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Abstract
The subtyping test consists of checking whether a type t is a
descendant of a type r (Agrawal et al. 1989). We study how to
perform such a test efficiently, assuming a dynamic hierarchy when
new types are inserted at run-time. The goal is to achieve time and
space efficiency, even as new types are inserted. We propose an
extensible scheme, named ESE, that ensures (1) efficient insertion
of new types, (2) efficient subtyping tests, and (3) small space
usage. On the one hand ESE provides comparable test times to the
most efficient existing static schemes (e.g., Zibin et al. (2001)). On
the other hand, ESE has comparable insertion times to the most
efficient existing dynamic scheme (Baehni et al. 2007), while ESE
outperforms it by a factor of 2-3 times in terms of space usage.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features

General Terms Languages, Algorithms

Keywords Subtyping Test, Dynamic Loading

1. Introduction
One of the most frequent operations in object-oriented programs

is the subtyping test:

• Given an object O of a type t, is O also an instance of a type r
i.e is t a subtype of r?

Such tests, also known as type inclusion tests, are usually in-
voked by explicit requests of programmers when they use linguis-
tic constructs like instanceof (Java) (Gosling et al. 2005), is
(C#) (Hejlsberg et al. 2001) or iskindof (SmallTalk) (Goldberg
et al. 1983). They are also sometimes inserted by the compiler in
the contexts of type casting, array casts and exception handling
(Gosling et al. 2005; Hejlsberg et al. 2001). Since the cost of sub-
typing tests has a significant effect on the overall performance of
systems, considerable attention has been paid to optimizing the test.
Typically, the main challenge has been to preprocess the type hier-
archy and producing a data structure that encodes the subtyping
relationships in an efficient manner. The efficiency here is typically
defined in terms of test time and required memory space.

The most obvious encoding scheme is a binary matrix (BM) in
which M [i, j] = 1 iff i is a subtype of j; this results in a constant
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O(1) test time, but requires O(n2) space, which is considerably big
in large type hierarchies (e.g. JDK 1.3 with around 5500 types takes
3.8MB (Zibin et al. 2001)). If the type hierarchy is simply encoded
as a tree, requiring O(n) space, the worst-case time for a test may
be O(n). More elegant schemes have improved this trade-off be-
tween time and space complexity. Relative numbering (Schubert et
al. 1983) guarantees both constant test time and minimal encoding
size of log(n) bits per type for single-inheritance type hierarchies.
In the case of multiple-inheritance type hierarchies, PQE (Zibin et
al. 2001) provides constant test time and, in comparison to other
algorithms, provides the smallest encoding size (to the best of our
knowledge).

Maybe surprisingly, relatively little attention has been paid to
the handling of dynamic type loading, i.e. the ability to add new
types at run-time in the hierarchy. (See Baehni et al. (2007) for
the only exception we know of, and which we discuss of length in
Section 6.) Dynamic type loading is a key requirement of modern
systems (Ajmani et al. 2006) and is promoted in Java (Gosling et
al. 2005) and .Net (Microsoft 2005). In fact, even more traditional
languages like C++ and SmallTalk support dynamic (or incremen-
tal) linking (Stroustrup 2004; Goldberg et al. 1983). One way to
perform subtyping tests is to use traditional static solutions and re-
encode the hierarchy for each new type insertion. Clearly, this leads
to slow insertion time. In this paper we consider the cost of type in-
sertions as an important metric in devising the subtyping test.

In short, this paper proposes a new encoding algorithm that
performs insertions efficiently while preserving the performance of
the best known static schemes in terms of test time and encoding
size. We focus on designing an encoding algorithm that works
well for real-world type hierarchies (e.g. JDK), as validated by
experimental evidences. (See Section 6.)

One reason why inserting new types is expensive is that most
algorithms need to update the encoding of old types whenever a
new type is inserted (Zibin et al. 2001, 2002; Cohen 1991; Vitek et
al. 1997). This modification takes considerable time and thus slows
down the overall speed of the system significantly. For example
PQE (Zibin et al. 2001) which outperforms all the other subtyping
algorithms in terms of encoding size and query time, requires the
reconstruction of almost the entire encoding for each newly added
type. PQE partitions the type hierarchy into a set of types called
slices using a sophisticated algorithm. Since this algorithm requires
the whole type hierarchy as input, it recomputes the slicing for each
newly inserted type, which is quite time consuming for large type
hierarchies (e.g. JDK 1.3: 113 msec). This is so in a centralized
setting. In distributed settings the problem becomes even more
drastic since any modification to the encoding has to be broadcast
over the network to maintain the consistency, i.e. to ensure a unique
encoding throughout the distributed system. Such mechanism is
extremely costly as it involves reaching agreement in a distributed
setting (Lynch 1996).



The reason why traditional encoding schemes require reconfig-
uration upon the addition of new types is actually easy to see.
In these schemes, the encoding of a type depends on its sub-
types (Zibin et al. 2001, 2002; Cohen 1991; Vitek et al. 1997)
and this requires modifying the old encoding upon insertion of new
types. The solution proposed by Baehni et al. (2007), called DST,
avoids this reconfiguration by encoding each type based on its su-
pertypes rather than its subtypes. Like PQE, DST partitions the hi-
erarchy into a set of slices. The number of slices is the major factor
influencing the required memory space, i.e. the number of slices
used directly impacts the size of the memory required. The prob-
lem with DST is in (1) its partitioning algorithm, which does not
provide the optimal slicing and (2) its insertion algorithm which
generates too many new slices upon insertion of new types. Our
ESE solution improves DST in terms of space usage. More pre-
cisely, ESE partitions a hierarchy into fewer slices than DST, re-
quiring less space. On the other hand, upon addition of new types,
ESE’s insertion algorithm creates new slices less often than DST.
This fact further underlines the difference between ESE and DST
in terms of space usage.

