
Of Malicious Motes and Suspicious Sensors
On the efficiency of malicious interference in wireless networks

Seth Gilbert1, Rachid Guerraoui2, and Calvin Newport1

1 MIT CSAIL, {sethg,cnewport}@mit.edu
2 EPFL IC, rachid.guerraoui@epfl.ch

Abstract. How efficiently can a malicious device disrupt communica-
tion in a wireless network? Imagine a basic game involving two honest
players, Alice and Bob, who want to exchange information, and an ad-
versary, Collin, who can disrupt communication using a limited budget
of β broadcasts. How long can Collin delay Alice and Bob from com-
municating? In fact, the trials and tribulations of Alice and Bob capture
the fundamental difficulty shared by several n-player problems, including
reliable broadcast, leader election, static k-selection, and t-resilient con-
sensus. We provide round complexity lower bounds—and (nearly) tight
upper bounds—for each of those problems. These results imply bounds
on adversarial efficiency, which we analyze in terms of jamming gain and
disruption-free complexity.

1 Introduction

Ad hoc networks of wireless devices hold significant promise for the future of
ubiquitous computing. Unfortunately, such networks are particularly vulnerable
to adversarial interference due to their use of a shared, public communication
medium and their deployment in unprotected environments. For example, a com-
mitted adversary can disrupt an ad hoc network by jamming the communication
channel with noise. Continuous jamming, however, might be unwise for the ad-
versary: it depletes the adversary’s energy, allows the honest devices to detect
its presence, and simplifies its localization—and subsequent destruction. The ad-
versary, therefore, would rather be more efficient, disrupting the protocol using
a minimal number of transmissions.

Jamming Gain. The efficiency of the adversary can be quantified, roughly speak-
ing, by comparing the duration of the disruption to the adversary’s cost for
causing the disruption. In the systems literature, this metric has been informally
referred to as jamming gain (e.g., [1]). In the context of round-based protocols
(time-slotted wireless radio channels), the jamming gain can be defined as fol-
lows. Let DP (t) be the minimal number of broadcasts needed by the adversary
to delay protocol P from terminating for t rounds, for some initial value. Then
the jamming gain of protocol P is: JG(P ) = limT→∞

T
max(DP (T ),1) . For exam-

ple, if the adversary must broadcast in every round, the jamming gain is 1. By
contrast, if the adversary need never broadcast to prevent termination, then the
jamming gain is infinite.



Disruption-Free Complexity A second metric, disruption-free complexity, mea-
sures how long the adversary can disrupt a protocol without performing even one
broadcast. The uncertainty introduced by the possibility of adversarial broad-
casts is sufficient to slow down many protocols. This is defined as: DF(P ) =
max{t : DP (t) = 0} . If a protocol has large disruption-free complexity, then
the adversary can significantly reduce the throughput of multiple consecutive
executions, while avoiding the disadvantages of actually jamming.

This paper is the first theoretical examination of the efficiency of malicious
disruption in a wireless ad hoc network. We begin by analyzing a 3-player game
that captures many of the fundamental difficulties of wireless coordination. We
then extend these results to several classical problems: reliable broadcast, leader
election, static k-selection and consensus. For each problem, we present funda-
mental limits on the robustness to malicious interference, and we present algo-
rithms that match these standards of robustness.

The 3-Player Game. The 3-player game consists of two honest players—Alice
and Bob, and a third malicious player, Collin (the Collider). All three players
share a time-slotted single-hop wireless radio channel. Alice and Bob each begin
with a value to communicate. Colin is determined to prevent them from commu-
nicating, in either direction, for as long as possible. Collin can broadcast in any
time slot (i.e., round), potentially destroying honest messages or overwhelming
them with malicious data. In order to precisely measure the efficiency of a mali-
cious adversary, we endow Collin with a budget of β messages, and analyze how
long Alice and Bob can be disrupted. The size of β is not known a priori to
Alice and Bob. (If it were, then Alice and Bob could communicate reliably by
repeating each message 2β + 1 times.)

3-Player Lower Bound. We show that Collin can delay Alice and Bob’s commu-
nication for 2β +lg |V |/2 rounds, where V is the set of possible values that Alice
and Bob may communicate. An immediate corollary is that no protocol for Alice
and Bob can achieve a jamming gain better than 2. This result is surprising as it
implies that every protocol has some semantic vulnerability that the adversary
can exploit to gain extra efficiency. A second corollary is that the disruption-free
complexity is Θ(lg |V |). Therefore for large V , the passive presence of Collin can
significantly reduce Alice and Bob’s communication throughput. We prove these
lower bounds (in Section 4) by exhibiting a strategy for Collin to delay Alice
and Bob, exploiting the fact that they can never trust any message, since Collin
could have overwhelmed it with a fake message.

