
RAMBO II: Rapidly Reconfigurable Atomic Memory for Dynamic Networks ∗

Seth Gilbert1

sethg@theory.lcs.mit.edu

Nancy Lynch1

lynch@theory.lcs.mit.edu

Alex Shvartsman1,2

alex@theory.lcs.mit.edu

MIT Laboratory for Computer Science1

200 Technology Square
Cambridge, MA 02139, USA

Dept. of Computer Science and Engineering2

191 Auditorium Road, Unit 3155
University of Connecticut, Storrs, CT 06269

Abstract

This paper presents a new algorithm implementing re-
configurable atomic read/write memory for highly dynamic
environments. The originalRAMBO algorithm, recently
developed by Lynch and Shvartsman [15, 16], guarantees
atomicity for arbitrary patterns of asynchrony, message
loss, and node crashes.RAMBO II implements a differ-
ent approach to establishing new configurations: instead of
operating sequentially, the new algorithm reconfigures ag-
gressively, transferring information from old configurations
to new configurations in parallel. This improvement sub-
stantially reduces the time to establish a new configuration
and to remove obsolete configurations. This, in turn, sub-
stantially increases fault tolerance and reduces the latency
of read/write operations when the network is unstable or
reconfiguration is bursty. This paper presentsRAMBO II , a
correctness proof, and a conditional analysis of its perfor-
mance. Preliminary empirical studies illustrate the advan-
tages of the new algorithm.

1. Introduction

In the future, large scale distributed applications will
rely on a multitude of communicating, computing devices.
These devices will operate in complex, dynamic environ-
ments, for example, in major civilian rescue efforts and ex-
tensive military maneuvers. These devices will facilitate
the coordination of personnel and equipment, as they gather
data, store it in survivable repositories, and provide timely
and coherent information.

These applications often require data objects with atomic

∗This work was supported in part by NSF ITR Grant CCR-0121277,
NSF Grants 9804665, 9988304, 64961-CS, NSF CAREERAward 9984778,
AFOSR Contract #F49620-00-1-0097, DARPA Contract #F33615-01-C-
1896, and NTT Grant MIT9904-12.

read/write semantics, and the data is often replicated to
guarantee fault tolerance and availability. Replication, how-
ever, introduces two problems: (i) maintainingconsistency
among the replicas, and (ii)dynamic participation– man-
aging the replicas as the participants change.

Consistency. Beginning with the work of Gifford [8] and
Thomas [21], many algorithms use collections of intersect-
ing sets to solve theconsistencyproblem for replicated
data. Such intersecting sets are calledquorums. Upfal and
Wigderson [22] use majority sets of readers and writers to
emulate shared memory in a distributed setting. Vitányi and
Awerbuch [23] implement multi-writer/multi-reader reg-
isters using matrices of single-writer/single-reader regis-
ters where the rows and the columns are written and re-
spectively read by specific processors. Attiya, Bar-Noy
and Dolev [2] use majorities of processors to implement
single-writer/multi-reader objects in message passing sys-
tems. Such algorithms assume a static set of processors and
rely on a static definition of the quorum systems.

Dynamic Participation. We call a set of quorums used
to manage data replicas aconfiguration. In long-lived sys-
tems, where processors frequently join and leave, it is nec-
essary to occasionally reconfigure, choosing a new set of
quorums. This operation relocates the replicas to non-
failed nodes, adapting to a new set of participants. Prior
approaches [6, 11, 5, 10, 20] require the new quorums to
include processors from the old quorums, restricting the
choice of a new configuration. This restriction is a static
constraint that needs to be satisfied by the quorum sys-
tem even before the reconfiguration. In our work on re-
configurable atomic memory [18, 7, 15, 16], we replace
thespace-domainrequirement on successive configurations
with a time-domainrequirement: some quorums from both
the old and the new system are involved in the reconfigu-
ration algorithm. Such systems are more dynamic because
they place fewer restrictions on the choice of a new config-
uration: there is no requirement that successive configura-



tions intersect.
Some earlier algorithms [18, 7] designate a single distin-

guished process to initiate all reconfigurations. The advan-
tage of the single-reconfigurer approach is its relative sim-
plicity and efficiency. The disadvantage is that the reconfig-
urer is a single point of failure – no further reconfiguration
is possible if the designated node fails.

Virtually synchronous services [3], and group commu-
nication services in general [1], can also be used to imple-
ment an atomic data service, e.g., by implementing a global
totally ordered broadcast. In most GCS implementations,
forming a new view takes a substantial amount of time,
and client-level operations are delayed during the view-
formation period. In our algorithm, reads and writes can
make progress during reconfiguration.

RAMBO . To solve this problem, Lynch and Shvartsman
introduced an algorithm called RAMBO: Reconfigurable
Atomic Memory for Basic Objects [15, 16]. The RAMBO

algorithm guarantees atomicity in any asynchronous execu-
tion, in the presence of arbitrary process crashes and net-
work failures. Moreover, the algorithm allows any member
of the most recently established configuration to begin re-
configuration to a new quorum system. Conditional perfor-
mance analysis shows that under certain conditions when
the underlying network is stable and reconfiguration is not
too frequent, read and write operations complete rapidly.