Time and space efficiency. Our ESE solution provides compara-
ble performance with the most efficient static subtyping methods
we know of, with respect to the test time and encoding size. This is
so even after the insertion of new types (in contrast to DST (Baehni
et al. 2007)).

Extensibility. ESE does not require any modification in the exist-
ing encoding when new types are inserted.

Our performance analysis on standard Java type hierarchies (e.g.
JDK 1.5, java.lang) shows that:

• ESE performs subtyping tests in constant time, which is com-
parable to the most efficient approach we know of (Zibin et al.
2001).

• ESE has a smaller encoding size than DST (2-3 times), which
is the most efficient extensible encoding algorithm we know
about. Moreover, after a sequence of insertions, the difference
in size between ESE’s and DST’s encoding becomes even more
pronounced. More precisely, the encoding size in DST grows 3
times faster than ESE with the number of insertions at run-time.

• ESE is an extensible algorithm that ensures very fast insertion
in centralized settings and minimum bandwidth utilization in
distributed settings, compared to non-extensible algorithms like
PQE.

Outline. The reminder of this paper is organized as follows. Sec-
tion 2 presents some basic definitions related to type hierarchies
and Section 3 introduces and formally defines the problem of exten-
sible encoding. Section 4 describes our encoding algorithm. Sec-
tion 5 shows how we implement our algorithm efficiently. Section
6 evaluates the performance of our scheme. Section 7 summarizes
the related works and finally Section 8 draws some conclusions.

2. Model
This section (1) reviews the basic subtyping model that has been

traditionally used in the literature (Sections 2.1, 2.2) as well as (2)
introduces some new concepts which we will use in describing our
extensible encoding scheme (Section 2.3).

2.1 Type hierarchy

A type hierarchy H = 〈T, R〉 consists of two components: a set
T of types, and a relation R on pairs of types. The relation R is
referred to as the subtyping relation and is reflexive, transitive and
anti-symmetric. We often use the notion ≺ as follows: ti ≺ tj iff
R(ti, tj); this implies that ti is subtype of tj .

2.2 Relations

In a type hierarchy H = 〈T, R〉:
• Descendant. A type tj is a descendant of a type ti if R(tj , ti)

(i.e. tj is a subtype of ti). D(ti) denotes the set of all the
descendants of ti in H . It is formally defined as:

D(ti) = {tj ∈ T |tj ≺ ti}
• Ancestor. A type tj is an ancestor of a type ti if R(ti, tj) (i.e.

tj is a super-type of ti). A(ti) denotes all the ancestors of ti in
H . It is formally defined as:

A(ti) = {tj ∈ T |ti ≺ tj}
Note that each type t is parent and ancestor of itself.

• Child. A type tj is a child of a type ti if (1) R(tj , ti) (2) i �= j
(3) for any k �= i, j, either tk /∈ A(tj) or tk /∈ D(ti).

• Parent. A type tj is a parent of a type ti if tj has ti as a child.

• Root. A type ti is a root of H if A(ti) = ti.

• Leaf. A type ti is a leaf of H if D(ti) = tj .

2.3 Slicing

In this section we recall the notion of straight slicing (Baehni et
al. 2007).

• Slice. A slice s of a type hierarchy 〈T, R〉 is an ordered subset
of types in T like [ti; tj ; . . . ; tk] such that {ti, tj , . . . , tk} ⊆ T .
For example, [B;A;C] is a slice of the type hierarchy of Figure
1. Notice that, we could change the ordering (e.g. [A;B;C]) and
have another slice.

• Slicing. A slicing S of a type hierarchy 〈T, R〉 is a parti-
tion of types in T in which each set in the partition is or-
dered. For example, considering the type hierarchy of Figure 1,
{[B; A; C], [E; F ; J ; G; k], [H ; I ; D]} is a slicing. Notice that
{[A; B; D], [E]} and {[A; B; C; E; F ;G; H ; I ], [J ; K; I ; A]}
are not slicing because the first one does not cover all the types
and in the second one A occurs two times.

• Straight Slice. A straight slice s of a type hierarchy H =
〈T, R〉 is a slice of H such that for any type ti ∈ T , all the
supertypes of t within s are consecutive in s. Formally, a slice
s = [t1; t2; ...; tn] is straight if:

∀t ∈ T, 1 ≤ a < b < c ≤ n : ta, tc ∈ A(t) ⇒ tb ∈ A(t)

which is equivalent to:

∀1 ≤ a < b < c ≤ n : D(ta) ∩ D(tc) ⊆ D(tb)

Accordingly, a slicing is straight if all its slices are straight.
A type hierarchy might have more than one straight slicing.
Figure 1 depicts a type hierarchy and one of its straight slicings.
Arrows are directed from a child to its parent. In this figure,
slice [B;A;C] for example is straight. Indeed, for every type ∈
T , all of its ancestors in this slice are consecutive. For instance
the ancestors of C (C, A) and the ancestors of J within this
slice (A, B, C) are consecutive. Considering the type hierarchy
of Figure 1 a slice like [D;B;A;C] is not straight because the
ancestors of I in this slice (A, C, D) are not consecutive.

3. Subtype Encoding
In this section we define the problem we address in this paper:

providing an extensible subtype encoding.



Figure 1. A straight slicing of a type hierarchy

• Encoding algorithm. Given a type hierarchy H = 〈T, R〉, an
encoding algorithm E = 〈V, f, R∗〉 consists of three compo-
nents: (1) a value domain V (often referred to as the ”encod-
ing”), (2) a function f : T → V that maps types to values,
and (3) a relation R∗ between pairs of values, such that for
vi = f(ti) and vj = f(tj), R∗(vi, vj) iff R(ti, tj).

Considering the above defined model, encoding size is log|V |
i.e. the size of V , and the subtyping test time corresponds to the
time needed to evaluate R∗(vi, vj). A trivial encoding algorithm
maps each type t ∈ T to an identifier and the list of its super-types.
Calculating R∗(vi, vj) consists in searching in the list of super-
types of ti, which costs O(n) where n = |T |. We are basically
interested in encoding algorithms where (1) the relation R∗ can
be evaluated efficiently, as in constant-time, and (2) provides a
minimal encoding size.

