
GeoQuorums: Implementing Atomic Memory
in Mobile Ad Hoc Networks

(Extended Abstract)

Shlomi Dolev1, Seth Gilbert2, Nancy A. Lynch2,
Alex A. Shvartsman3,2, and Jennifer L. Welch4

1 Department of Computer Science, Ben-Gurion University, dolev@cs.bgu.ac.il
2 MIT CSAIL, {sethg,lynch}@theory.lcs.mit.edu

3 Department of Computer Science and Engineering, University of Connecticut,
alex@theory.lcs.mit.edu

4 Department of Computer Science, Texas A&M University, welch@cs.tamu.edu

Abstract. We present a new approach, the GeoQuorums approach, for
implementing atomic read/write shared memory in ad hoc networks. Our
approach is based on abstract nodes associated with certain geographic
locations. We assume the existence of focal points, geographic areas that
are normally “populated” by mobile hosts. For example, a focal point
may be a road junction, a scenic observation point, or a water resource in
the desert. Mobile hosts that happen to populate a focal point participate
in implementing shared atomic put/get objects, using a replicated state
machine approach. These objects are then used to implement atomic
read/write operations. The GeoQuorums algorithm defines certain inter-
secting sets of focal points, known as quorums. The quorum systems are
used to maintain the consistency of the shared memory. We present a
mechanism for changing quorum systems on the fly, thus improving ef-
ficiency. Overall, the new GeoQuorums algorithm efficiently implements
read and write operations in a highly dynamic, mobile network.

1 Introduction

In this paper, we introduce a new approach to designing algorithms for mobile
ad hoc networks. An ad hoc network uses no pre-existing infrastructure, unlike
cellular networks that depend on fixed, wired base stations. Instead, the network
is formed by the mobile nodes themselves, which cooperate to route communi-
cation from sources to destinations.

Ad hoc communication networks are, by nature, highly dynamic. Mobile hosts
are often small devices with limited energy that spontaneously join and leave the
!
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network. As a mobile host moves, the set of neighbors with which it can directly
communicate may change completely. The nature of ad hoc networks makes it
challenging to solve the standard problems encountered in mobile computing,
such as location management (e.g., [1]), using classical tools. The difficulties
arise from the lack of a fixed infrastructure to serve as the backbone of the
network. In this paper, we begin to develop a new approach that allows existing
distributed algorithms to be adapted for highly dynamic ad hoc environments.

Providing atomic [2] (or linearizable [3]) read/write shared memory in ad hoc
networks is a fundamental problem in distributed computing. Atomic memory
is a basic service that facilitates the implementation of many higher-level algo-
rithms. For example, one might construct a location service by requiring each
mobile host to periodically write its current location to the memory. Alterna-
tively, a shared memory could be used to collect real-time statistics, for example,
recording the number of people in a building. We present here a new algorithm
for atomic multi-writer/multi-reader memory in mobile, ad hoc networks.

The GeoQuorums Approach. We divide the problem of implementing
atomic read/write memory into two parts. First, we define a static, abstract
system model that associates abstract nodes with certain fixed geographic lo-
cales. The mobile hosts implement this model using a replicated state machine
approach. In this way, the dynamic nature of the ad hoc network is masked by
a static model. Second, we present an algorithm to implement atomic memory
using the static network model.

The geographic model specifies a set of physical regions, known as focal
points. The mobile hosts within a focal point cooperate to simulate a single
virtual process. Each focal point is required to support a local broadcast service,
which provides reliable, totally ordered broadcast. This service allows each node
in the focal point to communicate reliably with every other node in the focal
point. The local broadcast service is used to implement a type of replicated state
machine, one that tolerates joins and leaves of mobile hosts. If every mobile host
leaves the focal point, the abstract node fails.

The atomic memory algorithm is implemented on top of the geographic ab-
straction. Nodes implementing the atomic memory algorithm use a GeoCast
service (as in [4, 5]) to communicate with the virtual processes, that is, with the
focal point nodes. In order to achieve fault tolerance and availability, the algo-
rithm replicates the read/write shared memory at a number of focal points. In
order to maintain consistency, accessing the shared memory requires updating
certain sets of focal points, known as quorums [6–10]. (Note that the members
of our quorums are focal points, not mobile hosts.) The algorithm uses two sets
of quorums: (i) get-quorums, and (ii) put-quorums, with the property that ev-
ery get-quorum intersects every put-quorum.5 The use of quorums allows the
algorithm to tolerate the failure of a limited number of focal points.