3-Player Upper Bound. For our upper bound (Section 5), we consider a (harder)
setting where Alice needs to transmit a value to Bob, who does not broadcast any
messages. We exhibit a protocol that allows Alice—using β + ∆ broadcasts—
to transmit her value to Bob in 2β + max{2∆2

lg |V |
∆ , 4 lg |V |} rounds. (Notice

that if ∆ < 1, we show that Alice’s task is impossible.) For ∆ = Ω(lg |V |),
the protocol matches our lower bound. For ∆ < lg |V |, however, Collin can



delay the communication more efficiently. For example, if ∆ = 1, the disruption-
free complexity of our protocol increases to |V |. We show that a disruption-free
complexity of max{2∆2

lg |V |
∆ , 4 lg |V |} is unavoidable, highlighting an inherent

tradeoff between Alice’s message complexity and her throughput. Finally, we
consider a variant of the 3-player game in which Alice and Bob do not start in
the same round; Bob is activated asynchronously by the adversary. We present
a protocol that solves this problem and still terminates within 2β + Θ(lg |V |)
rounds (assuming Alice has an unrestricted message budget).

The n-Player Implications. The trials and tribulations of Alice and Bob cap-
ture something fundamental about how efficiently malicious devices can disrupt
wireless coordination. In Section 6, we derive new lower bounds—via reduction
to our 3-player game—for several classical n-player problems: reliable broadcast:
2β +Θ(lg |V |); leader election: 2β +Ω(log n

k ); static k-selection: 2β +Ω(k lg |V |
k ).

For the latter two cases, k represents the number of participants contending
to become leader and to transmit their initial value, respectively. As before,
we draw immediate corollaries regarding the jamming gain and disruption-free
complexity, resulting in a jamming gain of 2, and disruption-free complexity of
Θ(lg |V |), Ω(log n

k ), and Ω(k lg |V |
k ), respectively.

We next consider a more general framework that also includes crash failures:
the malicious adversary can both broadcast β messages and also crash up to
t honest devices. We study binary consensus as an archetypal problem in this
framework, and derive a lower bound of 2β + Θ(t) rounds. The Θ(t) factor is
established by a technique that maintains the indistinguishability of two uni-
valent configurations for t rounds. The 2β factor then follows from a (partial)
reduction to consensus. This shows a jamming gain of 2, as before. By contrast,
the disruption-free complexity, Θ(t), is significantly larger than for the crash-free
models. (Notice that if the adversary is benign, then crash failures have no effect
on the complexity.)

Finally, in Section 7, we present tight upper bounds for reliable broadcast
and consensus and nearly tight bounds for leader election and static k-selection.

Assumptions and interpretations. Underlying our results on jamming gain and
disruption-free complexity is an analysis of how long the adversary can disrupt
communication given a limited broadcast budget. This interpretation is inter-
esting in its own right: a limited broadcast budget models the (limited) energy
available to a set of malicious devices.

Clearly, authentication—for example, using cryptographic keys—impacts our
lower bounds. With authentication, the 3-player communication game completes
in β +1 rounds, resulting in a jamming gain and disruption-free complexity of 1.
Intuitively, a jamming gain arises from semantic vulnerabilities in the protocol;
cryptographic techniques can eliminate this vulnerability. In general, however,
deploying cryptographic solutions in wireless networks can be difficult. Public
key authentication schemes are often expensive both in computation and, to
some extent, communication. Symmetric key schemes (such as MACs) have been



deployed in wireless networks (see, e.g., [2, 3]), yet the focus has generally been
link-level security, rather than authenticated broadcast, and there remain issues
with key distribution. For example, if only a single key is used, the system is
easily compromised by a single corrupted node; if multiple keys are used, then
keys must be exchanged and communication is complicated. One interpretation
of our bound is that authentication should be deployed only if its cost is less
than the cost of waiting an additional β + Θ(lg |V |) rounds.

2 Related Work

This paper explores the damage that can be caused by a genuinely malicious
(Byzantine) device that can reliably disrupt communication in a wireless ad
hoc network. Koo [4], Bhandari and Vaidya [5], as well as Pelc and Peleg [6],
study “t-locally bounded” Byzantine failures in wireless networks, in which the
number of Byzantine nodes in a region is bounded. In these papers, the Byzantine
devices are required to follow a strict TDMA schedule, thus preventing them
from interfering with honest communication. Others have considered models
with probabilistic message corruption [7,8]. Wireless networks with crash failures
(but not Byzantine failures) have also been studied extensively in both single
hop (e.g., [9,10]) and multihop (e.g., [11,12]) contexts. By contrast, we consider a
malicious adversary that can choose to send a message in any round, potentially
destroying honest messages or overwhelming them with malicious data.

Simultaneous to this work, Koo, Bhandari, Katz, and Vaidya [13] have also
considered a model where the adversary has a limited broadcast budget and can
send a message in any round, overwhelming honest messages. A key difference,
however, is that they assume that the adversary’s budget is fixed a priori and
known to all participants. By contrast, we do not assume that β is known in
advance. (Thus it is no longer sufficient to repeat each message 2β + 1 times.)
Moreover, they focus primarily on feasibility, that is, determining the thresh-
old density of dishonest players for which multihop broadcast is possible. By
contrast, our paper focuses on the time complexity of the protocols and the effi-
ciency of the adversary. Furthermore, we also consider the impact of combining
crash failures with a malicious adversary.

Adversarial jamming of physical layer radio communication is a well studied
problem in the electrical engineering community (see, e.g., [14]). In the context of
wireless ad hoc networks, there has been recent interest in studying the jamming
problem at the MAC layer and above. See, for example, [1,15–17], which analyze
specific MAC and network layer protocols, highlighting semantic vulnerabilities
that can be leveraged to gain increased jamming efficiency.