• Extension. Roughly speaking, a type hierarchy H+ = 〈T+, R+〉
is an extension of H = 〈T, R〉 if H+ is the outcome of insert-
ing some new types into H . Formally, H+ is an extension of
H if:

T ⊆ T+

∀ti, tj ∈ T : R(ti, tj) ⇔ R+(ti, tj)

∀ti ∈ T, tj ∈ T+ : R+(ti, tj) ⇒ tj ∈ T

The third condition captures the fact that newly inserted types
cannot be super-types of existing ones.

Notice that the notions of encoding algorithm and extension have
been informally used in the literature. Using these notions, we
introduce and formally define the concept of extensible encoding
algorithm in the following.

• Extensible encoding algorithm. We say that an encoding al-
gorithm is extensible if the value mapped to any type t re-
mains unchanged after the insertion of new types. More pre-
cisely, given a type hierarchy H = 〈T, R〉, its encoding al-
gorithm E = 〈V, f, R∗〉 is extensible if for any extension of
H like H+ = 〈T+, R+〉, there exists an encoding algorithm
E+ = 〈V +, f+, R∗+〉 such that:

∀t ∈ T : f(t) = f+(t)

We focus on providing an extensible encoding algorithm which
provides a test time and encoding size comparable to the most

efficient non-extensible algorithms, even after the insertion of new
types at run-time.

Describing an encoding algorithm consists of describing how to
implement the following data structure:

1. Query(ti, tj)

• Input: ti, tj ∈ T .

• Function: check whether ti is subtype of tj i.e. evaluate
R(ti, tj) = R∗(f(ti), f(tj)).

2. Insert(ti, T1)

• Input: ti ∈ T , T1 ⊆ T .

• Function: insert ti in H as child of all types like tj such
that tj ∈ T1 i.e. calculate E+ when new type t and its
corresponding relations are inserted.

The first operation is well-known as the subtyping test, whereas
the second captures the ability to include new types at run-time.

4. Extensible Subtyping Encoding: ESE
In the following, first we introduce our ESE encoding scheme

(which defines the value domain V ) in Section 4.1. Section 4.2
shows how to perform the subtyping test (i.e. how to calculate R∗)
using this scheme. Then in Section 4.3 we explain how to construct
the initial encoding (which completes the definition of function f ).
The insertion algorithm is given in Section 4.4.

The basic idea is the following. We first provide a straight slicing
of the type hierarchy. Then we assign an identifier to each type cor-
responding to its position in a slice, and to its position with respect
to its ancestors in each slice. Testing if t is subtype of r consists
of comparing the identifier of r with identifiers of ancestors of t
(which define an interval). We insert new types in such a way that
we maintain the straightness of the slicing whenever possible. It is
worth mentioning that, in cases where the ancestors of the new type
t are not consecutive in a slice si, by definition, si is not straight
with respect to t. Since our insertion algorithm does not change
the encoding of the old types, we might end up in these cases with
slices that are not straight. We evaluate the effect of such cases on
the average test time in the Section 6.

4.1 Encoding

We explain here how we use the notion of straight slicing to
encode a type hierarchy. Specifically, we define the value domain
V (the ”encoding”) and how to encode H , given a slicing S.

Considering a type hierarchy H = 〈T, R〉, and a slicing S of H ,
we encode each type t ∈ T with the following parameters:

1. SID(t). The identifier of the slice to which t belongs.

2. ID(t). An integer indicating the position of t within its slice.

3. Ii(t). For each slice si ∈ S, Ii(t) represents the set of intervals
of ancestors of t in si. To be more accurate, we specify an
interval I with two integers I.beginning and I.end for the
beginning and the end of I respectively.

For example in Figure 1, according to the given straight slic-
ing ([B; A; C][E; F ; J ; G; K][H ; I ;D]), the type J is encoded by
SID(J) = 1, ID(J) = 2, I0(J) = [0, 2], I1(J) = [1, 3]
and I2(J) = [−], and the type C is encoded by SID(C) = 0,
ID(C) = 2, I0(C) = [1, 2], I1(C) = [−] and I2(C) = [−].
Since the given slicing is straight, the ancestors of each type (like
J) are consecutive in each slice (like s0) and so they are repre-
sented by only one interval like ([0, 2]). In general, as long as the
slicing is straight, Ii(t) (i.e. set of intervals of ancestors of t in slice



si) includes only one interval. In the case of single inheritance type
hierarchies, we insert new types such that the slicing always re-
mains straight. This is not the case for multiple inheritance, as the
insertion algorithm in some special cases violates the straightness
of slices, resulting in certain types having more than one interval as
part of their encoding.

4.2 Subtyping test

In order to test whether a given type t is a subtype of another type
r, we simply check the ancestors of t in r’s slice, which are defined
by one or more intervals. That is, if SID(r) = i, the subtyping
test consists in checking whether or not ID(r) is within one of the
intervals Ii(t).

Figure 2 shows how we implement the subtyping test more
precisely.

1: function QUERY(t,r) {Check if t is subtype of r}
2: i← SID(r)
3: for all I ∈ Ii(t) do
4: if I.beginning ≤ ID(r) ≤ I.end then
5: return true
6: end if
7: end for
8: return false
9: end

Figure 2. Subtyping test.

For example in the type hierarchy given by Figure 1, it is
observable that J is subtype of C because SID(C) = 0 and
I0(J).beginning = 0 ≤ ID(C) = 2 ≤ I0(J).end = 2.

4.3 Preprocessing (encoding initialization)

We now describe how to preprocess the type hierarchy in order
to construct a straight slicing that results in an efficient encoding.

Consider the trivial straight slicing in which each slice contains
exactly one type. Notice that this slicing effectively corresponds to
the trivial encoding algorithm, and results in n = |T | slices. Our
goal is to devise a straight slicing with a minimal number of slices.