However, allowing multiple reconfigurers introduces the
problem of maintaining multiple configurations and remov-
ing old configurations. RAMBO implements a sequential
“garbage collection” algorithm where nodes remove obso-
lete configurations one at a time, in order, until only the
most recently established configuration remains. However,
when communication is unreliable, or when reconfiguration
is frequent, RAMBO may perform poorly. The number of
active configurations may grow without bound, leading to
high message complexity and limited fault tolerance.

The New Algorithm. The primary contribution of this
paper is a new algorithm for reconfigurable atomic mem-
ory, called RAMBO II. This algorithm includes a new con-
figuration management protocol that operates aggressively
in parallel: it can establish a new configuration, removing
an arbitrary number of old configurations, in constant time,
under certain reasonable assumptions.

Our conditional performance analysis shows that if a
process knows about a sequence ofh non-failed configura-
tions, then RAMBO II removes all but one of these config-
urations in timeΘ(1), when the message delay is bounded.
By comparison, in the original RAMBO, the process needs
to invokeh garbage collection operations sequentially, tak-
ing Θ(h) time. The new algorithm also reduces the number
of messages necessary to process these configurations.

We formally specify RAMBO II using I/O automata [17].
We show correctness (atomicity) of the algorithm for ar-

bitrary asynchrony and failures. We analyze performance
conditionally, based on certain failure and timing assump-
tions. Assuming that gossip and configuration upgrades oc-
cur periodically, and that quorums of active configurations
do not fail, we show that read and write operations complete
within time8d, whered is the maximum message latency.

Implementations of RAMBO and RAMBO II on a LAN
are currently being completed [19]. Preliminary empirical
studies performed using this implementation illustrate the
advantages of RAMBO II in settings where reconfiguration
is bursty and messages may be lost.

Document Structure. In Section 2 we review the original
RAMBO algorithm [15], and in Section 3 present RAMBO

II. In Section 4 we prove that the new algorithm is correct.
In Section 5 we present a conditional latency analysis. In
Section 6 we overview an implementation and present pre-
liminary empirical results. Finally, in Section 7 we summa-
rize our results, and describe areas for future research. A
complete technical report [9] contains the full results.

2. The Original RAMBO Algorithm

We now present the original RAMBO algorithm. RAMBO

replicates data at several network locations in order to
achieve fault tolerance and availability. The algorithm uses
configurationsto maintain consistency in the presence of
small and transient changes. Each configuration consists
of a set ofmembersplus sets ofread-quorumsandwrite-
quorums. The quorum intersection property requires that
every read-quorum intersect every write-quorum. RAMBO

supportsreconfiguration, which modifies the set of mem-
bers and the sets of quorums, thereby accommodating larger
and more permanent changes without violating atomicity.
Any quorum configuration may be installed at any time –
no intersection requirement is imposed on the sets of mem-
bers or on the quorums of distinct configurations.

The RAMBO algorithm consists of three kinds of au-
tomata: (i)Joiner automata, which handlejoin requests,
(ii) Reconautomata, which handle reconfiguration requests,
and generate a totally ordered sequence of configurations,
and (iii) Reader-Writerautomata, which handleread and
write requests, manage garbage collection, and send and re-
ceive gossip messages.

In this paper, we discuss only theReader-Writerautoma-
ton. TheJoiner automaton is quite simple; it sends ajoin
message when nodei joins, and sends ajoin-ack message in
response to join messages. TheReconautomaton depends
on a consensus service, implemented using Paxos [12], to
agree on a total ordering of configurations. However, we
assume that this total ordering exists, and therefore need
not discuss this automaton any further. For more details of
these two automata, see the original RAMBO paper [15, 16].



Domains:

I, a set of processes

V , a set of legal values

C, a set of configurations, each consisting of members, read-quorums,

and write-quorums

Input:

join(rambo, J)i, J a finite subset ofI − {i}, i ∈ I, such that if

i = i0 thenJ = ∅
readi, i ∈ I

write(v)i, v ∈ V , i ∈ I

recon(c, c′)i, c, c′ ∈ C, i ∈ members(c), i ∈ I

faili, i ∈ I

Output:

join-ack(rambo)i, i ∈ I

read-ack(v)i, v ∈ V , i ∈ I

write-acki, i ∈ I

recon-ack(b)i, b ∈ {ok, nok}, i ∈ I

report(c)i, c ∈ C, i ∈ I

Figure 1. RAMBO: External signature

The external signature for RAMBO appears in Figure 1.
The algorithm is specified for a single memory location, and
extended to implement a complete shared memory. A client
uses thejoini action to join the system. After receiving
a join-acki, the client can issuereadi andwritei requests,
which results inread-acki andwrite-acki responses. The
client can issue areconi request to propose a new configura-
tion. Finally, thefaili action is used to model nodei failing.
For the detailed code, see the full presentation in [16].

