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Abstract

Communication-efficiency is of key importance when
constructing robust services in limited bandwidth en-
vironments, such as sensor networks. We focus on
communication-efficiency in the context of quorum systems,
which are useful primitives for building reliable distributed
systems. To this end, we exhibit a new probabilistic quo-
rum construction in which every node transmits at most
O(log2 n) bits per quorum access, where n is the number
of nodes in the system. Our implementation, in addition to
being communication efficient, is also robust in the face of
communication failures. In particular, it guarantees consis-
tency (with high probability) in the face of network parti-
tions. To the best of our knowledge, no existing probabilis-
tic quorum systems achieve polylogarithmic communication
complexity and are resilient to network partitions.

1. Introduction

Quorum systems (see e.g., [8, 17, 7, 10]) have long been
used for improving robustness, efficiency and availability
of distributed systems. Among their applications are data
replication, mutual exclusion, data dissemination, and many
others (see e.g.,[1, 3, 5, 4, 2, 11, 9, 7, 12, 14]). In a typical
quorum-based distributed system, the servers store data on
behalf of clients, which access the data by interacting with
subsets of servers, called quorums, such that every pair of
quorums intersect.

In this paper, we explore the problem of designing effi-
cient quorum systems for environments with limited com-
putational and networking resources, such as sensor net-
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works (sensornets). We consider a typical sensornet setting
where small battery-powered devices (sensors) with wire-
less connectivity are deployed in an environment without
pre-existing networking infrastructure. The sensors may act
as servers that collect and store data intended to be accessed
by more powerful client machines. They can also act as
clients that store and access information at other sensors
for better availability and/or load balancing as discussed
in [16]. Due to the ad hoc deployment, the communica-
tion network is formed by the devices themselves so that
nearby nodes communicate directly, and the nodes residing
outside of each other’s communication ranges communicate
indirectly through other nodes (see Figure 1.a). In addition,
due to collisions and other electromagnetic interference, the
network can experience frequent message loss and connec-
tivity changes.

Traditionally, the goodness of quorum systems has been
evaluated in terms of their load, availability and probe com-
plexity [15]. One limitation of these metrics is that they are
mainly concerned with the overall system performance and
tend to disregard the communication and processing over-
head incurred by each individual node. Although this over-
head is negligible in environments with abundant resources
and ubiquitous connectivity (such as the Internet), it is one
of the dominant factors affecting sensornet performance. In
particular, the energy and bandwidth consumption of each
node are both directly proportional to the number of bits
it has to transmit for each quorum access. In addition, to
cope with intermittent connectivity, the messages in sensor-
nets are typically disseminated by gossip. As a result, most
nodes participate in every quorum access. This further lim-
its the applicability of the load and probe complexity met-
rics, leaving communication complexity as the primary per-
formance measure.

To understand the challenges associated with designing
communication-efficient quorum systems in sensornets, let
us consider a probabilistic quorum system Q of [13]. This
quorum system employs quorums of size

√
n where n is the

number of nodes in the system, and is optimal in terms of
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(a) Quorum access in an arbitrary network, such as a sensor-
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(b) Quorum access in the presence of a networking in-
frastructure (e.g., Internet).

Figure 1. Accessing quorums in different network topologies.

both load and availability. First, it is easy to see thatQ (and
in fact any quorum system) has an optimal communication
cost—with respect to the servers—in a network that sup-
ports direct node-to-node connectivity, such as the one in
Figure 1.b. Indeed, assuming that the node identifiers and
the request payload are both of size O(log n), the number of
bits transmitted by each server in each quorum access can
be as low as O(log n). However, if Q ∈ Q is accessed over
a sensornet (see Figure 1.a), then some servers (e.g., S3 in
Figure 1.a) can transmit as many as O(

√
n log n) bits per

quorum access.
One possible way around this problem is to maintain a

spanning tree over the nodes in the system, and to use broad-
cast/convergecast for propagating requests and collecting
responses. However, due to intermittent connectivity, main-
taining a spanning tree in a sensornet is difficult, if at all fea-
sible. In fact, intermittent connectivity is one of the defining
characteristics of sensor networks. Connectivity changes
continuously, as nodes turn themselves off to hibernate and
save power, or as nodes move from one location to another.
To build a spanning tree would require continually monitor-
ing the topology and updating the tree, a potentially expen-
sive use of energy.