4.3.1 Constructing the straight slicing

Our encoding initialization algorithm goes as follows (Figure 3):

1. Sort all the types by their number of descendants, such that the
type with the maximum number of descendants is the head of
the list.

2. Put the head of the list in the first slice.

3. Iterate over the list, and insert each type within the first position
such that it maintains a straight slice. If such a slice does not
exist, simply create a new one and put that type within the new
slice. (An efficient method to check whether or not inserting a
type in a slice violates the straightness of that slice is given in
Section 5.)

If we consider the type hierarchy of Figure 1, for instance, after
ordering types by their number of descendants we end up with
the ordered list L = {A,C, B, G, D, F, E,H, I, J, K}. Initially,
we put A in a slice leading to the slicing S = {[A]}. Putting C
right before A does not violate the straightness of its slice and thus
S = {[C; A]}. B and A are ancestors of B and C is not ancestor of
B, therefore [B; C; A] is not straight; for the same reason [C; B; A]
is not straight; so we put B right after A yielding S = {[C; A;B]}.
G is subtype of C and A, and can be inserted right before C. The
next type in the list is D and putting D anywhere in this slice
violates its straightness. So according to the algorithm we create

a new slice and put D within that (S = {[G; C; A; B][D]}).
Continuing this process we will end up with a straight slicing
S = {[K; G; C; A; B;F ][J ; H ; E; D; I ]} which has only two
slices.

1: procedure STRAIGHTSLICING(H) {Generates a straight slicing of H}
2: L← sort(H) {Sort types by number of descendants}
3: Put(L[0], Slices[0], 0) {Put the 1st type within the 1st slice}
4: numberOfSlices ← 1

5: for i← 1 to sizeOf(L) do
6: for j ← 0 to numberOfSlices − 1 do
7: for k ← 0 to sizeOf(Slices[j]) do
8: if STRAIGHT (Slices[j], L[i], k) then
9: Put(L[i], Slices[j], k)
10: Goto 5 {Goto the next type in the list}
11: end if
12: end for
13: end for
14: Put(L[i], Slices[numberOfSlices], 0) {Put in new slice}
15: numberOfSlices ← numberOfSlices + 1
16: end for
17: end

Figure 3. Initialization (creating a straight slicing).

Precisely because the algorithm ensures the straightness of all
the slices before adding a new type, one can immediately conclude
that the generated slicing is always straight. On the other hand, the
order in which types are inserted into the slicing is the key point that
limits the number of generated slices in this algorithm. Roughly
speaking, the only constraint that might force our algorithm to
create a new slice is a subtyping relation between two types. For
instance, considering the example given in Figure 1, the reason why
the algorithm has to create a new slice for D is that B, C, and D are
all subtypes of A. Thus, after serving the types which have lots of
descendants, it would be less likely for the algorithm to need new
slices.

4.3.2 Identifier reservation

ESE reserves some places (identifiers) in each slice for run-time
insertions. This list of reserved identifiers (called reservedIDs) is
initialized after the straight slicing construction and will be used
by our insertion algorithm. Section 5 illustrates how we provide
such a list. Roughly speaking, the idea is to reserve some places
in each slice, for which the insertion of new types does not violate
the straightness of slicing. According to our reservation algorithm
(given in Section 5), each reserved place is surrounded by two
existing types (i.e. reserved places are not consecutive), the number
of reserved places cannot be more than the number of existing
types.

4.3.3 Identifier assignment

Using the straight slicing constructed with one of the algorithms
proposed in Sections 4.3.1 and 4.3.2, we assign to each type t two
identifiers (ID(t), SID(t)), as well as its interval of ancestors for
each slice s (Is(t)). Each slice s is assigned a unique integer i as
the identifier. If type t is placed within si, SID(t) = i. ID(t)
specifies the position of t within si. The identifier of the types of a
slice might not be consecutive as ESE reserves some identifiers in
each slice for run-time insertions. The identifiers of ancestors of t
in each slice si specify the Ii(t).

4.4 Insertion

In this section we illustrate how to insert a new type in the
hierarchy at run-time.



Considering the fact that a new type t added at run-time cannot
be ancestor of any existing types, inserting a new type in a slice be-
tween two ancestors of an existing type would violate the straight-
ness of the slicing. Thus we either (1) use the reserved list for new
types (reservedIDs) (2) append it at the head or tail of a slice, or (3)
create a new slice. On the other hand, in order to place ancestors of
t within a minimal number of intervals, it would be preferable to
put t adjacent to one of its parents. Our insertion algorithm goes as
following:

1. If there exists a reserved place adjacent to one of the parents
of t, insert t there, and remove that place from the list of re-
served places. (Notice that each slice has its own list of reserved
places.)

2. Otherwise, if a parent of t is at the head (tail) of a slice si, put t
within si right before (after) its parent.

3. Otherwise, create a new slice and put t within it.

4. Set the parameters of t accordingly (e.g. ID(t), SID(t), etc.).

Figure 4 illustrates the insertion of a new type N as subtype
of H and I into the type hierarchy of Figure 1. Since H (one of
the parents of N ) is the head of its slice according to the insertion
algorithm we put N right before H . It is easily observable that not
only the encoding of all the old types remains unchanged but also,
in this case, the slicing is still straight with respect to the newly
added type (i.e. all the ancestors of the new type are consecutive in
all the slices).

Figure 4. Inserting a new type N in a type hierarchy

Figure 5 depicts the protocol for inserting a new type in a given
type hierarchy.

Notice that, in specific cases, after the insertion of a new type,
the resulting slicing might be non-straight. This is especially true
when the newly added type is subtype of two types of a slice si

whose ancestors are not consecutive in si. For example, in Figure
6, inserting N as subtype of E, K violates the straightness of the
slice [N;E;F;J;G;K], because ancestors of N in this slice (N, E, G,
K) are not consecutive.