Every node maintains atag and avalue for the data ob-
ject. Every new value is assigned a unique tag, with ties
broken by process-ids. These tags are used to determine
an ordering of the write operations, and therefore determine
the value that a read operation should return.

Read and write operations require two phases, a query
phase and a propagation phase, each of which accesses cer-
tain quorums of replicas. Assume the operation is initiated
at nodei. First, in the query phase, nodei contacts read quo-
rums to determine the most recent available tag and value.
Then, in the propagation phase, nodei contacts write quo-
rums. If the operation is a read operation, the second phase
propagates the largest tag discovered in the query phase,
and its associated value. If the operation is a write opera-
tion, nodei chooses a new tag, strictly larger than every tag
discovered in the query phase and propagates the new tag
and the new value to the write quorums. Note that every
operation accesses both read and write quorums.

Garbage collection operations remove old configurations
from the system. A garbage collection operation involves
two configurations: the old configuration being removed
and the new configuration being established. A garbage col-
lection operation requires two phases, a query phase and a

propagation phase. The first phase contacts a read-quorum
and a write-quorum from the old configuration, and the sec-
ond phase contacts a write-quorum from the new configura-
tion. All three operations,read, write, andgarbage collec-
tion, are implemented using gossip messages.

Thecmap is a mapping from integer indices to configu-
rations∪{⊥,±}, that initially maps every index to⊥. The
cmap tracks which configurations are active, which are not
defined, indicated by⊥, and which are removed, indicated
by ±. The total ordering on configurations determined by
the Reconautomata ensures that all nodes agree on which
configuration is stored in each position in the array. We de-
fine c(k) to be the configuration associated with indexk.

The recordop stores information about the current phase
of an ongoing read or write operation, whilegc stores in-
formation about an ongoing garbage collection operation.
(A node can process read and write operations even when
a garbage collection operation is ongoing.) Theop.cmap
subfield records the configuration map for an operation.
This consists of the node’scmap when a phase begins,
augmented by any new configurations discovered during
the phase. A phase can complete only when the initiator
has exchanged information with quorums from every non-
removed configuration inop.cmap. The pnum subfield
records the phase number when the phase begins, allowing
the initiator to determine which responses correspond to the
current phase. Theacc subfield records which nodes from
which quorums have responded during the current phase.

In RAMBO, configurations go through three phases: pro-
posal, installation, and upgrade. First, a configuration is
proposedby a recon event. Next, if the proposal is suc-
cessful, theRecon service achieves consensus on the new
configuration, and notifies participants withdecide events.
When every non-failed member of the previous configura-
tion has been notified, the configuration isinstalled. The
configuration isupgradedwhen every configuration with a
smaller index has been removed at some process in the sys-
tem. Once a configuration has been upgraded, it is respon-
sible for maintaining the data.

3. Rapidly Reconfigurable Atomic Memory

In this section we present RAMBO II. As before, the
algorithm is specified for a single memory location. In
RAMBO, configurations are upgraded sequentially. Config-
urationc(k) can be upgraded only if configurationc(k− 1)
has been previously upgraded. RAMBO II, however, imple-
ments a new reconfiguration protocol that can upgrade any
configuration, even if configurations with smaller indices
have not been upgraded.

After RAMBO II upgrades a configuration, all configu-
rations with smaller indices can be removed. Thus a sin-
gle configuration upgrade operation in RAMBO II poten-



Signature:

As in RAMBO, with the following modifications:

Internal:

cfg-upgrade(k)i, k ∈ N>0

cfg-upg-query-fix(k)i, k ∈ N>0

cfg-upg-prop-fix(k)i, k ∈ N>0

cfg-upgrade-ack(k)i, k ∈ N>0

Configuration Management State:

As in RAMBO, with the following replacing thegc record:

upg , a record with fields:

phase ∈ {idle, query, prop}, initially idle

pnum ∈ N
cmap ∈ CMap,

acc, a finite subset ofI

target ∈ N
Configuration Management Transitions:

(A)
(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)
(J)

Internal cfg-upgrade(k)i

Precondition:
¬failed
status = active
upg.phase = idle
cmap(k) ∈ C
∀` ∈ N, ` < k : cmap(`) 6= ⊥

Effect:
pnum1 ← pnum1 + 1
upg ← 〈query, pnum1 , cmap, ∅, k〉

Internal cfg-upg-query-fix(k)i

Precondition:
¬failed
status = active
upg.phase = query
upg.target = k
∀` ∈ N, ` < k : upg.cmap(`) ∈ C
⇒ ∃R ∈ read-quorums(upg.cmap(`)) :
∃W ∈ write-quorums(upg.cmap(`)) :
R ∪W ⊆ upg.acc

Effect:
pnum1 ← pnum1 + 1
upg.pnum ← pnum1
upg.phase ← prop
upg.acc ← ∅

Internal cfg-upg-prop-fix(k)i

Precondition:
¬failed
status = active
upg.phase = prop
upg.target = k
∃W ∈ write-quorums(upg.cmap(k)) : W ⊆ upg.acc