3 Preliminaries

We assume a synchronous round-based Multiple Access Channel (MAC) model
with collision detection (as in, e.g. [18–20]). We consider n honest devices, the



players, named from the set [1, n], and one additional malicious device incarnat-
ing the adversary. In each round, each device can decide to broadcast a message
or listen. If there are no broadcasts in a round, then none of the players receive a
message. If exactly one message is broadcast, then all players receive the message.
If two or more messages are broadcast, then each player can either: (1) receive
exactly one of the broadcast messages; or (2) detect noise on the channel, i.e., a
collision. (This channel behavior represents the unpredictability of real networks,
for example, shadowing effects [21].) Without loss of generality, we assume that
the adversary determines for each honest player whether option 1 or 2 occurs;
in case of option 1 the adversary’s message is systematically received.

Throughout this paper, we endow the adversary with a budget of β broad-
cast messages, where β is a priori unknown to the players. Also, we assume no
message authentication capabilities. That is, a player cannot necessarily distin-
guish a message sent from the adversary from a message sent by a fellow honest
player.

The basic game we consider involves two honest players, Alice and Bob, and
an adversary, Collin. Alice is initialized with value va ∈ V and Bob with vb ∈ V ,
where |V | > 1 and V is known to all. The players can output(v) for any v ∈ V
such that the following are satisfied. Safety: Bob only outputs va and Alice only
outputs vb; and Liveness: Eventually, either Alice or Bob outputs a value.

4 Lower Bound for the 3-Player Game

We prove in this section a lower bound on the round complexity of the 3-player
communication game. Our lower bound holds even if Alice and Bob have an
unlimited budget of messages.

To prove our lower bound, we describe a strategy for Collin to frugally use his
β messages to prevent communication. Two assumptions are key to this strategy:
(1) Collin’s budget of messages β is unknown to Alice and Bob; (2) Alice and
Bob cannot distinguish a message sent by Collin from an honest message. A
silent round, on the other hand, cannot be faked: if Bob (for example) receives
no message and no collision notification, then he can be certain that Alice did
not broadcast a message. Therefore, in order to prevent Alice and Bob from
communicating, it is sufficient, roughly speaking, for Collin to disturb silence.

Theorem 1. Any 3-player communication protocol requires at least 2β+lg |V |/2
rounds to terminate.

Assume, for contradiction, a protocol, A, that defies this worst-case performance.
Consider any value v ∈ V and denote by γ(v) the lg |V |/2− 1 round (good) exe-
cution of A where Alice and Bob begin with initial value v, and Collin performs
no broadcasts. If Alice and Bob both broadcast in the same round, assume both
messages are lost. We begin with the following lemma:

Lemma 1. There exist two values v, w ∈ V (v 6= w), such that Alice (resp.
Bob) broadcasts in round r of γ(v) if and only if Alice (resp. Bob) broadcasts in
round r of γ(w).



Alice Bob Collin
α(v) α(w) α(v) α(w) α(v) α(w)

1 m - - - - m

2 - m - - m -

3 - - m - - m

4 - - - m m -

5 m - m′ - - m′

6 - m - m′ m′ -

7 m - - m′ - m

8 - m m′ - m -

(a) α Rules

Alice Bob Collin
α(v) ρ(w, v) α(w) ρ(w, v) ρ(w, v)

1 m m′ - - m

2 - - m′ m m′

3 m - - - m

4 - - m - m

5 m - m′ - m

6 - m m′ - m′

7 m m′ m′′ - m

8 m - m′′ m′ m′′

(b) ρ(w, v) Rules

Fig. 1. Collin’s behavioral rules for α and ρ(w, v) executions.

Proof. In each round, there are four possibilities: (1) Alice broadcasts alone, (2)
Bob broadcasts alone, (3) Alice and Bob both broadcast, and (4) neither Alice
nor Bob broadcasts. Accordingly, for a sequence of c rounds, there are 4c possible
patterns of broadcast behavior. Thus, there are at most 4lg |V |/2−1 = |V |

4 possible
broadcast patterns that result from the |V | possible γ executions. It follows by
the pigeonhole principle that at least two such executions have the same pattern.

For the rest of this proof, we fix v and w to be the two values identified by
Lemma 1. We define α(v) (resp. α(w)) to be the execution of A in which Alice
and Bob both begin with initial value v (resp. w) and Collin applies the α-rules
described in Figure 1(a). In this table, “-” indicates silence and m and m′ both
represent a message broadcast. Each row matches a specific set of broadcast
behaviors of Alice and Bob in two executions, with the corresponding broadcast
behavior followed by Collin in these executions. Since Alice and Bob’s algorithm
is deterministic, Collin can predict their behavior in each round.

For example, Rule 1 from Figure 1(a) specifies that for any given round, if
Alice broadcasts in exactly one α execution, and Bob is silent in both, then Collin
replicates Alice’s broadcast in the execution where she is silent. For any pattern
of broadcast behavior not described in the table, assume that Collin performs no
broadcasts. Also, assume that in any round where both Collin and Alice (resp.
Bob) broadcast, only Collin’s message is received by Bob (resp. Alice). We claim:

Lemma 2. Neither Alice nor Bob can output during α(v) or α(w).