5 These are often referred to as read-quorums and write-quorums; the put/get termi-
nology more accurately describes the operations performed on the focal points in
the quorums, since read operations may use both types of quorums.



Our atomic memory algorithm uses a Global Position System (GPS) time
service, allowing it to process writes using a single phase; prior single-phase
write algorithms made other strong assumptions, for example, relying either on
synchrony [8] or single writers [9]. Our algorithm also allows for some reads
to be processed using a single phase: the atomic memory algorithm flags the
completion of a previous read or write to avoid using additional phases, and
propagates this information to various focal points. As far as we know, this is
an improvement on previous quorum-based algorithms.

For performance reasons, at different times it may be desirable to use different
sets of get-quorums and put-quorums. For example, during periods of time when
there are many more read operations than write operations, it may be preferable
to use smaller, more geographically distributed, get-quorums that are fast to
communicate with, and larger put-quorums that are slower to access. If the
operational statistics change, it may be useful to reverse the situation. The
algorithm presented here includes a limited reconfiguration capability: it can
switch between a finite number of predetermined configurations. As a result of
the static underlying model, in which focal points neither join nor leave, this
is not a severe limitation. The resulting reconfiguration algorithm, however, is
quite efficient compared to prior reconfigurable atomic memory algorithms [11,
12]. Reconfiguration does not significantly delay read or write operations, and,
as no consensus service is required, reconfiguration terminates rapidly.

This paper contains three primary contributions. First, we introduce the geo-
graphic abstraction model, which allows simple, static algorithms to be adapted
for highly dynamic environments. Second, we provide an implementation of the
abstract model using mobile hosts. Third, we implement a reconfigurable, atomic
read/write shared memory, using the static model.

Other Approaches. Quorum systems are widely used to implement atomic
memory in static distributed systems [6–9, 13, 14]. More recent research has pur-
sued application of similar techniques to highly dynamic environments, like ad
hoc networks. Many algorithms depend on reconfiguring the quorum systems in
order to tolerate frequent joins and leaves and changes in network topology. Some
of these [15, 16, 14, 10] require the new configurations to be related to the old
configurations, limiting their utility in ad hoc networks. Englert and Shvarts-
man [17] showed that using any two quorum systems concurrently preserves
atomicity during more general reconfiguration. Recently, Lynch and Shvartsman
introduced Rambo [11] (extended in [12]), an algorithm designed to support
distributed shared memory in a highly dynamic environment. The Rambo algo-
rithms allow arbitrary reconfiguration, supporting a changing set of (potentially
mobile) participants. The GeoQuorums approach handles the dynamic aspects
of the network by creating a geographic abstraction, thus simplifying the atomic
memory algorithm. While prior algorithms use reconfiguration to provide fault
tolerance in a highly dynamic setting, the GeoQuorums approach depends on
reconfiguration primarily for performance optimization. This allows a simpler,
and therefore more efficient, reconfiguration mechanism.



Haas and Liang [18] also address the problem of implementing quorum sys-
tems in a mobile network. Instead of considering reconfiguration, they focus on
the problem of constructing and maintaining quorum systems for storing lo-
cation information. Special participants are designed to perform administrative
functions. Thus, the backbone is formed by unreliable, ad hoc nodes that serve as
members of quorum groups. Stojmenovic and Pena [19] choose nodes to update
using a geographically aware approach. They propose a heuristic that sends loca-
tion updates to a north-south column of nodes, while a location search proceeds
along an east-west row of nodes. Note that the north-south nodes may move dur-
ing the update, so it is possible that the location search may fail. Karumanchi et
al. [20] focus on the problem of efficiently utilizing quorum systems in a highly
dynamic environment. The nodes are partitioned into fixed quorums, and every
operation updates a randomly selected group, thus balancing the load.

Document Structure. The rest of the paper is organized as follows. The
system model appears in Section 2. The algorithms for emulating a focal point
and implementing GeoQuorums appear in Section 3. The atomicity proof for
the implementations appear in Section 4. Section 5 contains a discussion of
the performance of the algorithm. Finally, in Section 6, we conclude and present
some areas for future research. The complete code for the algorithms and selected
proofs are given in the full technical report [21].