Effect:
for ` ∈ N : ` < k do
cmap(`)← ±

Internal cfg-upgrade-ack(k)i

Precondition:
¬failed
status = active
upg.target = k
∀` ∈ N, ` < k : cmap(`) = ±

Effect:
upg.phase = idle

Output send(〈W, v, t, cm, pns, pnr〉)i,j

Precondition:
¬failed
status = active
j ∈ world
〈W, v, t, cm, pns, pnr〉 =
〈world , value, tag, cmap, pnum1 , pnum2 (j)〉

Effect:
none

Input recv(〈W, v, t, cm, pns, pnr〉)j,i

Effect:
if ¬failed then
if status 6= idle then
status ← active
world ← world ∪W
if t > tag then(value, tag)← (v, t)
cmap ← update(cmap, cm)
pnum2 (j)← max(pnum2 (j), pns)
if op.phase ∈ {query, prop} andpnr ≥ op.pnum then

op.cmap ← extend(op.cmap, truncate(cm))
if op.cmap ∈ Truncated then

op.acc ← op.acc ∪ {j}
else

op.acc ← ∅
op.cmap ← truncate(cmap)

if upg.phase ∈ {query, prop} andpnr ≥ upg.pnum then
upg.acc ← upg.acc ∪ {j}

Figure 2. Reader-Writer i: Configuration-Management transitions

tially has the effect of many garbage collection operations
in RAMBO. We have changed the name to emphasize the
operation’s active role in configuration management: con-
figuration upgrade is an inherent part of preparing a config-
uration to assume responsibility for the data. The code for
the new configuration management mechanism appears in
Figure 2. All labeled lines in this section refer to the code
therein.

We now describe in more detail the configuration up-
grade operation, which is at the heart of RAMBO II. A con-
figuration upgrade operation is initiated at nodei with a
cfg-upgrade(k) event. When this happens,cmap(k) must

be defined, that is, must be a valid configuration∈ C (line
A). Additionally, for every configuratioǹ < k, cmap(`)
must be either∈ C or removed, that is,± (line B).

We refer to configurationc(k) as thetarget of the up-
grade operation, and we refer to the set of configurations to
be removed,{c(`) : ` < k ∧ upg .cmap(`) ∈ C}, as the
removal-set of the configuration upgrade operation. The
configuration management mechanism guarantees that the
removal-set consists of configurations with a contiguous
set of indices.

As a result of thecfg-upgrade event, nodei initializes
its upg state (line C), and begins the query phase of the



upgrade operation. In particular, nodei stores its current
cmap in upg .cmap, which records the configurations that
were active when the operation began. Only these configu-
rations matter during the operation; new configurations are
ignored.

The query phase continues until nodei receives re-
sponses from enough nodes. In particular, for every con-
figuration c(`) with index less thank in upg .cmap, there
must exist a read-quorum,R, of configurationc(`), and a
write-quorum,W , of configurationc(`) such thati has re-
ceived a response (that is, a recent gossip message) from
every node inR ∪W (lines D–E).

When the query phase completes, acfg-upg-query-fix
event occurs. When this action occurs, nodei has the
most recent tag and value known to configurations with in-
dex smaller thank. Further, all configurations with indices
smaller thank have been notified of configurationc(k).
Nodei then reinitializesupg to begin the propagation phase
(lines F–G).

The propagation phase continues until nodei receives
responses from a write-quorum in configurationc(k). In
particular, there must exist a write-quorum,W , of configu-
rationc(k), such thati has received a response from every
node inW (line H).

When the propagation phase completes, a
cfg-upg-prop-fix event occurs, which verifies the ter-
mination condition. At this point nodei has ensured that
configuration c(k) has received the most recent value
known toi, which, as a result of the query phase, is itself
a recent value. At this point, the configurations with index
< k are no longer needed, and nodei removes these
configurations from its localcmap, settingcmap(`) = ±
for all ` < k (line I–J). Gossip messages may eventually
notify other processes that these configurations have been
removed.

Finally, a cfg-upgrade-ack(k) event notifies the client
that configurationc(k) has been successfully upgraded.

The new algorithm introduces several difficulties not
present in RAMBO. Consider, for example, a nice property
guaranteed by the sequential garbage collection algorithm
in RAMBO: every configuration is upgraded before it is re-
moved. In RAMBO II, on the other hand, some configura-
tions never receive up to date information.

As a result of this fact, a number of plausible improve-
ments fail. Assume that during an ongoing upgrade op-
eration for configurationc(k) initiated by nodei, nodei
receives a message indicating that configurationc(k′) has
been removed, for somek′ < k. In RAMBO II, node i
setscmap(k′) = ±, but does not changeupg .cmap. Con-
sider the following incorrect modification to the configura-
tion management mechanism. When nodei receives such
a message, it setsupg .cmap(k′) to±. Since the configura-
tion has been removed, it seems plausible that the configura-

tion upgrade operation can safely ignore it, thus completing
more quickly. It turns out, however, that this improvement
results in a race condition that can lead to data loss. The
configuration upgrade operation that removes configuration
c(k′) might occur concurrently with the operation at nodei
upgrading configurationc(k). This concurrency might re-
sult in data being propagated from configurationc(k′) to a
configurationc(k′′) : k′ < k′′ < k that has already been
processed by the upgrade operation at nodei. The data thus
propagated might then be lost.