It is therefore, a natural question to ask whether the per-
node communication overhead can be reduced regardless of
the topology of the network, the method of quorum access,
and intermittent connectivity. Specifically, is logarithmic or
polylogarithmic bit complexity achievable?

In this paper, we answer this question in the af-
firmative. We present a new, probabilistic quo-
rum system that achieves polylogarithmic—O(log2 n)—
communication complexity at the cost of a non-zero—
but polynomially small—probability of accessing non-
intersecting quorums. The main idea of our construction
is to use probabilistic sampling to eliminate the need for ac-
cessing too many individual nodes in the system. It works
roughly as follows: For each quorum access, a client first
chooses a sample of node identifiers of size O(log n), uni-
formly at random, and then initiates gossip to disseminate

this sample—along with the payload for the access—to the
nodes in the system. Upon receiving a request, each individ-
ual sensor first updates its state if necessary, and then checks
whether its identifier is included in the sample. If so, it ini-
tiates a gossip to return a response to the client. The client
continues to gossip its request until the responses from a
subset of the original sample have been received. Once this
happens, the quorum access is regarded as completed.

Note that in our protocol, the quorum access can ter-
minate even if the client has not received responses from
every node in the sample. Thus, a quorum is effectively
any subset—of a sufficient size—of a random subset of size
O(log n). The actual size of this subset is determined by the
desired failure threshold, which can be polynomially close
to n/2.

It might be possible to tolerate more failures (e.g., as
many as n − √n in [13]) by repeating the sampling step if
too many of the nodes in the original sample appear to have
failed. There are two problems with this approach though:
First, since reliable failure detection cannot be guaranteed,
the client might end up selecting too many nodes, poten-
tially resulting in too many messages being sent. Second,
when intermittent connectivity causes the network to be-
come partitioned for sufficiently long, the samples being
drawn by the client become increasingly biased towards the
connected nodes (due to the reduced sample space) even-
tually leading to violation of the probabilistic intersection
guarantee. Our protocol avoids these problems by employ-
ing quorums which are subsets of the initial sample so that
failure resilience is achieved without repeating the sampling
step.

Of course, if too many nodes in the sample are indeed
inaccessible, it might take an arbitrarily long time—at least
until the connectivity is restored—for the quorum access
to complete. The continuous gossip ensures that this will
happen with high probability once the network connectiv-
ity is restored. An obvious problem with continuous gossip
is that it can result in too many messages being transmitted
when the network is unstable. In practice however, the per-



formance can easily be tuned up (e.g., by adjusting timeouts
between consecutive gossip rounds) to ensure quick termi-
nation under normal network conditions.

Lastly, another property of our construction which is use-
ful for applications invoking many rounds of quorum access
throughout their execution is that the quorum intersection is
guaranteed with high probability (as opposed to constant
probability). To the best of our knowledge, none of the
existing probabilistic quorum systems are simultaneously
communication-efficient, resilient to network partitions and
guarantee quorum intersection with high probability.

The rest of this paper is organized as follows: In Sec-
tion 2, we briefly outline our system model. In Section 3,
we describe our quorum system and sketch its correctness
argument. We conclude and discuss the future directions in
Section 4.

2. System Model

We consider an ad hoc sensor network of an arbitrary
topology consisting of n (sensor) nodes, S = {s1 . . . sn}.
Some fraction p of the nodes may fail, while (1−p)n nodes
operate correctly. (We do not make any probabilistic as-
sumption about the failures.) For the sake of this paper, we
assume that 0 ≤ p < 1/4. (In fact, p can be polynomially
close to 1/2, at the cost of larger hidden constants.)

We assume that the network can experience frequent
connectivity changes, possibly resulting in network parti-
tions, and that the individual nodes can crash and recover.
For lack of space and to simplify the presentation, we also
assume that the nodes have unique identifiers and that the
set of participants is fixed and known to the clients. Pos-
sible ways of removing these assumptions are discussed in
Section 4.

Nodes communicate by broadcasting messages on the
wireless medium. Normally, each message broadcast by a
node p would be received by every node within p’s com-
munication range. Messages can be lost due to collisions
and other disruptions of the wireless medium. We do not
assume that nodes have any way of detecting lost messages.