5. Detecting a Straight Slicing
This section illustrates (1) how we test if the straightness of a

slice is maintained after the insertion of a type and (2) how we
provide the list of reserved identifiers for run-time insertions. The
first one is needed to ensure the straightness of slicing during the
initialization process at compile-time (Figure 3) and the second one

1: procedure INSERT(t,T ′) {Insert t in a given type hierarchy as child of all
the types in T ′}

2: for all si ∈ S do {S is the slicing of the type hierarchy}
3: for all r ∈ T ′ do
4: Ii(t)← Ii(t) ∪ Ii(r)
5: end for
6: end for
7: createNewSlice← true
8: for all r ∈ T ′ do
9: if isHead(r) or reservedIDs(SID(r), ID(r)− 1) then
10: createNewSlice← false
11: SID(t)← SID(r)
12: ID(t)← ID(r)− 1
13: i← SID(t)
14: Ii(t)← Ii(t) ∪ [ID(t), ID(r)]
15: break
16: end if
17: if isTail(r) or reservedIDs(SID(r), ID(r) + 1) then
18: createNewSlice← false
19: SID(t)← SID(r)
20: ID(t)← ID(r) + 1
21: i← SID(t)
22: Ii(t)← Ii(t) ∪ [ID(r), ID(t)]
23: break
24: end if
25: end for
26: if createNewSlice then
27: SID(t)← newSliceID
28: ID(t)← 0
29: i← SID(t)
30: Ii(t)← [0, 1]
31: end if
32: if ID(t) ∈ reservedID(SID(t)) then
33: reservedID(SID(t)) ← reservedID(SID(t)) − ID(t)
34: end if
35: end

Figure 5. Inserting a new type in a type hierarchy.

Figure 6. Inserting a new type N in a type hierarchy



ensures the same property upon insertion of new types at run-time
(Figure 5).

5.1 Straightness maintenance

As shown in Section 4.3.1, our initialization algorithm iteratively
picks a type t and puts it in an existing or a new slice as we
discuss below. It puts t in an existing straight slice s if this insertion
maintains the straightness of s. This section presents an efficient
algorithm to check this constraint. More precisely, for a type t and
a straight slice s, our algorithm finds the first place in s such that
insertion of t at that place maintains the straightness of s. This
algorithm performs the following operation:

• Search(r, s)

Input: a type r ∈ T , a straight slice s = [t1; t2; ...; tn] .

Output: the first position i such that
s′ = [t1; t2; ...; ti; r; ti+1; ...; tn] is straight, if any.

Assuming that s = [t1; t2; ...; tn] is a straight slice by definition
we have:

∀a, b, c ∈ {1..n} , a < c < b : D(ta) ∩ D(tb) ⊆ D(tc)

In order to check if s′ = [t1; t2; ...; ti; r; ti+1; ...; tn] is straight
we have to ensure three conditions:

(1) ∀a, b ∈ {1..n} , i < a < b : D(r) ∩ D(tb) ⊆ D(ta)

(2) ∀a, b ∈ {1..n} , b < a ≤ i : D(r) ∩ D(tb) ⊆ D(ta)

(3) ∀a, b ∈ {1..n} , a ≤ i < b : D(ta) ∩ D(tb) ⊆ D(r)

A trivial algorithm which checks all the above conditions takes
O(n2) subset tests (i.e. considering two sets A, B to test if A ⊆ B),
for each position i, leading to an overall O(n3) number of tests
to search the entire slice s. In the following we present a method
to perform the search in O(n2). In fact, the idea is to remove the
redundant tests.

Observe first that, independently of the position i, the following
set of conditions includes those in (1) and (2).

(4) ∀a, b ∈ {1..n} : D(r) ∩ D(tb) ⊆ D(ta)

Clearly, (1) and (2) can be checked in O(n2) number of tests for
all the positions i (i.e ∀i ∈ {1..n}).

On the other hand it is easy to see that condition (3) is reducible
to:

(5) D(ti) ∩ D(ti+1) ⊆ D(r)

This is induced by the straightness of s since:

∀a, b ∈ {1..n} , a ≤ i < b : D(ta) ∩ D(tb) ⊆ D(ti), and

∀a, b ∈ {1..n} , a < i + 1 ≤ b : D(ta) ∩ D(tb) ⊆ D(ti+1)

which yields:

∀a, b ∈ {1..n} , a ≤ i < b : D(ta)∩D(tb) ⊆ D(ti)∩D(ti+1)

And thus knowing (5) we have:

∀a, b ∈ {1..n} , a ≤ i < b : D(ta) ∩ D(tb) ⊆ D(r) (i.e. (3))

Checking condition (5) rather than (3) takes O(1) tests.

Using the above mentioned facts, our algorithm performs search(r,
s = [t1; ...; tn]) as follows:

1. Perform all the tests in (4), and generate a two dimensional
array A[n][n] such that A[a, b] = 1 iff D(r)∩D(tb) ⊆ D(ta).

2. List all the positions like i satisfying (1) and (2). Notice that the
answer to all the tests in (1) and (2) are available in A.

3. Return the first i in the list that satisfies (5).

5.2 Reserved identifiers

After constructing the straight slicing we put a place P of a slice
s = [t1; t2; ...; tn] in the reserved list if:

• D(tP−1) ∩ D(tP ) = ∅
If P is a reserved place, then ID(tP ) = ID(tP−1 + 2). As

illustrated in Section 4.4, we insert a new type r in P if r has tP−1

or tP as a parent. Considering the facts that r is an ancestor of
itself and we insert r beside one of its parents in s, if the ancestors
of r are consecutive in s before inserting r, these ancestors remain
consecutive after this insertion (i.e. s remains straight with respect
to r). In the following we show that this is also the case for existing
types. More precisely, we show that if the ancestors of an existing
type u are consecutive in s, the insertion of r in P does not separate
them (i.e. s remains straight with respect to the existing types).