For the rest of this paper, we restrict our attention to
“good” executions of the algorithm. We assume, for ex-
ample, that requests are well formed: after a client issues
a join request, it waits until receiving ajoin-ack before is-
suing further requests; each client issues only one read or
write operation at a time, etc. The formal details of these
assumptions are specified in [9].

4. Atomic Consistency

This section discusses the proof of atomic consistency.
For the full, formal version, including proofs omitted here,
see [9]. We focus here on proving one key theorem, which
implies the main result. Assumeα is an arbitrary, good ex-
ecution of the algorithm. We show that the tags associated
with the values induce a partial-order,≺, on the read and
write operations inα with the following properties: (i)≺
totally orders all write operations inα, (ii) ≺ orders every
read operation inα with respect to every write operation
in α, (iii) for each read operation, if there is no preceding
write operation in≺, then the read operation returns the ini-
tial value; otherwise, the read operation returns the value
of the unique write operation immediately preceding it in
≺, and (iv) if some operation,θ, completes before another
operation,φ, begins inα, thenφ does not precedeθ in ≺.
This leads almost immediately to the conclusion that the al-
gorithm guarantees atomic consistency, using Lemma 13.16
in [14]. We discuss in detail the proof of Property (iv), as
the other three properties are self-evident.

In the theorem and proof sketch below, the following
terms are used. For every read or write operationπ, the
query-fix(π) event occurs immediately after the query phase
of π completes, and theprop-fix(π) event occurs imme-
diately after the propagation phase ofπ completes. We
definecfg-upg-query-fix andcfg-upg-prop-fix analogously
with respect to configuration upgrade operations.

The query-cmap of a read or write operation,π, initi-
ated at nodei is a map from integer indices toC ∪ {⊥,±}.
It is initially undefined, and set toop.cmapi when the
query-fix (π) event occurs. Similarly, theprop-cmap of op-
erationπ initiated at nodei is set toop.cmapi when the
prop-fix (π) event occurs.

Thequery-phase-start(π) event is defined to be the event



that initiates the collection of query results, that is, the
event that setsop.acc to ∅ for the last time prior to the
query-fix(π) event. Thequery-phase-start(π) event, then,
is either theread or write event that initiates operationπ, or
the lastrcv event that causesπ to restart the query phase.1

Intuitively, one can think of thequery-phase-start(π) as the
event that marks the beginning of the query phase ofπ.

For every read or write operation,π, at nodei, we de-
finetag(π) to be the value ofop.tag i when thequery-fix(π)
event occurs. Intuitively, ifπ is a read operation thentag(π)
is the largest tag discovered by nodei during the query
phase. Ifπ is a write operation thentag(π) is the new tag
chosen by nodei that is larger than any tag discovered by
i during the preceding query phase. Similarly, for a config-
uration upgrade operationγ at nodei, we definetag(γ) to
be the tag at nodei when thecfg-upg-query-fix (γ) event
occurs, that is, the largest tag discovered at nodei during
the query phase ofγ.

In the following discussion, we assume thatπ1 andπ2

are two read or write operations that occur ati1 andi2 re-
spectively, and thatπ1 completes beforeπ2 begins inα. The
goal of this section is to show thattag(π1) ≤ tag(π2), and
that the inequality is strict ifπ2 is a write operation.

The first case to consider is whenprop-cmap(π1) ∩
query-cmap(π2) 6= ∅. Then the following lemma indicates
that the result holds.

Lemma 4.1 Assumeπ1 and π2 are two read or write op-
erations such that theprop-fix event ofπ1 precedes the
query-phase-start(π2) event inα. If prop-cmap(π1) ∩
query-cmap(π2) 6= ∅, thentag(π1) ≤ tag(π2) and if π2

is a write operation, thentag(π1) < tag(π2).

Proof (sketch). There exists some configurationc in
the intersection ofprop-cmap(π1) and query-cmap(π2).
Therefore there exists some read-quorumR of configura-
tion c, and some write-quorum,W , of configurationc, such
that π1 updatesW beforeπ2 reads fromR. Then by the
quorum intersection property, the result follows. �

Next, consider the case wheremin(prop-cmap(π1)) >
max(query-cmap(π2)). It turns out, by the following
lemma, that this case is impossible: a later operation al-
ways learns of a configuration at least as large as that of an
earlier operation.

Lemma 4.2 Assumeπ1 and π2 are two read or write
operations such that theprop-fix event of π1 pre-
cedes thequery-phase-start event of π2 in α. Then:
min({` : prop-cmap(π1)(`) ∈ C}) ≤ max({` :
query-cmap(π2)(`) ∈ C}).