3. Communication-Efficient Probabilistic Quo-
rums

In this section, we describe the new probabilistic quorum
system. Throughout the description of the algorithm, fix a
constant c, for some c ≥ 1, where 1− n−Θ(c) is the desired
probability of quorum intersection. Fix τ = (1 − p)/5,
where p is the fraction of nodes in the network that may
fail.

A quorum system supports two types of operations:
update and query. An update(value) operation propagates

Sensors
1 repeat forever at sensor s:
2 do 〈op, sample, val 〉 ← Gossip-receive()
3 if s ∈ sample
4 then if op = update

5 then data← data ∪ val

6 Gossip(response, s,⊥)
7 else if op = query

8 then Gossip(response, s, data)

Figure 2. Pseudocode for sensors. Each sen-
sor gossips information, updating its data
based on update requests and returning its
data based on query requests.

data to a write quorum of size at least (1 − p− 2τ)n, with
high probability. A query() operation retrieves data from a
read quorum of size at least Θ((1−p−τ) log n). Each read
quorum intersects each write quorum with high probability,
i.e., with probability n−c for some c > 1.

We assume that the value being disseminated to the quo-
rum system is itself of size O(log n); if the data being dis-
seminated is large, it is obviously impossible to replicate
it while transmitting only a small number of bits1. (Typi-
cally, packet size is constant, even as the scale of the net-
work grows.)

The main idea of our protocol is to use sampling to
minimize the cost of quorum accesses. We will uniformly
choose sets of size r = Θ(c log n). (The constant hidden
in the Θ notation does depend on p.) The initiator then
waits for responses from members of the sample. It can-
not, of course, wait for responses from every one of the r
nodes in the sample, since some may have failed. Since the
sample is chosen uniformly at random, however, we can be
(relatively) certain that at least (1 − p − τ)r nodes in the
r-sized sample have not failed. On receiving a response of
size (1− p− τ)r, the initiator can determine that the value
has been sufficiently propagated, in the case of an update,
or that sufficient responses have been collected, in the case
of a query. Even though only a fraction of the sampled
nodes respond, the sample is large enough to ensure that
even adversarially-chosen message delays cannot trick the
initiator.

The pseudocode for the sensors (i.e., servers) appears in
Figure 2, and the quorum access routines appear in Figure 3.
An update(value) begins by choosing a random sample of

1For the case of large data, it has been suggested previously that it is
possible to use quorum systems to maintain small “metadata” which can
then be used to ensure data consistency [6].



Update(value)
1 sample ← Random(S, r)
2 responses ← ∅
3 while |responses | < (1 − p− τ)r
4 do responses ← Gossip(update, sample, value)
5 return

Query()
1 sample ← Random(S, r)
2 responses ← ∅
3 while |responses | < (1− p− τ)r
4 do responses ← Gossip(query, sample ,⊥)
5 return responses

Figure 3. Pseudocode for quorum access routines. Random(S, r) chooses r elements uniformly at
random from S. Gossip(y) uses gossip to disseminate the value y to quorums.

size r = Θ(c log n). The value, along with the identity of
the random sample, is propagated throughout the network.
Each node gossips the value to its neighbors. When a sensor
discovers that it is part of the sample, it updates its data , and
sends a response2. Finally, when the initiator of the quorum
access has received a response from (1−p−τ)r nodes in the
sample, it can conclude that the quorum access is complete.
At this point, we can show the following lemma:

Lemma 1. When a write access is complete, at least (1 −
p−2τ)n nodes in the network have received the value , with
high probability.

Proof (sketch). Assume that no more than (1 − p − 2τ)n
nodes have received the value. Then, since the sample is
chosen uniformly at random, the expected number of nodes
in the sample that have received the value is≤ (1−p−2τ)r.
Choose δ = τ/(1 − p − 2τ) = 1/3. Using a Cher-
noff bound3, we can conclude that the probability that
(1− p− τ)r nodes in the sample have received the value—
even though no more than (1−p−2τ)n nodes received the
value—is no more than n−cδ2/4. That is, if (1 − p − τ)r
nodes have responded, then with high probability at least
(1− p− 2τ)n nodes have received the value .

We refer to the nodes that have received the value by the
time the write completes as the write quorum for the write
access.