Suppose by contradiction that the insertion of r in P separates
some consecutive ancestors of u. Since r is placed between tp−1

and tp, u has both tp−1 and tp as its ancestors which contradicts
with our assumption that D(tP−1) ∩ D(tP ) = ∅.

6. Performance Analysis
In this section we analyze the performance of our algorithm in

static and dynamic settings. In static settings, we consider the tradi-
tional metrics of subtyping test time and encoding size. In dynamic
settings, we also consider the cost of insertions. We examine the
performance of our algorithm in the context of 13 commonly used
type-hierarchies, and provide experimental data to support our effi-
ciency claims.

We compare our algorithm with two commonly used schemes:
PQE, the fastest (to our knowledge) in static hierarchies and DST,
one of the only schemes designed for dynamic type hierarchies.

The conclusions we draw are as follows:

• All three protocols, PQE, DST, and ESE have roughly the same
subtyping test time(see Table 2).

• Among extensible schemes, ESE has the smallest encoding
size (see Table 3). Moreover, after a sequence of insertions,
the difference is size between ESE’s and DST’s encoding be-
come even more pronounced (see Figure 9). (By contrast, non-
extensible PQE has a smaller encoding size than ESE.)

• The running time for an insertion for ESE is only slightly slower
than for DST, and much faster than for (non-extensible) PQE.

We thus conclude that ESE provides a better trade-off between the
encoding size and insertion time, while maintaining a near-optimal
subtype test time.

All experiments we refer to were obtained from Java implemen-
tations of ESE, PQE and DST1 using an Intel Pentium 4 2.4GHz
with 1GB RAM on a Fedora 2.6 machine. We consider the type
hierarchies of standard Java packages including java.io, java.lang,
Java EE 5, JDK 1.1.8, JDK 1.2.2, JDK 1.3.1, JDK 1.4.2, and JDK
1.5.0. All the presented values are averaged over 10000 measure-
ments. We generate subtyping tests randomly (in a uniform manner
over the set of types). The types to be inserted are generated ran-
domly but with respect to the statistical analysis made by Zibin et
al. (2001), as recalled in Table 1. This table shows some topologi-
cal properties of 13 type hierarchies, including the number of types,
the average number of parents and the average number of ancestors
for each hierarchy.

1 For this algorithm we use its open source code at:
http://lpd.epfl.ch/baehni/dst.tgz



Hierarchy n |P |/n |A|/n

IDL 66 0.98 3.83
JDK 1.1 225 1.04 3.17
Laure 295 1.07 8.13
ED 434 1.66 7.99

LOV 436 1.71 8.50
Unidraw 613 0.78 3.02

Cecil 932 1.21 6.47
Geode 1,318 1.89 13.99

JDK 1.18 1,704 1.10 4.35
Self 1,801 1.02 29.89

Eiffel4 1,999 1.28 8.78
JDK 1.22 4,339 1.19 4.37
JDK 1.30 5,438 1.17 4.37

Table 1. Topological properties of some hierarchies. n: number of
types, |P |/n: average number of parents, |A|/n: average number
of ancestors (Zibin et al. 2001).

6.1 Subtyping test time

Worst case. In a static setting, each test takes O(1) steps. Since
all the slices are straight, all the ancestors of a type t are consec-
utive. Then a subtyping test consists in checking one interval. In a
dynamic setting, checking whether a type t is subtype of a type r
takes O(|parents(t)|) steps, since our insertion algorithm is such
that, in some cases, the ancestors of a newly inserted type t are
separated into |parents(t)| intervals.

Experiments. The results given in Table 2 compare the test time
of ESE with PQE and DST (1) in a static setting and (2) after the
insertion of some randomly chosen new types (we add to each hier-
archy 10% of its size). In static settings, ESE performs a subtyping
test slower than PQE but faster than DST. For the dynamic case, as
Table 2 conveys, ESE like PQE and DST maintains its efficiency
after the addition of new types.

Type Static Dynamic
hierarchy ESE PQE DST ESE PQE DST
java.lang 12 10 13 12 10 13
java.io 12 10 13 12 10 13

java EE 5 12 10 13 13 10 13
JDK 1.1.8 13 11 13 13 11 14
JDK 1.2.2 13 11 14 14 11 14
JDK 1.3.1 13 11 13 13 11 14
JDK 1.4.2 13 11 14 14 11 14
JDK 1.5.2 13 11 14 14 12 14

Table 2. Subtyping test time in micro second.

According to Table 1, and the analysis of Zibin et al. (2001), the
average number of parents is no more than 1.89; also the number
of types inserted at run-time is usually small compared to the entire
hierarchy, and so the situation in which the resulting slicing is not
straight happens rarely. For example, after the insertion of 500 new
types into the type hierarchy of JDK 1.5, our experiments show
that, on the average, the number of intervals that have to be checked
is less than 1.052. More precisely, in order to perform the test
Query(t, r) (i.e if t is subtype of r) we check only one interval
if t has existed from compile-time. If t is added at run-time, the
number of intervals that have to be checked depends on the number
of parents it has and their position in the type hierarchy. Figure 7
shows how the query time is influenced by the average number of
parents. In this experiment we consider queries like Query(t, r) in
which t is inserted at run-time, and we measure the average test

time in JDK 1.5, after the addition of new types with different
average numbers of parents: 2, 3, and 14 (the maximum number
of ancestors according to Table 1).
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Figure 7. Test time after insertions

6.2 Encoding size

Worst case. If a slicing has k slices, then the encoding size of ESE
is O(k). We assign to each type two identifiers (ID, SID) and the
interval of its ancestors for each slice (see Section 2.1) which leads
to the encoding length of 2k + 2 for each type. (The encoding size
of DST and PQE is in the order of 2k + 2 and k + 2 respectively.)

Experiments. Table 3 compares ESE with DST and PQE in terms
of encoding size which is influenced mainly by the number of
slices. Here, we consider the algorithms excluding their optimiza-
tions related to the compression of integer indices (ids) into a mini-
mal bit representation. (Such optimizations are common to all three
schemes.) According to this table, the amount of space that ESE
uses is between 2 to 3 times less than DST, but it is larger than
PQE.