1Operation phases must occasionally restart when the initiating node
has a severely out of datecmap. This restart mechanism, while relevant
to the detailed proof, is not discussed in this paper.

The only remaining case is whenprop-cmap(π1) and
query-cmap(π2) are disjoint andmax(prop-cmap(π1)) <
min(query-cmap(π2)). The rest of the discussion assumes
this relationship between thecmaps, and shows the appro-
priate relationship between the tags.

Let s2 be the index of the smallest configuration in
query-cmap(π2). Then the following lemma demonstrates
that there exists a configuration upgrade operation,γ, that
precedesπ2, and that upgrades configurationc(s2).

Lemma 4.3 Let π2 be a read or write operation whose
query-fix event occurs inα. Let s2 be the small-
est index such thatquery-cmap(π2)(s2) ∈ C. As-
sumes2 > 0. Then there exists a configuration up-
grade operationγ that upgrades configurationc(s2),
such that the cfg-upg-prop-fix(γ) event precedes the
query-phase-start(π2) event inα.

Proof (sketch). This follows from the realization that if
s2 is the smallest non-removed configuration, then there
must have been a prior operation that upgradeds2 and re-
moved the smaller configurations. �

Lemma 4.3 implies thattag(γ) ≤ tag(π2): the former
accesses a write-quorum ofc(s2) in the propagation phase,
and the latter access a read-quorum ofc(s2) in the query
phase. By the quorum intersection properties of read and
write quorums, and the fact thatγ completes beforeπ2 be-
gins, the claim follows. Similarly, it follows that ifπ2 is a
write operation,tag(γ) < tag(π2).

Next we construct a sequence, possible containing
repeated elements, of configuration upgrade operations,
γ0, . . . , γs2−1, whereγs2−1 = γ, with the following prop-
erties: First, for alls < s2, configuration upgrade operation
γs removes configurationc(s). Next, consider two elements
in the sequence,γs andγs+1, for all s < s2 − 1. If γs

and γs+1 are distinct upgrade operation then (i)γs com-
pletes beforeγs+1 begins, and (ii) the configuration that is
the target ofγs is removed byγs+1. These last two prop-
erties allow us to use the sequence to ensure the propa-
gation of tags: if two consecutive upgrade operations,γs

andγs+1, are distinct operations, then the tag and value are
passed from the former to the latter; the former accesses a
write-quorum oftarget(γs), and the latter accesses a read-
quorum oftarget(γs).

Lemma 4.4 If a cfg-upgradei event for configuration up-
grade operationγ occurs in α such that s2 − 1 ∈
removal-set(γ), then there exists a sequence (possibly con-
taining repeated elements) of configuration upgrade opera-
tionsγ0, γ1, . . . , γs2−1, whereγs2−1 = γ, with one element
in the sequence for every configuration index< s2, with the
following properties:

1. ∀ s : 0 ≤ s < s2, s ∈ removal-set(γs).



2. ∀ s : 0 ≤ s < s2 − 1, if γs 6= γs+1, then a
cfg-upg-prop-fix event ofγs and acfg-upgrade event
of γs+1 occur inα, and thecfg-upg-prop-fix event of
γs precedes thecfg-upgrade event ofγs+1.

3. ∀ s : 0 ≤ s < s2 − 1, if γs 6= γs+1, thentarget(γs) ∈
removal-set(γs+1).

Proof (sketch). We construct the sequence in reverse or-
der, first definingγs2−1 = γ, and then at each step defining
the preceding element. The induction is a backward induc-
tion on `, for ` = s2 − 1 down to` = 0, maintaining the
three properties at each step of the induction.

For the inductive step, we assume thatγ` has been de-
fined and that the three hypotheses hold fors ≥ `. We pro-
ceed to defineγ`−1. If γ` removes configurationc(` − 1),
then letγ`−1 = γ`, and all the properties hold fors = `−1.

On the other hand, if configurationc(`) is the config-
uration with the smallest index removed byγ`, then there
is an upgrade operation,γ`−1, that removes configuration
c(` − 1), does not removec(`) and completes beforeγ`

begins. It follows immediately that Properties 1 and 2 are
satisfied fors = ` − 1. Sinceγ`−1 does not removec(`),
c(`) is the target of the upgrade operation and Property 3
follows. �

As discussed above, the properties of this sequence im-
mediately imply that tags are monotonic: later configuration
upgrade operations in the sequence have tags no smaller
than earlier configuration upgrade operations.

Lemma 4.5 Let γ`, . . . , γk be a sequence of configuration
upgrade operations constructed by Lemma 4.4. Then∀ s :
0 ≤ s < k, tag(γs) ≤ tag(γs+1).

We now state and prove the main theorem:

Theorem 4.6 Assumeπ1 and π2 are two read or write
operations, such that theprop-fix event ofπ1 precedes
the query-phase-start(π2) event inα. Then tag(π1) ≤
tag(π2), and ifπ2 is a write thentag(π1) < tag(π2).