2 System Model

In this section, we describe the underlying theoretical model, and discuss the
practical justifications.

Theoretical Model. Our world model consists of a bounded region of a
two-dimensional plane, populated by mobile hosts. The mobile hosts may join
and leave the system, and may fail at any time. (We treat leaves as failures.)
The mobile hosts can move on any continuous path in the plane, with bounded
speed. The computation at each mobile host is modeled by an asynchronous
automaton, augmented with a geosensor . The geosensor is a device with access
to a real-time clock and the current, exact location of the mobile host in the
plane. It provides the mobile host with continuous access to this information.

While we make no assumption about the motion of the mobile hosts, we do
assume that there are certain regions that are usually “populated” by mobile
hosts. We assume that there is a collection of some n uniquely identified, non-
intersecting regions in the plane, called focal points, such that (i) at most f focal
points fail (for some f < n), in the sense that there is a period of time during
which no mobile host is in the focal point region, and (ii) the mobile hosts in each
focal point are able to implement a reliable, atomic broadcast service. Condition
(i) is used to ensure that sufficiently many focal points remain available. Once
a focal point becomes unavailable due to “depopulation”, we do not allow it
to recover if it is repopulated. (The algorithm we present in this paper can be
modified to allow a “failed” focal point to recover, however, we do not discuss
this modification here.) Condition (ii) ensures that all mobile hosts within a



focal point can communicate reliably with each other, and that messages are
totally ordered. We assume that each mobile host has a list of all the focal point
identifiers.

Each mobile host also has a finite list of configurations. A configuration,
c, consists of a unique identifier and two sets of quorums: get-quorums(c) and
put-quorums(c). Each quorum consists of a set of focal points identifiers, and
they have the following intersection properties: if G ∈ get-quorums(c) and P ∈
put-quorums(c), then G ∩ P #= ∅. Additionally, for a given c, we assume that
for any set of f focal points, F , there exist G ∈ get-quorums(c) and P ∈
put-quorums(c) such that F ∩ G = ∅ and F ∩ P = ∅. This allows an algo-
rithm based on the quorums to tolerate f focal points failing. Fur the purposes
of this presentation, we assume there are only two configurations, c1 and c2.

Mobile hosts depend on two broadcast services: (i) LBCast, a local, atomic
broadcast service, and (ii) GeoCast, a global delivery service. The LBCast service
allows nodes within a focal point to communicate reliably. Each focal point is
assumed to support a separate LBCast service: if we refer to focal point h,
its broadcast service is referred to as lbcasth. The LBCast service takes one
parameter, a message, and delivers it to every node in the focal point region.
If mobile host i is in focal point h, and broadcasts a message m using lbcasth

at time t, and if j is also in focal point h at time t, and remains in h, then j
receives message m. Additionally, the service guarantees that all mobile hosts
receive all messages in the same order. That is, if host i1 receives message m1

before message m2, then if host i2 receives messages m1 and m2 it will receive
message m1 before message m2.

The GeoCast service delivers a message to a specified destination in the plane,
and optionally delivers it to a specified node at that location. The GeoCast
service takes three parameters: (i) message, (ii) destination location, (iii) ID of a
destination node (optional). If no destination ID is specified, then the destination
location must be inside some focal point, h. In this case, if message m is GeoCast
at time t, then there exists some time t′ > t such that if mobile host i is in focal
point h at time t′, and remains in h, then i receives message m. If a destination-
ID is specified, and if the destination node remains near the destination location
until the message is delivered, and the destination node does not fail until the
message is delivered, then the service will eventually deliver the message to the
node with the correct destination-ID.

Practical Aspects. This theoretical model represents a wide class of real
mobile systems. First, there are a number of ways to provide location and time
services, as represented by the geosensor. GPS is perhaps the most common
means, but others, like Cricket [22], are being developed to remedy the weak-
nesses in GPS, such as the inability to operate indoors. Our algorithms can
tolerate small errors in the time or location, though we do not discuss this.