Type Encoding Size of Slices
hierarchy ESE DST PQE ESE DST PQE
java.lang 8 26 - 3 12 -
java.io 8 22 - 3 10 -

Java EE 5 10 32 - 4 15 -
JDK 1.1.8 16 36 8 8 17 6
JDK 1.2.2 18 38 10 8 18 8
JDK 1.3.1 18 36 10 8 17 8
JDK 1.4.2 18 38 - 8 18 -
JDK 1.5.0 18 38 - 8 18 -

Table 3. Encoding size per type (number of integers).

For the case of single-inheritance type hierarchies, our experi-
mental results show that ESE gives a near-optimal number of slices.
Figure 8 gives an example showing that the approximation-rate2

of DST is not less than n/6 in terms of encoding size in com-
parison to ESE. In this example the optimal slicing has 2 slices
([A;D;G;J][B;C;E;F;H;I]), while DST gives 4 ([B;A;C][E;D;F]
[H;G;I][J]). If we continue the pattern of Figure 8 (a) (like Fig-
ure 8 (b)), for each additional 3 types, DST creates a new slice.

2 The approximation-rate is defined as result of the algorithm / optimal
result



Since, in such hierarchies the optimal slicing has always 2 slices,
the approximation-rate of DST is (n/3)/2 = n/6.

Figure 8. Approximation rate of DST’s encoding size

Figure 9 evaluates ESE against DST in terms of average encod-
ing length, in a dynamic setting, after the addition of new types at
run-time. In this experiment, we only measure the encoding size of
the new types, because the encoding size of the old types remains
unchanged. We consider java.lang and JDK 1.5 as samples of rela-
tively small and large type hierarchies. We generate the new types
randomly with the average number of parents of 2 which is more
than the average number of parents of all the hierarchies shown
in Table 2. As can be observed from Figure 9, compared to DST,
our algorithm is much more efficient under insertion of new types.
Inserting 20 types, the average encoding size in ESE grows 3-30
times less than PQE. This fact could be explained by the method
we use to reserve identifiers for newly inserted types, given in Sec-
tion 4.3.3. Apparently, this method is effective until the reserved
identifiers are exhausted. Figure 10 illustrates the effectiveness of
our method after the addition of several types (up to 300) in JDK
1.5 type hierarchy. Let us observe that the growth of the encoding
length with the number of insertions becomes slower when we in-
crease the average number of parents. This may be explained by
our insertion algorithm which tries to insert new types beside one
of their parents. (Otherwise, it creates a new slice.) The worst cases
happen when all the parents of the new type are among newly added
types. According to our insertion algorithm, no reserved identifier
can be used for such cases. Figure 11 depicts the fast growth of en-
coding length with the number of insertions in one of these cases.

6.3 Insertion time

As noticed before, the insertion method proposed in Section
4.4 does not impact the encoding of the old types. In central-
ized settings, this fact normally speeds up the subtyping process,
whereas in distributed systems it avoids the propagation of encod-
ing changes throughout the network. With respect to this property,
we compare our algorithm with PQE and DST which are the most
efficient (non-extensible and extensible respectively) approaches
we know of.

Worst case. While ESE and DST takes O(|parents(t)|) to add
a new type t, PQE inserts new types in O(|A|) in which |A| is the
number of ancestors in the type hierarchy.

From Table 2, the average number of parents is always less than
2. On the other hand, the number of ancestors in a type hierarchy
can be 29.89 times larger than the number of types. These facts
illustrate the significant difference between the insertion time in
ESE and PQE.
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Figure 9. Growth of encoding size with insertions.
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Figure 10. Encoding length after addition of new types
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To better appreciate the advantage of extensible algorithms in dy-
namic distributed settings, consider a system with two components
C1, C2, and a type t a priori known by both components. Upon
receiving an object O, C2 which was expecting an object of type
t, has to check whether or not the object it has received is of that
type. To do that, it is necessary for C1 to send the identifier of type
t along with O (Microsoft 2005; Sun Microsystems 2005; OMG
2001; Dedecker et al. 2006). On the other hand, upon the addition
of a new type r at C1, PQE changes the encoding of the old types
including t, and hence the new identifier of t at C1 is not valid for
C2 anymore. Apparently, any algorithm aimed to fix this problem
has to perform a global agreement on the encoding between all the
components of the system for each newly added type, which is ex-
tremely costly in terms of time and bandwidth utilization. We recall
that, in extensible schemes (ESE and DST), after the addition of r
at C1, the encoding of the types at C2 are still valid and thus, there
is no need for further information exchanges.

Experiments. Table 4 compares the insertion time of ESE with
DST and PQE. While ESE and PQE usually provides comparable
speed, PQE as the most efficient non-extensible solution takes
much more time.

Hierarchy ESE DST PQE
java.lang @ JDK 1.5.0 16 12 37
java.io @ JDK 1.5.0 16 12 36

Java EE 5 16 11 385
JDK 1.1.8 17 13 757
JDK 1.2.2 17 15 4263
JDK 1.3.1 19 15 5381
JDK 1.4.2 21 15 6995
JDK 1.5.0 21 17 8905

Table 4. Insertion time in micro second.

7. Related Work
Given that the subtyping test has a significant impact on the

overall performance of systems, several type encoding schemes
have been proposed in the literature (Zibin et al. 2001, 2002; Cohen
1991; Vitek et al. 1997; Sprugnoli 1977; Krall et al. 1997; Dietz
1982, 1987; Denielou et al. 2006; Palacz et al. 2003). However,
almost all previous works were basically designed for static type
systems and do not efficiently provide support for newly inserted
types. We overview in the following these algorithms as well as the
dynamic algorithms we know of (Baehni et al. 2007; Vitek et al.
1997).