Proof. We show that Bob cannot output in α(v) and Alice cannot output in
α(w). The argument for Bob in α(w) and Alice in α(v) is symmetric.

We first define a third execution ρ(w, v), of A, in which Alice starts with
initial value w and Bob starts with initial value v. The behavior of Collin in
execution ρ is defined by the rules in Figure 1(b). Notice that, in all three
executions, we assume that Collin has an unlimited broadcast budget. This is
without loss of generality because Alice and Bob do not know the value of β,
and we will later concern ourselves only with the prefixes of the α executions in
which Bob has not yet broadcast more then β times.



We show, by induction on the round number, r, that ρ(w, v) is indistinguish-
able from α(v) with respect to Bob, and that ρ(w, v) is indistinguishable from
α(w) with respect to Alice. The lemma follows immediately from this indistin-
guishability and the safety requirement of the communication game.

Since Bob begins with value v in both ρ(w, v) and α(v), and Alice begins
with value w in both ρ(w, v) and α(w), the base case (r = 0) is immediate. We
now consider the possible behaviors of Alice and Bob during round r + 1.

– Case 1: Alice broadcasts in α(w). By induction, this implies Alice also broad-
casts in ρ(w, v), therefore these two executions remain indistinguishable with
respect to Alice (as broadcasters cannot listen). We turn our attention to
Bob, bypassing the sub-case of Bob broadcasting in α(v) as this is Case 2.
Two sub-cases: (1) Alice is silent in α(v). If Bob is also silent in α(w), then,
by α-Rule 2, Collin broadcasts Alice’s α(w) (and ρ(w, v)) message in α(v). If
Bob broadcasts in α(w), then, by α-rule 6, Collin broadcasts Bob’s message
in α(v) and, by ρ-rule 6, Collin also broadcasts Bob’s message in ρ(w, v).
(2) Alice broadcasts in α(v). By ρ-Rule 1 or 7 (depending on whether Bob
broadcasts in α(w)) Collin replicates Alice’s α(v) message in the ρ execution.
In all cases, Bob receives the same message in α(v) and ρ(w, v).

– Case 2: Bob broadcasts in α(v). This argument is symmetric to Case 1.
– Case 3: Alice does not broadcast in α(w) and Bob does not broadcast in

α(v). There are four sub-cases. (1) Alice and Bob don’t broadcast in α(v)
and α(w), respectively. Collin does nothing and the executions are clearly
indistinguishable. (2) Alice broadcasts in α(v) and Bob is silent in α(w).
By α-rule 1, Collin broadcasts Alice’s message in α(w). By ρ-rule 3, Collin
broadcasts Alice’s message in ρ(w, v). Therefore, Bob receives Alice’s mes-
sage in α(v) and ρ(w, v), and Alice receives her message (from Collin) in α(w)
and ρ(w, v). (3) Alice is silent in α(v) and Bob broadcasts in α(w). By α-rule
4, Collin broadcasts Bob’s message in α(v). By ρ-rule 4, Collin broadcasts
Bob’s message in ρ(w, v). Therefore, Alice receives Bob’s message in α(w)
and ρ(w, v), and Bob receive his message (from Collin) in α(v) and ρ(w, v).
(4) Alice broadcasts in α(v) and Bob broadcasts in α(w). By α-rule 7, Collin
broadcasts Alice’s message in α(w). By ρ-rule 5, Collin broadcasts Alice’s
message in ρ(w, v). Therefore, Alice receives her message (from Collin) in
α(w) and ρ(w, v), and Bob receives Alice’s message in α(v) and ρ(w, v).

We now show that one of these two indistinguishable α executions requires only
β broadcasts by Collin during the first 2β + lg |V |/2− 1 rounds.

Proof (Theorem 1). By Lemma 2, Alice and Bob do not produce an output
in either α(v) or α(w) as long as Collin continues to follow the α rules. It suf-
fices to show that, in at least one of the two executions α(v) and α(w), Collin
broadcasts in no more than β of the first 2β + lg |V |/2− 1 rounds.

We first consider rounds 1 through lg |V |/2− 1 of α(v) and α(w). We know
by Lemma 1 that Alice and Bob broadcast on the same schedule for these initial
rounds when they start both with v or both with w. Notice, however, that Collin
broadcasts (according to the α rules) only in situations of asymmetric silence,



Algorithm 1: Bit Broadcast Sub-Protocol

1 bcast-Alice(b)
2 active ← true
3 while (active) do
4 if (b=1) then
5 bcast(vote) B Data round broadcast
6 m ← recv() B Data round receive
7 if (b=0) and (m 6= ⊥) then
8 bcast(veto) B Veto round broadcast
9 m ← recv() B Veto round receive

10 if (m = ⊥) then
11 active ← false
12 return

1 recv-Bob()
2 active ← true
3 while (active) do
4 votes ← recv() B Data round receive
5 vetos ← recv() B Veto round receive
6 if (vetos = ⊥) then
7 active ← false
8 if (votes = ⊥) then
9 return 0

10 else
11 return 1

Algorithm 2: Sequence Broadcast Protocol

1 SEQ-Alice(s ∈ {0, 1}k,k)
2 count ← 1
3 while (count ≤ k) do
4 bcast-Alice(s[count ])
5 count ← count + 1

1 SEQ-Bob(k)
2 count ← 1
3 while (count ≤ k) do
4 s[count ] ← recv-Bob()
5 count ← count + 1
6 output(s)

i.e. when Alice and Bob are not on the same schedule. It follows that Collin does
not broadcast in either α(v) or α(w) for the first lg |V |/2− 1 rounds.