Second, the broadcast services specified here are reasonable. If a focal point
is small enough, it should be easy to ensure that a single broadcast, with ap-
propriate error correction, reaches every mobile node at the focal point. If the
broadcast service uses a time-division/multiple-access (TDMA) protocol, which



allocates each node a time slot in which to broadcast, then it is easy to deter-
mine a total ordering of the messages. A node joining the focal point might use
a separate reservation channel to compete for a time slot on the main TDMA
communication channel. This would eliminate collisions on the main channel,
while slightly prolonging the process of joining a focal point.

The GeoCast service is also a common primitive in mobile networks: a num-
ber of algorithms have been developed to solve this problem, originally for the
internet protocol [4] and later for ad hoc networks (e.g., [23, 5]).

We propose one set of configurations that may be particularly useful in prac-
tical implementations. We take advantage of the fact that accessing nearby focal
points is usually faster than accessing distant focal points. The focal points can
be grouped into clusters, using some geographic technique [24]. Figure 1 illus-
trates the relationship among mobile hosts, focal points, and clusters. For con-
figuration c1, the get-quorums are defined to be the clusters. The put-quorums
consist of every set containing one focal point from each cluster. Configuration
c2 is defined in the opposite manner. Assume, for example, that read operations
are more common than write operations (and most read operations only require
one phase). Then, if the clusters are relatively small and are well distributed (so
that every mobile host is near to every focal point in some cluster), then con-
figuration c1 is quite efficient. On the other hand, if write operations are more
common than read operations, configuration c2 is quite efficient. Our algorithm
allows the system to switch safely between two such configurations.

Another difficulty in implementation might be agreeing on the focal points
and ensuring that every mobile host has an accurate list of all the focal points
and configurations. Some strategies have been proposed to choose focal points:
for example, the mobile hosts might send a token on a random walk, to collect
information on geographic density [25]. The simplest way to ensure that a mobile

mobile host

focal point

cluster

Fig. 1. Clusters
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host has access to a list of focal points and configurations is to depend on a
centralized server, through transmissions from a satellite or a cell-phone tower.
Alternatively, the GeoCast service itself might facilitate finding other mobile
hosts, at which point the definitive list can be discovered.

3 Focal Point Emulator and Operation Manager

The GeoQuorums algorithm consists of two components: the Focal Point Emula-
tor (FPE) and the Operation Manager (OM). Figure 2 describes the relationships
among the different components of the algorithm.

For example, a client at some node i may request a read (the “read” arrow
from the Client to the OM). The OM notes the mobile host’s current location,
using the Geosensor (right “geo-update” arrow). The OM then sends GeoCast
messages to focal points (“geoc-send” arrow), including its current location. The
GeoCast message is received by the FPE at some other node, j, (“geoc-rcv”
arrow). The FPE at j first sends a local broadcast of the request (“lbcast-send”
arrow), and then sends a response to i (“geoc-send” arrow), using the position
of the client received in the GeoCast message. The OM at i uses the responses
received (“geoc-rcv” arrow) from the FPEs to compute the response to the read
operation, which it sends to the Client (“read-ack” arrow).

A FPE determines that the mobile host is in a focal point region using
information from the Geosensor (left “geo-update” arrow). Then the FPE uses
the LBCast service to perform the join protocol (“lbcast-send”, “lbcast-rcv”),
after which point it can respond to GeoCast messages. We now describe the
algorithm in more detail.



Signature:

Input:

lbcast-rcv(message, payload, op-src)h,i

geoc-rcv(message, payload, src, dest)i

geo-update(current-loc, new-time)i

Output:

lbcast-send(message, payload, op-src)h,i

geoc-send(message, payload, src, dest)i

Internal:

join()i

leave()i

State Components

status ∈ {idle, joining, active}, initially


active if i is initially in some focal point
idle otherwise

join-oid, join id, initially 0
focalpoint-id , focal point id, initially ⊥
complete-ops, a set of operation ids,

initially ∅
data, a record with fields:

value, a value, initially v0
tag, a tag id, initially ⊥
confirmed, a set of tag ids, initially ∅
conf-id, a configuration id, initially 〈0, 0, 0〉
recon-ip, a boolean flag, initially false

queues, a record with fields:
geocast, a queue of 〈op, payload, src, dest〉,

initially ∅
lbcast, a queue of 〈op, payload, op-src〉,

initially ∅
global, a record with fields:

fp-map, a set of focal points
clock , a clock, initially 0
location, a location, initially i’s initial loc.