Proof. Assume thatπ1 andπ2 occur ati1 andi2 respec-
tively. By assumption,π1 completes beforeπ2 begins. De-
finecm1 = prop-cmap(π1), andcm2 = query-cmap(π2).
If both operations share a configuration, Lemma 4.1 implies
the result. Assume, then, thatcm1 andcm2 are disjoint. Let
s1 be the largest element incm1, and lets2 be the smallest
element incm2. Then Lemma 4.2 implies thats1 < s2.

Lemma 4.3 defines upgrade operationγ, which precedes
π2. Construct a sequence of configuration upgrade opera-
tions using Lemma 4.4,γ0, . . . , γs2−1, whereγs2−1 = γ.
We now considerγs1 from this sequence. Lemma 4.5 im-
plies thattag(γs1) ≤ tag(γs2−1). We now show that the
tag ofπ1 must be no larger than the tag ofγs1 .

The propagation phase ofπ1 accesses a write-quorum
W of configurationc(s1), whereas the query phase ofγs1

accesses a read-quorumR of configurationc(s1). Since
W ∩ R 6= ∅, we may fix somej ∈ W ∩ R. Let m1 be
the message sent fromj to i1 in the propagation phase of
γs1 . Let m2 be the message sent fromj to the process run-
ningγs1 in the query phase ofγs1 .

We claim thatj sendsm1, its message forπ1, before it
sendsm2, its message forγs1 . If not, then the information
about configurations1 + 1 would be conveyed byj to i1,
who would include it incm1, contradicting the choice ofs1.

Since j sendsm1 before it sendsm2, j conveystag
information from π1 to γs1 , ensuring thattag(π1) ≤
tag(γs1). We already showed thattag(γs1) ≤ tag(π2), and
if π2 is a write operation thentag(γs1) < tag(π2). Com-
bining the inequalities yields both conclusions. �

Having shown that the tags are monotonically increas-
ing, it follows immediately that the tags induce a partial-
order≺ that meets the necessary and sufficient requirements
for atomic consistency.

5. Conditional Performance Analysis

In this section, we discuss the latency bounds for the new
algorithm. We show that RAMBO II allows the system to
recover rapidly after a period of unreliable network connec-
tivity or bursty reconfigurations. For a full statement of the
results, and for the proofs, omitted here, see [9].

We first define what it means for a system to stabilize and
exhibit “normal behavior” from some point onward. Letd
be the maximum message delay bound when the network is
stable. The constantd is also the interval at which gossip
messages are sent. Assumeα is an admissible timed execu-
tion andα′ a finite prefix ofα. Define`time(α′) to be the
time of the last event inα′. We sayα is an α′-normal
execution if (i) afterα′, the local clocks of all automata
progress at exactly the rate of real time, (ii) no message sent
in α afterα′ is lost, and (iii) if a message is sent at timet in
α and is delivered, then it is delivered by the maximum of
time t + d and timè time(α′) + d.

The analysis takes into account actions of theReconau-
tomaton, which we do not present in this paper. In particu-
lar, theReconautomaton producesdecide andreport events
when consensus is reached on a new configuration; the for-
mer occur at members of the old configuration, the latter at
nodes that learn of the new configuration.

Configuration-Viability. As in all quorum-based algo-
rithms, liveness depends on all the nodes in some quorums
remaining alive. We say that a configurationc(k) is in-
stalled when adecide(c(k)) event has occurred at every
non-failed member of the prior configuration,c(k − 1),
notifying it that configurationc(k) has been accepted by



the Reconservice. We say that an executionα is (α′,e,τ )-
configuration-viableif for every configuration,c(k), that is
chosen, there exists a read-quorum,R, and a write-quorum,
W , such that no process inR∪W fails before the maximum
of (i) time τ after every configuration≤ k + 1 is installed,
and (ii) `time(α′) + e + τ .

By assuming that an execution is(α′,e,τ )-configuration-
viable, we ensure that the algorithm has time≥ τ after a
new configuration is installed to remove old configurations.
Also, the algorithm has at least timee + τ after the system
stabilizes, that is, afterα′, to remove old configurations.

Configuration-viability is a reasonable assumption:
whenever viability is threatened, a reconfiguration occurs
before too many members of a configuration fail. We claim
in Theorem 5.3 that(α′, e, 23d)-configuration-viabilityis
sufficient to ensure that read and write operations complete.

Other Assumptions. We need a few other reasonable as-
sumptions on executions: (1)(α′, 8d)-recon-spacing: af-
ter α′, when the system stabilizes, reconfigurations are not
too frequent; in particular, at least time8d elapses between
the report(c)i event and any followingrecon(c, ∗)i event.
Also, everyrecon(c, ∗)i event is preceded inα by a num-
ber of report(c)∗ events, one for each node of some write-
quorum ofc. (2) (α′, e)-join-connectivity: the network is
connected so that nodes learn about each other rapidly; if
two nodes both performjoin-acks at or before timet − e,
and t ≥ `time(α′) + e, then by timet they know about
each other. (3)(α′,e+d)-recon-readiness: if some nodei
is a member of configurationc and arecon(∗, c) event oc-
curs, theni performs ajoin-ack at least timee + d prior to
therecon event. These last two properties ensure that all the
nodes in installed, non-removed configurations are aware of
each other.

