most bm/c1c job classes with
volume > Θ(c1V

′/m). Since F is α-good, at most m − dαme of the nonempty
job classes do not map to their own bucket. Thus, there are at most m−dαme+
bm/c1c ≤ bm/c2c job classes that are too large or collide. These job classes do not
(necessarily) complete during the phase. Any other job class completes during
the Descend protocol: each job class completes with probability 1−1/ lgc3 V ′ >
1−1/ lgc3 V . Taking a union bound across all dlg V e job classes and Θ(log log V )
phases maintains the invariant with probability at least 1− 1/ lgc3−2 V . ut

We now provide two α-good mappings, and analyze the resulting performance.

Analysis of a 1-Good Mapping

In this section we present a 1-good mapping based on a simple modulo function,
which results in a makespan of Θ(V

√
log V log2 log V ).

Let gm,η,i be the identity function: gm,η,i(xj) = j. (That is, the jth object
maps to bucket j.) Recall that each function gm,η,i maps objects to exactly
one bucket in collection i. Notice that each collection contains η buckets. Let
fm,η,i(xj) = j (mod i). Notice that the ith collection contains i buckets. We
define a 1-good mapping, parameterized by a variable t (defined later), as follows:

Fm,η =
{
{gm,η,1} : if m > η/t{
fm,η,1, fm,η,2, . . . , fm,η,Θ(m log η)

}
: if m ≤ η/t .

Lemma 1. The functions Fm,η are a 1-good mapping.

Proof (sketch). Notice that if m > η/t, F is the identity mapping, which is
1-good. Assume m ≤ η/t. Consider any two objects xj 6= xk ∈ X. Con-
sider C prime numbers p1, p2, . . . , pC , each of which is ≥ m lg η, and suppose
by contradiction they collide everywhere, i.e., fm,η,p`

(xj) = fm,η,p`
(xk) for all

` ∈ 1, 2, . . . , C. Then the difference between j and k must be divisble by each of
these prime numbers, and hence at least (m lg η)C . Choose C > lg η/ lg(m lg η),
implying (m lg η)C > η. This is a contradiction, since |j − k| can be at most η.
Thus, xj and xk can collide in at most C − 1 of the functions {fm,η,p`

}.
Recall that there are Θ(m log η) functions fm,η,i. Thus for a sufficiently large

constant in the Θ notation, there are at least mC = m lg η/ lg(m lg η) functions
fm,η,i in which i is prime and i ≥ m lg η. For a given set Y of size ≤ m and a
given object xj ∈ Y , there must be one of the mC functions in which xj does
not collide with any of the ≤ m objects in Y , implying that F is 1-good. ut



We now calculate the running times of each round:

Lemma 2. The running time for a single round of size-hashed backoff, with
1-good mapping F is O(V ′√log V ′ log2 log V ′).

Proof (sketch). First, consider a phase in which the number of job classes m >
η/t. Recall that in this case, the number of collections sm,η = 1 and the number
of buckets in a collection rm,η,1 = η. Thus, the running time of the phase is
rm,η,1 bsize = Θ(ηV ′ log log V ′/m) (lines 8–9). Since m decreases geometrically
(by c2 in each phase), the sum of running times of all phases with m > η/t can
be bounded by the phase with minimum m, which is thus O(tV ′ log log V ′).

Consider a phase where m ≤ η/t. Then the number of collections sm,η =
Θ(m log η) and the number of buckets per collection rm,η,i = i. Thus, a phase
completes in bsize

∑sm,η

i=1 rm,η = bsize O(m2 log2 η) time. Substituting for bsize
and η, we have O(V ′ log log V ′m2 log2 η/m) = O(mV ′ log3 log V ′). Since m de-
creases geometrically, the sum of running times of all phases with m ≤ η/t can
be bounded by the phase with maximum m, which is thus O(V ′ log V ′ log3 V ′/t).

Thus the total duration of a round is Θ(tV ′ log log V ′ + V ′ log V ′ log3 V ′/t).
Setting t =

√
log V ′ log log V ′ yields a time of Θ(V ′√log V ′ log2 log V ′). ut

Theorem 6 shows that size-hashed backoff, when using this 1-good function,
terminates of lg V + O(1) rounds. Together with Lemma 2, we can conclude:

Corollary 1. Assume that n jobs with volume V begin executing size-hashed
backoff with 1-good mapping F at the same time. Then all n jobs make a suc-
cessful run attempt in time O(V

√
log V log2 log V ) with probability at least 1 −

1/ lgc V , for any c ≥ 1 and sufficiently large V . ut

Analysis of a 1/2-Good Mapping

Our final version of size-hashed backoff achieves a makespan of O(V log3 log V ).
This algorithm relies on a more efficient α-good mapping, which we show exists
using the probabilistic method. The goal of this section is to prove the existence
of a 1/2-good mapping where sm,η = Θ(log log V ) and rm,η,i = Θ(m). This
results, as corollary of Theorem 6, in a makespan of O(V log3 log V ).