Fig. 3. Focal Point Emulator FPE i Signature and State

3.1 Focal Point Emulator

The Focal Point Emulator (FPE) is the automaton that allows the members
of a focal point to simulate a single replica. The FPE implements a replicated
state machine, using the totally ordered local broadcast to ensure consistency.
Figure 3 contains the signature and state of the FPE. The remaining code for
the FPE is available in the technical report [21].

The FPE maintains a data record that represents the state replicated at ev-
ery mobile host in the focal point. The FPE receives put and get requests from
the GeoCast service, updating and retrieving data.value. Each put is accompa-
nied by a unique tag from a totally ordered set, which is stored in data.tag .
Occasionally the FPE is notified that a tag is confirmed; data.confirmed tracks
the set of confirmed tags. (This means that at least one operation involving this
tag has fully completed.) Requests to the FPE contain the id of a configuration;
data.conf-id stores the largest known configuration id. data.recon-ip is a flag
that indicates whether a reconfiguration is in progress.

The FPE receives various messages from the GeoCast service, sent by mobile
hosts. Each incoming message is immediately rebroadcast, using the LBCast
service. The FPE takes no other action in response to GeoCast messages.

The FPE also receives messages from the LBCast service. Each FPE au-
tomaton can be idle, joining, or active. If a node is not idle (even if it is in
the process of joining), then it will process incoming messages and update its
local state, in order to maintain consistency. If the node is active (and joining is
completed), then the FPE enqueues a response, if required. Finally, if any node
notices that a new configuration is being used, it sets a flag to remember that a
reconfiguration is in progress.



The LBCast service delivers four types of messages: (i) If FPE i (the FPE at
node i) receives a get message and no other node has responded, then FPE i sends
a response via the GeoCast service, containing its current data.tag , data.value,
and data.confirmed . (ii) If FPE i receives a put message, then it updates its
data.tag , data.value and data.confirmed using the data in the message. If no
other node has responded, then FPE i sends a response using the GeoCast ser-
vice, indicating that the update is complete. (iii) If FPE i receives a confirm
message, then it updates its local copy of the confirmed flag. (iv) If node i re-
ceives a recon-done message, then it sets its local recon-ip flag to false to
indicate that the reconfiguration is completed.

The final piece of the FPE is the join protocol, which enables a mobile host
to join a focal point. Recall that the Geosensor service periodically notifies the
mobile host of its new location. When the host has entered a focal point, it
begins the join protocol by sending a join-request message using the LBCast
service; this message contains a unique identifier for the join request consisting
of the requester’s node identifier and the current time. When node i receives
the join-request message, if no other node has responded, then node i sends
a response using the LBCast; this response includes data.tag , data.value, and
data.confirmed . As soon as the initiator of the join protocol receives any re-
sponse, it updates its current data.value, data.tag , and data.confirmed with the
information in the response message, and then becomes active.

3.2 Operation Manager

The Operation Manager (OM) maintains the state described in Figure 4. The
OM uses the GeoCast service to communicate with FPEs (see Figure 5), sending
get, put, and confirm messages, and receiving appropriate responses. The OM

Signature:

Input:
read()i

write(value)i,
recon(config-name)i

geoc-rcv(op, payload, src, dest)i

Output:
read-ack(value)i

write-ack()i

recon-ack()i

geoc-send(op, payload, src, dest)i

Internal:
read-2()i

recon-2()
confirm()i

State Components

confirmed, a set of tag ids, initially ∅
conf-id, a configuration id, initially 〈0, 0, 0〉
recon-ip, a boolean flag, initially false
G1, P2, G2, P2, the sets of get-quorums and

put-quorums for configurations 1 and 2
global, a record with fields:

location, a location, initially ⊥
clock , a time, initially 0
fp-map, a set of focal point definitions

op, a record with fields:
type ∈ {read, write, recon}
phase ∈ {idle, get, put}, initially idle
tag, a tag id, initially ⊥
value, a value, initially ⊥
recon-ip, a boolean flag, initially false
oid, an operation id, initially 0
acc, a set of process ids, initially ∅
loc, a location, initially ⊥