(C)PQE: (Coalesced) PQ-encoding (Zibin et al. 2001). Based on
PQ-trees (Gosling et al. 2005), a technique for searching an order-
ing satisfying prescribed constraints, PQ-encoding (PQE) splits the
type hierarchy into a minimum number of groups of types called
slices, such that each slice satisfies local consecutiveness. A slice i
is locally consecutive if there is an ordering of i in which for each
type t, all the descendants of t are consecutive in i. PQE encodes a
type t with (1) an integer st which is the number of slice to which
t belongs (2) a pseudoarray idt, such that idt@i is the id of type
t with respect to slice i (3) for each slice i, the interval of descen-
dants of t in i. In order to check if a type t is a subtype of another
type r, PQE checks if the identifier of t is part of the interval of the
subtypes of r in the slice containing t. While PQE improves the en-
coding length of all previous results, it can not handle newly added
types at runtime without reconstructing the entire encoding. CPQE
is an optimization of PQE which reduces the space consumption of
PQE even further. CPQE does not simply support the addition of
new types at run-time.

TS: Type Slicing (Zibin et al. 2002). TS uses the idea of PQE-
encoding without requiring global reconfiguration for each newly
added type. It maintains an ordered list for all types in a slice and
substitutes integers and arithmetical comparisons by list positions
and list order maintenance. Upon addition of a new type, TS inserts
this type into the first ordered list in which this insertion does not
violate the local consecutiveness. If such a slice does not exist, it
creates a new slice. It is worth mentioning that, when a new type
is added, the encoding of the parents of the new type must be
modified. On the other hand, TS is around 10 times less efficient
than CPQE in terms of encoding size.

DST: Distributed Subtyping Test (Baehni et al. 2007). Basically,
DST is designed for distributed environments while retaining the
efficiency of a centralized scheme in terms of encoding size and test
time. The idea of DST and ESE are similar in the sense that they use
the same slicing technique, which can be viewed as a modification
of PQE’s slicing scheme with a fundamental difference: ancestors
are ordered instead of descendants. A major difference between
DST and ESE is in the construction of the initial slicing and the
algorithm they use for inserting new types at run-time.

Range compression encoding (Agrawal et al. 1989). Like PQE,
range compression encoding splits the type hierarchy into subsets
of types which are in the form of trees. The algorithm ensures that
all the subtypes of a type t are in one interval in a tree (the types
are ordered using a post-order traversal algorithm). A type t is
identified by its identifier which is its position in the tree it belongs
to, as well as the set of its subtypes intervals. Upon addition of
a new type, the old encoding is useless and the algorithm has to
reconstruct the trees.

Bit vector encoding (Krall et al. 1997). This algorithm encodes a
type t with a vector of k bits called vect such that, if a type t is a
subtype of a type r, then vect∧vecr = vecr . Obviously, whenever
a new type is added at run-time, the entire type hierarchy encoding
has to be re-computed.

(B)PE: (Bit) Packed Encoding (Vitek et al. 1997). With packet
encoding, the type hierarchy is divided into subset of types called
bucket, such that two super-types of a type can not be in the same
bucket. The encoding of a type t consists of the identifier of the
bucket in which t is contained, the position of t in its bucket,
and a set of pairs 〈bucket, super − type〉 indicating the super-
type of t in each bucket. Bit packet encoding is an optimization
which permits two or more buckets to be encoded in a single byte.
According to both algorithms, the number of buckets and hence the
average encoding length grows with the number of ancestors in the
type hierarchy. Both algorithms avoid global reconfiguration upon
addition of new types at runtime.

Perfect Hashing (Fredman et al. 1984; Sprugnoli 1977). This
algorithm simply hashes each ancestor of a type with a unique hash
key (Ducournau 2006). The subtyping test then is just a search in a
hash table. While perfect hashing does not need global reconfigura-
tion for each newly added type at runtime, the size of the hash table
and hence the encoding length grows with the number of ancestors
in the type hierarchy.

Two-Hop Cover (Schenkel et al. 2005). For each pair of nodes
t, r, if there is a path from t to r, it chooses a node w on a path
from t to r and adds w to the set of ancestors of r (Lin(r)) and set
of descendants of t (Lout(t)). It tests if r is reachable from t by
checking whether Lin(r)∩Lout(t) = ∅. The connection from t to
r is given by (1) the hop from t to w and (2) the hop from w to r,
hence the name of the method. Upon insertion of a new type u, this
method adds u to Lout(a) for all ancestors a of u (i.e. It changes
the encoding of the old types, leading to a non-extensible encoding
algorithm).



Dietz’s Algorithm (Dietz 1982, 1987). The main idea of Deitz’s
algorithm is to maintain the pre- and post-order of the tree in an or-
dered list. Type ti is subtype of tj iff ti occurs before tj in the post
order and tj occurs before ti in the pre-order. It provides constant
time for insertion and query operations and linear encoding size.
The problem of having a dynamic Deitz’s algorithm turns into the
problem of order maintenance (Gosling et al. 2005). This restricts
the scope of the algorithm to single inheritance only.

Cohen’s Algorithm (Cohen 1991). This algorithm is also re-
stricted to single inheritance hierarchies. It defines for each type
t a level denoted by lt which is its number of ancestors (i.e. its
distance to the root of the tree). Then it associates with t a unique
identifier and an array A of length lt which stores the identifier of
ancestors of t like t′ in L[lt′]. While the algorithm is fully incre-
mental, in the worst case the encoding length is O(n2) when the
type hierarchy is a chain.

8. Conclusion and Future Research
This paper introduces ESE, an extensible subtyping test algo-

rithm that ensures (1) efficient insertion of new types, (2) efficient
subtyping tests, and (3) small space usage. More precisely, ESE
provides subtyping test time and encoding size that are comparable
to the most efficient static subtyping algorithms we know of (PQE).
ESE, on the other hand, uses less memory space (2-3 times) than
the most efficient dynamic subtyping algorithms published before
(DST). In addition, unlike DST, ESE remains efficient even after
new types are inserted at run-time.
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