Notice that there are three log log V factors in the makespan. Two of these
come from the general structure of size-hashed backoff: there are Θ(log log V )
phases reducing the number of nonempty job classes, and Descend runs for
Θ(log log V ) windows. The third log log V factor arises from the number of func-
tions (sm,η). We first present a preliminary “balls and bins” lemma:

Lemma 3. Assume you have m balls thrown uniformly at random into cm bins,
c > 15. Then for some 0 < δ < 1, the probability that fewer than m/2 bins have
exactly one ball is ≤ δcm. ut

We can now show that there exist appropriate 1/2-good functions:

Theorem 7. There exists a set of 1/2-good functions Fm,η = {fm,η,i} where
the range rm,η,i = Θ(m) and the number of subphases sm,η = Θ(lg η).



Proof (sketch). We show the existence of the functions {fm,η,i} using the prob-
abilistic method. For each η and m ≤ η, for each i ∈ [1, sm,η], choose fm,η,i at
random: choose fm,η,i(j), j ≤ η, uniformly at random from the range [1, rm,η,i].
We show that with probability > 0, the resulting family of functions is 1/2-good.

First, we calculate for a fixed set Y of size at most m and a fixed i ∈
[1 . . . sm,η], the probability that fm,η,i is 1/2-good. We consider each of the
m values fm,η,i(j), j ∈ Y , as a ball that is thrown uniformly at random into
rm,η,i = Θ(m) bins. By Lemma 3, we know that for some δ < 1, the probability
that fewer than 1/2 the “balls” are in their own bin is ≤ δΘ(n). That is, the
probability that |{j ∈ Y | ∃k ∈ Y, fm,η,i(j) = fm,η,i(k)}| > |Y |/2 is ≤ δΘ(m).

Therefore the probability that for all i ∈ [1, sm,η] 1/2-goodness is violated is
≤ δΘ(m)sm,η ≤ δΘ(m lg η), since each function i is selected independently.

Finally, we compute the number of possible sets Y of size m. In particular,
there are

(
m+η

m

)
≤

(
2η
m

)
ways to distribute m possible jobs over η job classes.

This reduces to:
(
2η
m

)
≤

(
2eη
m

)m ≤ em2m lg η . We apply a union bound over the
possible sets Y : Pr[Fm,η is not 1/2-good] ≤ δΘ(m lg η)em2m lg η < 1. We conclude
that with probability > 0, the randomly chosen Fm,η is 1/2-good. ut

We now conclude by calculating the makespan as a corollary of Theorem 6:

Corollary 2. Assume that n jobs with volume V begin executing size-hashed
backoff at the same time. Suppose also that we use a 1/2-good mapping F with
sizes sm,η = Θ(log η) and ranges rm,η,i = Θ(m). Then all n jobs make successful
run attempts in time O(V log3 log V ) with probability at least 1−1/ lgc V for any
constant c ≥ 1 and sufficiently large V .

Proof (sketch). By Theorem 6, all jobs complete by round lg V + O(1) with
appropriate probability. Each phase in the round takes time bsize

∑sm,η

i=1 rm,η,i =
bsize Θ(m log η). Substituting for bsize and η yields phase length Θ(V log2 log V ).
Summing over Θ(log log V ) phases completes the proof. ut

4 Conclusion

In this paper, we study randomized backoff protocols when jobs differ in size. We
analyze binary exponential backoff and show that it performs poorly, yielding
makespan V 2Θ(

√
log n). A slower rate of backoff achieves makespan Θ(V log V ).

Our main results are size-hashed backoff protocols, where the backoff strategy
depends on the job lengths; we reduce the makespan to only O(V log3 log V ).

These results raise many questions. First, what are the lower bounds? Is a
linear makespan possible? Next, on a simple channel jobs learn about contention
only by making run attempts; what if jobs can listen on the channel without
running? Also, a job i learns that a run attempt has failed only after the full ti
time steps. What if jobs learn of failure as soon as a collision occurs, enabling
them to abort early? Can exponential backoff and its variants perform better?

This paper considers the batch problem, where jobs arrive at time 0. Ulti-
mately we hope to understand the online problem, where jobs arrive over time.



What can be proved for queuing-theory arrivals? Are there reasonable worst-case
models, similar to those in [11], that apply to backoff with different-size jobs?
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