Fig. 4. Operation Manager OM i Signature and State



Input geoc-rcv(op-ack, oid, tag, val,
conf , cid, rec-ip, src, dest)i

Effect:
if op.oid = oid then

if op-ack = get-ack and tag > op.tag then
op.tag ← tag
op.val ← val

acc ← acc ∪ {lookup(src.loc, global.fp-map)}
if cid > conf-id then

conf-id ← cid
op.recon-ip ← true
recon-ip ← true
if op.type = recon then
op.phase = idle

else if cid = conf-id then
if rec-ip = false then recon-ip ← false

if conf = true then
confirmed ← confirmed ∪ {tag}

Output geoc-send(message, payload, src, dest)i

Precondition:
if (op.phase )= idle) then

message = op.phase ∨
message ∈ {confirm, recon-done}

else
message ∈ {confirm, recon-done}

payload contains operation specific
information (i.e., data.tag,
data.value, etc.)

src = 〈i, global.location〉
fp-name ∈ FP
dest = 〈focal-point, fp-name〉

Effect:
None

Fig. 5. Operation Manager OM i GeoCast Send/Receive

uses the FPEs as replicas, guaranteeing both atomicity and fault tolerance. For
each phase of each operation, the OM receives messages from a quorum of FPEs.

Read/Write Operations. The code for read/write operations is presented
in Figure 6. When OM i receives a write request, it examines its clock to choose a
tag for the operation. OM i uses the GeoCast service to send the new tag and new
value to a number of focal points. Let c be the value of conf-id i when the opera-
tion begins. If all responses indicate that c is the most recent configuration (i.e.,
no reconfiguration is in progress), then the operation terminates when OM i re-
ceives at least one response from each focal point in some P ∈ put-quorums(c). If
any response indicates that a reconfiguration is in progress, then OM i waits un-
til it also receives responses from each focal point in some P ′ ∈ put-quorums(c′),
where c′ is the other configuration. (We have assumed there are only two con-
figurations – if there are more than two configurations, OM i would need to
hear from all of them.) After the operation is complete, OM i can optionally
notify focal points that the specified tag has been confirmed, indicating that the
operation is complete.

When OM i receives a read request, it sends out messages to a number of focal
points. Let c be the value of conf-id i when the operation begins. As for write
operations, if all responses indicate that c is the most recent configuration, then
the first phase terminates when OM i receives a response from each focal point
in some G ∈ get-quorums(c). Otherwise, the phase completes when OM i also
receives a response from each focal point in some G′ ∈ get-quorums(c′), where c′

is the other configuration. At this point, OM i chooses the value associated with
the largest tag from any of the responses. If the chosen tag has been confirmed,
then the operation is complete. Otherwise, OM i begins a second phase that is
identical to the protocol of the write operation.

Notice that the knowledge of the confirmed tags is used to short-circuit the
second phase of certain read operations. The second phase is only required in
the case where a prior operation with the same tag has not yet completed. By



Input read()i

Effect:
op ← 〈read, get,⊥,⊥, recon-ip,

〈global.clock, i〉, ∅, global.location〉

Output read-ack(v)i

Precondition:
conf-id = 〈c, p, n〉
if op.recon-ip then

∃p0 ∈ P0, p1 ∈ P1 such that acc ⊇ p0 ∪ p1
else

∃pn ∈ Pn such that acc ⊇ pn

op.phase = put
op.type = read
v = op.value

Effect:
op.phase ← idle
confirmed ← confirmed ∪ {op.tag}

Output read-ack(v)i

Precondition:
conf-id = 〈c, p, n〉
if op.recon-ip then

∃g0 ∈ G0, g1 ∈ G1 such that acc ⊇ g0 ∪ g1
else ∃gn ∈ Gn such that acc ⊇ gn

op.phase = get
op.type = read
op.tag ∈ confirmed
v = op.value

Effect:
op.phase ← idle

Input write(v)i

Effect:
op ← 〈write, put, 〈global.clock, i〉, v, recon-ip,

〈global.clock, i〉, ∅, global.location〉

Internal read-2()i

Precondition:
conf-id = 〈c, p, n〉
if op.recon-ip then
∃g0 ∈ G0, g1 ∈ G1 s.t. op.acc ⊇ g0 ∪ g1

else
∃gn ∈ Gn such that acc ⊇ gn

op.phase = get
op.type = read
op.tag /∈ confirmed

Effect:
op.phase ← put
op.recon-ip ← false
op.oid ← 〈global.clock, i〉
op.acc ← ∅
op.loc ← my-location

Output write-ack()i

Precondition:
conf-id = 〈c, p, n〉
if op.recon-ip then

∃p0 ∈ P0, p1 ∈ P1 such that acc ⊇ p0 ∪ p1
else

∃pn ∈ Pn such that acc ⊇ pn

op.phase = put
op.type = write

Effect:
op.phase ← idle
confirmed ← confirmed ∪ {op.tag}

Fig. 6. Operation Manager OM i Read/Write Transitions

notifying focal points when the tag has been confirmed, the algorithm allows
later operations to discover that a second phase is unnecessary.