Now we turn our attention to the 2β rounds that follow. For a given round,
Collin only broadcasts in α(v) or α(w), but not both, since he only fills in asym-
metric silent rounds. Therefore, by a simple counting argument, it is impossible
for Collin to broadcast in more than half of the rounds in both executions. We
therefore choose the execution in which Collin broadcasts in no more than half
of the following 2β rounds. This delays both Alice and Bob from outputting for
2β + lg |V |/2− 1 rounds. �

We conclude with an immediate corollary of Theorem 1:

Corollary 1. Any 3-player communication protocol has a jamming gain of at
least 2, and a disruption-free complexity of Ω(lg |V |). ut

5 Upper Bounds for the 3-Player Game

We prove in this section that our (round complexity) lower bound is tight, by
showing that there is a protocol that matches it. To strengthen our upper bound
result, we consider the seemingly harder problem of Alice transmitting her value
to Bob in a setting where Bob does not broadcast. Specifically, we give a protocol
that, assuming Alice has a budget of β + ∆ messages, transmits Alice’s input
value to Bob in 2β + max{2∆2

lg |V |
∆ , 4 lg |V |} rounds. For ∆ = Ω(lg |V |), this

protocol matches our lower bound. For ∆ = o(lg |V |) the round complexity
grows. We show this to be unavoidable.

Our protocol broadcasts a sequence of bits (Algorithm 2), using a sub-
protocol for each bit. Alice to Bob (Algorithm 1). The basic idea ofAlgorithm 1
is to alternate data rounds and veto rounds. In a data round, Alice transmits a
message if b = 1 and remains silent otherwise. If Collin interferes with the data
round (i.e. by broadcasting in the case where b = 0), Alice indicates this interfer-
ence by broadcasting in the veto round. At this point, Alice and Bob try again
with a new pair of rounds. Of course, Collin can also interfere by broadcasting



in a veto round. This too causes Alice and Bob to try again with a new pair of
rounds. The sub-protocol continues until the first silent veto round.

Alice and Bob both know that Alice has a broadcast budget of β + ∆. Typi-
cally, Alice would broadcast a binary encoding of her value, which might require
lg |V | broadcasts. If ∆ < lg |V |, we encode the value as bit strings of length
k containing at most ∆ 1’s. We choose k to be the minimum value such that(

k
∆

)
≥ |V |, that is, the smallest value that allows us to express all V values.

Alice then transmits this encoding as described above. This is summarized in
the following theorem, whose proof is in the full version:

Theorem 2. There exists a protocol through which Alice transmits her initial
value to Bob, within 2β+max{2∆2

lg |V |
∆ , 4 lg |V |} rounds, using a budget of β+∆

messages. This protocol thus has a jamming gain of 2, and a disruption-free
complexity of max{2∆2

lg |V |
∆ , 4 lg |V |}

Notice that Theorem 2 assumes Alice has a message budget that is strictly
larger than Collin’s budget (as indicated by the constraint ∆ > 0). This is
in fact necessary, and it is impossible to communicate a value from Alice to
Bob if Alice’s budget is ≤ β since, in this case, Collin can successfully simulate
Alice’s behavior (see the full version). Notice that the round complexity grows
significantly as ∆ decreases below lg |V |. We show this trade-off to be inherent:

Theorem 3. Let k = max{∆2lg (|V |)/∆

e −∆, lg|V |
2 }. If Alice has a budget of size

β + ∆ (∆ > 0), then there exists no protocol through which Alice can transmit
her initial value to Bob in less than 2β +k rounds. Thus every such protocol has
a disruption-free running time of Ω(k).

The Wake-Up Case. We have assumed that Alice and Bob begin in the same
round. Consider the case where Bob is activated at an unknown point in the
execution. Thus, Bob no longer has round numbers synchronized with Alice. This
models the situation where Alice represents a base station that needs to transmit
a value to intermittently awake tiny devices (i.e., Bob). There is (in the full
version) a variant of our protocol that solves the problem in 2β+Θ(lg |V |) rounds
after Bob awakes, asymptotically matching our lower bound from Section 4,
despite the extra synchronization challenges. This variant requires Alice to never
terminate, which is inevitable given that she can never distinguish between Bob
and Collin pretending to be Bob (while Bob is still sleeping).

6 Lower Bounds for n-Player Problems

We generalize here our results to n-player coordination problems. We then con-
sider the impact of combining malicious behavior with crash failures.

6.1 n-Player Reductions

We show here how Alice and Bob can together simulate an arbitrary n-player
protocol. We then use this simulation to derive lower bounds, via reduction from



the 3-player communication game, for several n-player problems. None of our
round-complexity lower bounds restricts the message budget of honest players.

A simulation by Alice and Bob is defined by a 5-tuple: {A,n, SA, SB , I},
where: (1) A is the n-player protocol being simulated; (2) SA and SB partition
the n players into two non-empty and non-overlapping sets; (3) I is a mapping
of players to their respective initial values.