A query access simply accesses an r-sized sample of the
network. Again, the initiator chooses uniformly at random r
nodes from the network, and disseminates the random sam-
ple through the network. As in the case of an update access,
each of the sampled nodes sends a response back to the ini-
tiator, including its data and its identifier. When the initia-

2In many cases, updating the data may involve applying some “aggre-
gation” function; for example, often a time-stamp is associated with each
update, and only the data with the largest time-stamp is recorded. In this
way, the size of the data is prevented from growing linearly with the num-
ber of updates.

3That is, if µ is the expected sum of independent trials Xi and δ <

2e − 1, then Pr
(∑

Xi > (1 + δ)µ
)
≤ e−µδ2/4.

tor has received (1− p− τ)r responses, it can complete the
query access. We refer to the nodes that have responded as
the read quorum for the read access. We can then conclude
the following lemma:

Lemma 2. Each read quorum intersects each write quorum
with high probability.

Proof (sketch). Consider the case where at least (1 − p −
2τ)n nodes are in the write quorum; recall from Lemma 1
that this occurs with probability at least 1 − n−c/36. If
for every subset of the read sample of size at least c(1 −
p − τ) log n, one node in the subset intersects with the
prior write quorum, then intersection is achieved. We there-
fore calculate the probability that there exist any c(1 − p−
τ) log n nodes in the read sample that have not received the
value.

The expected number of nodes in the read sample of size
c log n that have not received the value is c(p + 2τ) log n.
Choose δ = (1 − 2p − 3τ)/(p + 2τ). Using a Chernoff
bound, we can conclude that the probability that c(1 − p−
τ) log n nodes have not received the value is no more than
n−cδ2/4. Thus, by a union bound, the total probability of
non-intersection is ≤ n−c/36 + n−cδ2/4, i.e., polynomially
small in n.

Notice that neither the update nor the query access re-
quires any sensor to send more than O(log2 n) bits of infor-
mation: the sample size is of size O(log n) and each identi-
fier requires O(log n) bits.

A final claim is that each quorum access completes, even
if a p fraction of the nodes fail. Since the samples are chosen
uniformly at random, we can expect that no more than a
p fraction of each sample will have failed, leading to the
desired result:

Lemma 3. If there exists a time after which the network is
connected, a read or write access will eventually complete
with high probability.



Proof (sketch). The expected number of nodes in a sample
that have not failed is ≤ c(1 − p) log n. Choose δ = (2 −
2p−τ)/(1−p). Using a Chernoff bound (yet again) we can
conclude that the probability of more than c(1−p−τ) log n
nodes in the sample have failed is polynomially small in n.

One implication of this lemma is that initiator si should
not repeat an operation simply because it has not received a
response for a period of time. (That is, si should not “time-
out” operations.) If there is no response, then the most
likely cause is unreliable communication, rather than fail-
ures. This allows the quorum system to meet our goal of
tolerating partitions.

4. Conclusions and Future Work

In order for quorum systems to be a practical solution
for sensor networks, it is necessary to reduce the amount of
information which must be transmitted. Probabilistic quo-
rum systems provide one such mechanism for accomplish-
ing this in a network with wholly unreliable communica-
tion.

There are three major directions for improvement. First,
we can reduce even further the number of bits required: in-
stead of O(log2 n) bits per quorum access, it seems pos-
sible to achieve O(log n log log n) bits per quorum access
through better data encodings. Similar techniques may al-
low us to reduce the dependency on knowing the size of the
network n, and knowing unique identifiers.

Second, in this paper we make very weak assumptions
about the wireless network, allowing arbitrary message loss.
In some wireless networks, most message losses are due to
collisions, and by using a backoff protocol it is often pos-
sible to reduce the contention on the wireless channels. In
such a network, it is possible to analyze the performance of
these quorum protocols, when combined with a randomized
backoff protocol, resulting in a polylogarithmic number of
bits transmitted, regardless of adversarial choices.

Third, in this paper we assume only benign failures.
There are interesting possibilities in extending the proba-
bilistic quorum systems in this paper to tolerate byzantine
failures. There are two challenges involved: byzantine quo-
rum systems require increased intersection to ensure cor-
rectness, and byzantine nodes may create problems by prop-
agating messages incorrectly through the network. When
cryptographic techniques are available, these problems can
be overcome. It remains an open question whether it is pos-
sible with minimal cryptographic tools.

In addition to the theoretical directions mentioned above,
we also intend to carry out experimental studies to evaluate
the performance of our quorum systems in both simulations
and real sensor networks.
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