Reconfiguration. The code for the reconfiguration algorithm is presented
in Figure 7. The reconfiguration algorithm is a variant of the reconfiguration
mechanism presented in the Rambo II algorithm [12]: the presented algorithm
is a special case of the general algorithm, in which there are only a small, finite
number of legal configurations. This simplification obviates the need for a con-
sensus service, and therefore significantly improves efficiency. A reconfiguration
operation is similar to a read or write operation, in that it requires contacting
appropriate quorums of focal points from the two different configurations, c1 and
c2. First, OM i determines a new, unique, configuration identifier, by examining
the local clock, its node id, and the name of the desired configuration. Then
OM i sets a flag, indicating that a reconfiguration is in progress. At this point,
the first phase of the reconfiguration begins: OM i sends messages to a number
of focal points. The first phase terminates when OM i receives a response from
every node in four different quorums: (i) a get-quorum of c1, (ii) a get-quorum of
c2, (iii) a put-quorum of c1, and a (iv) put-quorum of c2. Then the second phase
begins, again sending out messages to focal points. It terminates when OM i re-



Input recon(conf-name)i

Effect:
conf-id = 〈global.clock , i, conf-name〉
recon-ip = true
if op.type = recon then

op.phase = idle

Internal recon-upgrade-2(cid)i

Precondition:
∃g0 ∈ G0, g1 ∈ G1, p0 ∈ P0, p1 ∈ P1

such that: acc ⊇ g0 ∪ g1 ∪ p0 ∪ p1
op.type = recon
op.phase = get
cid = conf-id

Effect:
op.phase ← put
op.oid ← 〈global.clock, i〉
op.acc ← ∅
op.loc ← global.location

Internal recon-upgrade(cid)i

Precondition:
recon-ip = true
op.phase = idle
cid = conf-id

Effect:
op ← 〈recon, get,⊥,⊥, true, 〈global.clock, i〉,

∅, global.location〉

Output recon-ack(cid)i

Precondition:
conf-id = 〈c, p, n〉
∃pn ∈ Pn such that acc ⊇ pn

op.type = recon
op.phase = put
cid = conf-id

Effect:
recon-ip = false
op.phase ← idle

Fig. 7. Operation Manager OM i Reconfiguration Transitions

ceives responses from every node in some put-quorum of the new configuration.
OM i may then broadcast a message to various focal-points, notifying them that
the new configuration is established and that the reconfiguration is done.

4 Atomic Consistency

In this section, we discuss the proof that the GeoQuorums algorithm guarantees
atomic consistency. For the complete proof, see the technical report [21]. The
proof is divided into two parts. First, we show that each FPE acts like an atomic
object with respect to put, get, confirm, and recon-done operations. Then we show
that the OM guarantees atomic consistency.

Focal Point Emulator. The FPE uses the totally ordered LBCast service
to implement a replicated state machine, which guarantees that the FPE im-
plements an atomic object. If no new node joins a particular focal point after
the beginning of the execution, it is easy to show that the FPE implements an
atomic object: each request to the FPE is rebroadcast using the LBCast service;
therefore every FPE receives requests in the same order. If the response for one
operation precedes the request for a second operation, then clearly the request
for the second comes after the request for the first in the LBCast total ordering.
Therefore the second request will be processed after the first request.

The same conclusion holds when nodes join the focal point after the beginning
of the execution. A joining node is sent a summary of all requests that occur
prior to its beginning the join protocol, and receives from the LBCast service all
requests for operations that occur after it begins the join protocol. Therefore,
when the join protocol completes, the FPE has processed every request ordered



by the LBCast service prior to the completion of the join protocol. We conclude
that the FPE implements an atomic object.