Alice simulates the players in SA, initializing them according to I. (Alice is
provided only the initial values for nodes in SA, i.e., I|SA.) In each round, if any
of the players in SA choose to broadcast, Alice arbitrarily chooses one of their
messages to broadcast. She then delivers to each simulated player any messages
or collision notifications from that round. Bob simulates the players in SB in an
equivalent manner. The following can be proved by straightforward induction:

Theorem 4. Consider simulation {A,n, SA, SB , I}. For all r-round executions
of the simulation, there exists an r-round execution α of A, initialized according
to I, where the outputs of Alice and Bob are equivalent to the outputs in α, and
Collin broadcasts the same number of messages in the simulation and α.

Reliable Broadcast. In reliable broadcast, one player—the source—is provided
with an input value v0 ∈ V . Each player must receive this initial value. Safety
requires that each player output only v0, i.e., perform output(v) only if v = v0.
Liveness requires that all players eventually perform an output.

Theorem 5. Any reliable broadcast protocol requires at least 2β+lg |V |/2 rounds
to terminate.

Proof. Assume by contradiction that A is a reliable broadcast protocol that
terminates in R < 2β + lg |V |/2 rounds for all initial values. We reduce 3-player
communication, for value domain V , to A. Alice and Bob simulate A for n
players, where: (1) SA contains the source, SB contains all other players, and
(2) I maps the source to va, Alice’s initial value. Bob outputs the first value
output by a simulated player. By Theorem 4, Bob always outputs v0 = va by
round R, contradicting Theorem 1.

Leader Election. In leader election, k ≤ n participants contend to become the
leader. All n players should learn the leader, i.e., perform output(`), for some `.
Safety requires that the leader be a participant, and that there be only one
leader. Liveness requires every player to perform an output.

Theorem 6. Any leader election protocol requires at least 2β+lg bn−1
k c/2 rounds

to terminate.

Proof. Assume by contradiction that A is a leader election protocol that termi-
nates in R < 2β + lg bn−1

k c/2 rounds for all choices of k participants. We reduce
to leader election, the 3-player game defined over the value space V , where V
contains every integer between 1 and bn−1

k c, to A.
Alice and Bob simulate A for n players where: (1) SA contains players 1

through n − 1, SB contains player n, and (2) I activates player i ∈ SA if and



only if (i mod bn−1
k c) + 1 = va and fewer than k nodes have been activated

so far in IA. Let i be the leader output by Bob’s simulated player. Bob outputs
va = (i mod bn−1

k c) + 1, as required. By Theorem 4 Bob always outputs va

within R rounds, contradicting Theorem 1, since 2β +lg V/2 = 2β +lg bn−1
k c/2.

Static k-Selection. In static k-Selection, k participants are provided with values
vi ∈ V . Each player must receive all values. Safety requires that the first k out-
puts of a player equal the k values. Liveness requires that all players eventually
perform at least k output actions. The protocol terminates when all players have
performed at least k output actions. (The selection problem is well-studied in
radio networks, e.g., [22, 23].)3

Theorem 7. Any static k-selection protocol requires at least 2β + Ω(k lg |V |
k )

rounds to terminate.

Proof. Assume by contradiction that A is a protocol that terminates in R <
2β + o(k lg |V |/k) rounds, for all initial values and choices of participants. We
reduce to k-selection, the 3-player game for the value space V ′, where V ′ contains
one entry for every multiset of k values drawn from V , to A.

Alice and Bob simulate A for n players where: (1) SA contains players 1
through k, SB contains the remaining players, and (2) I activates players 1
through k, and provides each a different value from the multiset described by
va ∈ V ′. Given k simulated outputs, Bob can reconstruct and output the unique
multiset described by these values. By Theorem 4 Bob will always output va

in R rounds, contradicting Theorem 1, since 2β + lg |V ′|/2 = 2β + lg |V |k
k! /2 =

2β + Θ(k lg |V |
k ) rounds.

Corollary 2. Any protocol for reliable broadcast, leader election or static k-
selection has a jamming gain of at least 2 and a disruption-free running time of
Ω(log |V |), Ω(lg n−1

k ), and Ω(k lg |V |
k ), respectively. ut

6.2 Combining Malicious and Crash Behavior

We now study the impact of combining malicious behavior with crash failures.
We assume that the adversary, in addition to having a budget of β messages,
can also crash up to t players. We consider the problem of binary consensus.
The n honest players each propose a value. Liveness requires that all non-crashed
players eventually decide a value. Agreement requires all players that decide to
choose the same value. Validity requires that if all non-crashed players propose
the same value, then all deciding players choose that value.

By a simple indistinguishability argument, it is easy to see that consensus
is impossible if n ≤ 2t: it is impossible to distinguish a correct player from a
crashed player that is simulated by the adversary; thus no player can decide in
an execution in which t players propose ‘0’ and t propose ‘1’.
3 Often k-selection is oblivious to initial values. We allow a dependence on the initial

values, strengthening the lower bound.



We therefore assume that n = 2t+1, and establish a lower bound of 2β+Θ(t)
on the round complexity of consensus. Our bound reveals the interesting fact
that the possibility of crashed honest devices increases the power of the malicious
adversary. This is perhaps surprising as, if there is no malicious adversary, crash-
failures have no effect on termination (in a synchronous broadcast network).

As before, we use a simulation by Alice and Bob of the (t-resilient) n-player
consensus protocol. The simulation, however, is more challenging than those
used for the n-player problems studied previously as we must compensate for
the crash failures. We do not start the simulation from the initial configuration,
but instead from one of two univalent configurations arising after t rounds. These
configurations are constructed in Lemma 3, which is interesting in its own right as
it exhibits executions in which information (about initial values) is transmitted
at most one bit per round. By combining it with valency arguments, we show
how the 3-player game can aid the construction of involved lower bounds.

Theorem 8. Any t-resilient binary consensus protocol requires at least 2β + t
rounds to terminate.

We fix the environment such that if multiple messages are sent in a round, and
the adversary does not broadcast, then the message sent by the player with the
smallest id is received by everyone. An execution (or prefix) is failure-free if it
includes no crashes or broadcasts by the adversary.

Given these assumptions, it is clear that each initial configuration results in
a deterministic failure-free execution. We represent all of these possible failure-
free executions as a tree T . Every execution begins at the root, and a node at
depth r represents the execution at the beginning of round r. Each node at
depth r contains one outgoing edge for every possible message m that may be
received in round r, and one outgoing edge for a silent round (labeled ⊥). Thus,
every failure-free execution of A is represented by a single path in T . Accordingly,
for each initial configuration c, we say that a node x ∈ T is reachable from c—
with respect to A—if the path associated with c’s failure-free execution includes
node x. We define the tree T (A) to be T pruned to contain only reachable
nodes. That is, if x ∈ T (A), then there exists some initial configuration c for
which x is reachable. Notice that if a depth r node x is reachable for two initial
configurations c and c′, and some player i has the same initial value in c and c′,
then at the beginning of round r, player i cannot distinguish c from c′. If c is
0-valent, and c′ is 1-valent, then i cannot decide prior to round r.

Lemma 3. There exists a path of length t in T (A), ending at node Rt, where
Rt is reachable from two initial configurations, c0 and c1, such that some player
pt has the same initial value in c0 and c1, and every crash-free extension of c0

is 0-valent and every crash-free extension of c1 is 1-valent, with respect to A.

Proof. Starting at the root of T (A), given an initial configuration c0, construct
a path of length t by applying the following: (1) If there exists ≥ 1 outgoing
message edges, choose the message from the player with the smallest id. (2)
Otherwise, follow the ⊥ edge. Let Rt be the node reached after t iterations.



Configuration c0 contains either a majority of ‘0’s or a majority of ‘1’s. Notice
that a majority contains at least t+1 players, since n = 2t+1. Assume without
loss of generality that a majority of players (i.e., at least t + 1) propose ‘0’ in
c0. This implies that any crash-free extension of c0 must decide ‘0’, since any
such execution is indistinguishable from one in which all players propose ‘0’, and
those ≤ t players proposing ‘1’ are crashed nodes emulated by the adversary—in
which case a decision of ‘1’ violates validity.

We now construct an initial configuration c1. Denote by P the set of players
that broadcast messages which were received along the path to Rt. Note that
P contains ≤ t players. Choose c1 such that the players in P propose the same
initial value as in c0, and the remaining players (at least t + 1) all propose ‘1’.
Choose some pt ∈ P . (If |P | = 0, then arbitrarily choose one player pt to have
the same initial value in c0 and c1.) It is clear, by the same reasoning applied
to c0, that all crash-free extensions of c1 must decide ‘1’. It follows that Rt is
reachable from c1, by a straightforward induction argument.

Proof (Theorem 8). Let α0 (resp. α1) denote the failure-free execution pre-
fix starting from c0 (resp. c1) and ending at Rt. Executions α0 and α1 are
indistinguishable with respect to pt; hence pt has not decided prior to round
t. To this point, the adversary has used zero broadcasts. To achieve a further
2β delay, we defer to Alice and Bob, who can solve the binary communication
game by performing a crash-free simulation of the n-player protocol, in which
Alice begins in the final state of α0 or α1, and Bob simulates pt. This simulation
cannot terminate in fewer than 2β round, implying the desired bound. �

Corollary 3. Any t-resilient binary consensus protocol has a jamming gain of
at least 2 and a disruption-free complexity of Ω(t). ut

7 Upper Bounds for the n-Player Problems

We now present protocols for reliable broadcast, leader election, static k-selection,
and binary consensus. Our reliable broadcast and consensus protocols match the
lower bounds. Those for leader election and k-selection leave a gap.

Reliable Broadcast. An algorithm for reliable broadcast follows from the algo-
rithm in Section 5. The source runs Alice’s protocol, and all other players run
Bob’s protocol, resulting in a running time of 2β +O(lg |V |), matching the lower
bound. This protocol requires the source to have a budget of β + lg |V |.

Binary Consensus. Assuming t crashes, consensus can be achieved using reliable
broadcast: each of 2t + 1 players transmits their initial value sequentially. (No-
tice that a crashed player, if there is no malicious interference, transmits a ‘0’,
according to the protocol.) Everyone decides the majority value. The running
time is 2β + Θ(t). Each player needs a budget of β + 1 broadcasts.