Operation Manager. The proof that the OM guarantees atomic consistency
relies on establishing a partial order on read and write operations, based on the
tag associated with each value. First, assume that all read operations complete
in two phases (rather than being short-circuited by the confirmed flag). If no
reconfiguration occurs, then it is easy to see that atomic consistency is guaran-
teed: assume operation π1 completes before operation π2 begins. First, assume
that both use configuration c. Then π1 accesses a put-quorum of c in its second
phase, and π2 accesses a get-quorum of c in its first phase. By the quorum in-
tersection property, there is some focal point, h, that is in both quorums. Then
focal point h first receives a message containing the request for π1, and then
sends a message in response to the request for π2.

Next, assume that a reconfiguration occurs such that either π1 or π2 has the
data.recon-ip flag set. The operation that has the flag set accesses quorums in
both configurations c1 and c2 (or all configurations, if there are more than two),
and therefore, as in the previous case, is guaranteed to contact a focal point, h,
that is part of the quorum contacted by the other operation. Finally, assume that
π1 uses one configuration, say, c1, and π2 uses the other configuration, say, c2,
and that neither has set the data.recon-ip flag. Then at least one reconfiguration
operation must begin during or after π1 and complete before π2, and we can
show that this reconfiguration operation learns about π1 in its first phase, and
propagates information to π2 in its second phase. (If there are more than two
configurations, then the tag is conveyed from π1 to π2 because reconfiguration
involves all existing configurations.)

Now we consider one-phase read operation. If a read operation terminates
after one phase, then it has received a message that the associated tag has been
confirmed. However, a tag is only confirmed when a prior operation has already
completed the propagation of the tag.

Putting these pieces together, we obtain the following, which leads (by Lemma
13.16 in [26]) to the conclusion that atomic consistency is guaranteed:

Theorem 1. If π1 and π2 are read/write operations, and π1 completes before π2

begins, then tag(π1) ≤ tag(π2). If π2 is a write operation, then tag(π1) < tag(π2).

5 Performance Discussion

The performance of the GeoQuorums algorithm is directly dependent on the
performance of the two communication services. Assume that every GeoCast
message is delivered within time dG, and every LBCast message is delivered
within time dLB ; let d = dG + dLB . Then every read and write operation termi-
nates within 8d: each phase takes at most two round-trip messages. (An extra
round of communication may be caused by the discovery during the first round
that a reconfiguration is in progress.) The algorithm as specified also allows
the implementation to trade-off message complexity and latency. In each phase,



the node initiating the operation must contact a quorum of focal points. It can
accomplish this by sending one message to every focal point, thereby ensuring
the fastest result, at the expense of a high message complexity. Alternatively,
the node can send a message only to focal points in a single quorum. If not all
responses are received (due, perhaps, to quorum members failing), the node can
try another quorum, and continue until it receives a response from every member
of some quorum. This leads to lower message complexity, but may take longer.

6 Conclusions and Future Work

We have presented a new approach, the GeoQuorums approach, to implementing
algorithms in mobile, ad hoc networks. We have presented a geographic abstrac-
tion model, and an algorithm, the Focal Point Emulator, that implements it
using mobile hosts. We have presented the Operation Manager, which uses the
static model to implement an efficient, reconfigurable atomic read/write memory.

The GeoQuorums approach transforms a highly dynamic, ad hoc environ-
ment into a static setting. This approach should facilitate the adaptation of
classical distributed algorithms to ad hoc networks. Unfortunately, the two com-
ponents presented are tightly coupled: the implementation of the FPE is specific
to the semantics of a reconfigurable atomic memory. We plan to further sepa-
rate the two levels of the algorithm. This separation will allow the GeoQuorums
approach to be applied to other challenging problems in mobile computing.

We also believe that our approach will be useful in studying hybrid networks,
consisting of both mobile nodes and fixed infrastructure. In areas where there are
non-mobile, fixed participants, simpler and more efficient versions of the FPE
can be used. When nodes enter areas with no infrastructure, the more dynamic
algorithm can seamlessly take over.

There are many open questions relating to the geographic abstraction. We
have assumed a static definition of focal points and configurations, but it remains
an open question to construct these in a distributed fashion, and to modify them
dynamically. There are also questions related to the practical implementation of
the model; we mention some ideas in Section 2, but open questions remain.
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