Leader Election. In order to elect a leader, we use a tournament tree, a binary
tree with n leaves, each labeled with a player’s id. Assume c ≥ 1 is an integer
parameter. The protocol begins at the root, and at each step descends to a child
or ascends to the parent. At each step, the protocol determines whether there are
any participants in the left or right subtrees. First, each participant in the left
subtree broadcasts up to c times. If all of these rounds are non-silent, the protocol
descends to the left subtree. Otherwise, the first time a silent round occurs, it
skips the remaining rounds and checks the right subtree: each participant in
the right subtree broadcasts up to c times. If all of these rounds are non-silent,
the protocol descends to the right subtree. Otherwise, on the first silent round,
the protocol ascends to the parent. On reaching a leaf, the identified node uses
reliable broadcast to transmit a ‘1’ if it is participating and a ‘0’ otherwise. In the
latter case, the protocol ascends to the parent and continues. Each participant
needs a budget of 2c lg n + β + 1 broadcasts.

Theorem 9. The leader election protocol terminates after 2β c+1
c + 2c lg n + 2

rounds, for all c ≥ 1. ut

k-Selection. A protocol for static k-selection can be obtained by repeating the
leader election protocol k times, each time using reliable broadcast to transmit
the initial value. The protocol completes when leader election finds no further
contenders. Each participant needs a budget of 2c lg n + β + log |V | broadcasts.

Theorem 10. The k-selection protocol terminates in 2β c+1
c +2kc lg n+k lg V +

2k + 2, which equals 2β c+1
c + O(ck lg |V |) if lg n = O(lg |V |), for all c ≥ 1. ut

8 Concluding Remarks

Interestingly, our lower bounds hold for weaker games. Lemmas 1 and 2 imply
that calculating equality, bitwise-and or bitwise-or have the same round com-
plexity as the 3-player game. We also conjecture that even for a randomized
algorithm, 2β + Θ(lg |V |) rounds are needed. A future research direction is to
extend our results to multihop environments.

Ackowledgments

We are grateful to H. Attiya and G. Chockler for their comments and discussions.

References

1. Brown, T.X., James, J.E., Sethi, A.: Jamming and sensing of encrypted wireless
ad hoc networks. Technical Report CU-CS-1005-06, UC Boulder (2006)

2. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: Security
protocols for sensor networks. Wireless Networks 8(5) (2002) 521–534



3. Karlof, C., Sastry, N., Wagner, D.: Tinysec: A link layer security architecture for
wireless sensor networks. In: Embedded Networked Sensor Systems. (2004)

4. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: Principles of Distributed Computing. (2004) 275–282

5. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Principles
of Distributed Computing. (2005) 138–147

6. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Informa-
tion Processing Letters 93(3) (2005) 109–115

7. Drabkin, V., Friedman, R., Segal, M.: Efficient byzantine broadcast in wireless ad
hoc networks. In: Dependable Systems and Networks. (2005) 160–169

8. Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random trans-
mission failures. In: Principles of Distributed Computing. (2005) 334–341

9. Clementi, A., Monti, A., Silvestri, R.: Optimal f-reliable protocols for the do-all
problem on single-hop wireless networks. In: Algorithms and Computation. (2002)
320–331

10. Chlebus, B.S., Kowalski, D.R., Lingas, A.: The do-all problem in broadcast net-
works. In: Principles of Distributed Computing. (2001) 117–127

11. Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks.
In: European Symposium on Algorithms. (1998) 283–294

12. Clementi, A., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant
broadcasting on wireless networks. J. Parallel Distributed Computing 64(1) (2004)
89–96

13. Koo, C.Y., Bhandari, V., Katz, J., Vaidya, N.H.: Relibable broadcast in radio
networks: The bounded collision case. In: Principles of Distributed Computing.
(2006)

14. Stahlberg, M.: Radio jamming attacks against two popular mobile networks. In:
Helsinki University of Technology Seminar on Network Security. (2000)

15. Negi, R., Perrig, A.: Jamming analysis of mac protocols. Technical report, Carnegie
Mellon University (2003)

16. Hu, Y., Perrig, A.: A survey of secure wireless ad hoc routing. IEEE Security and
Privacy Magazine 02(3) (2004) 28–39

17. Gupta, V., Krishnamurthy, S., Faloutsos, S.: Denial of service attacks at the mac
layer in wireless ad hoc networks. In: Military Communications Conference. (2002)

18. Abramson, N.: The aloha system - another approach for computer communications.
Proceedings of Fall Joint Computer Conference, AFIPS 37 (1970) 281–285

19. Metcalf, R.M., Boggs, D.R.: Ethernet: Distributed packet switching for local com-
puter networks. Communications of the ACM 19(7) (1976) 395–404

20. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. Journal of Computer and System Sciences 45(1) (1992) 104–126

21. Woo, A., Whitehouse, K., Jiang, F., Polastre, J., Culler, D.: Exploiting the capture
effect for collision detection and recovery. In: Workshop on Embedded Networked
Sensors. (2005) 45–52

22. Clementi, A., Monti, A., Silvestri, R.: Selective families, superimposed codes, and
broadcasting on unknown radio networks. In: Symposium on Discrete algorithms,
Philadelphia, PA, USA (2001) 709–718

23. Kowalski, D.R.: On selection problem in radio networks. In: Principles of Dis-
tributed Computing, New York, NY, USA, ACM Press (2005) 158–166