Configuration Management Latency Results. First we
examine how long a configuration upgrade operation takes
to complete. This allows us to bound how long an
obsolete configuration can remain in the system. For
all the claims in this section, assume thatα is an
α′-normal execution, satisfying(α′, e, 23d)-configuration-
viability, (α′, 12d)-recon-spacing, (α′,e)-join-connectivity,
and(α′,e+d)-recon-readiness.

Lemma 5.1 If the config-upgradei action is enabled at
time t, wheret > `time(α′), and if all necessary quorums
are available, and ifi does not fail, it completes the opera-
tion by timet + 4d.

In general, a configuration upgrade operation takes time
≤ 4d: two rounds of communication for each phase of the
operation. Even though many configurations are being re-
moved, the operation still takes at most4d time to complete.

The next lemma bounds the time by which any config-
uration is removed. This result is not true of the original

RAMBO algorithm: RAMBO might take arbitrarily long to
remove an obsolete configuration, even after the network
stabilizes and messages are reliably, rapidly delivered.

Lemma 5.2 Assume that all configuration with index≤ k
are installed by timet ≥ `time(α′) + e + d, and that node
i ∈ members(c(k − 1)) does not fail until aftert + 12d.
Then by timet + 12d, cmap(h)j is marked± for all non-
failed j that perform ajoin-ack by timet − e and for all h
such that0 ≤ h < k.

Lemma 5.2 follows from a tricky inductive argument. If
all old configurations were previously removed, only re-
cent configurations remain to be removed. Recent config-
urations, however, do not fail before they are removed, as
guaranteed by configuration-viability. The base case de-
pends on the guarantee that no configuration fails before
`time(α′) + e + 23d. The main theorem then follows:

Theorem 5.3 Let t > `time(α′) + e + 9d. Assume a
join-acki occurs prior to timet − e − 9d, and thati does
not fail in α until after timet + 8d. Then if a read or write
operation starts at nodei at timet at nodei, it completes
by timet + 8d.

Proof (sketch). Consider some configurationc(k) such
that cmap(k)i ∈ C at time t. Lemma 5.2 guarantees
that at timet, all “old” configurations have been removed
from cmapi; only “recent” configurations remain. There-
fore configurationc(k) is a “recent” configuration, meaning
that configurationc(k + 1) is installed no earlier than time
t− 15d, and configuration-viability guarantees that config-
urationc(k) does not fail before timet + 8d.

Since every non-removed configuration remains viable,
and at most one reconfiguration occurs during each phase
of the operation, the result follows by an argument simi-
lar to that used for Lemma 5.1; the read or write operation
completes by timet + 8d. �

The conclusion is that if the execution satisfies
configuration-viability, join-connectivity, recon-readiness,
and recon-spacing, then the algorithm continues to make
progress, despite prior bad network behavior or bursty
reconfiguration. The strongest assumption is that of
(α′, e, 23d)-configuration-viability, which requires config-
urations to survive time23d after a new configuration is
installed. We have bounded the length of this viability by a
constanttime, depending only on the network message de-
lay bound,d. In comparison, the original RAMBO algorithm
had no bound on the required configuration-viability.

6. Implementation and Preliminary Evaluation

Musial and Shvartsman [19] developed a prototype dis-
tributed implementation that incorporates both the original



RAMBO configuration management algorithm [15] and the
new algorithm presented in this paper. The system was de-
veloped by manually translating the Input/Output Automata
specification to Java code. To mitigate the introduction of
errors during translation, the implementers followed a set
of precise rules, similar to [4], that guided the derivation of
Java code from Input/Output Automata notation. The sys-
tem is undergoing refinement and tuning, however an ini-
tial evaluation of the performance of the two algorithms has
been performed in a local-area setting.

The platform consists of a Beowulf cluster with 13 ma-
chines running Linux (Red Hat 7.1). The machines are Pen-
tium processors in the range from 90 MHz to 900 MHz,
interconnected via a 100 Mbps Ethernet switch. The im-
plementation of the two algorithms shares most of the code
and all low-level routines. Any difference in performance
is traceable to the distinct configuration management dis-
cipline used by each algorithm. Given several very slow
machines, we do not evaluate absolute performance and in-
stead focus initially on comparing the two algorithms.

The preliminary results in Figure 3(a) show the average
latency of read/write operations as the frequency of recon-
figurations grows from about two to twenty reconfigurations
per one gossip period. In order to handle such frequent re-
configurations, we chose a large gossip interval (8 seconds).
This interval is much larger than the round-trip message de-
lay, thus allowing us to reduce the effects of network con-
gestion encountered when reconfiguring very frequently.
The results show that the overall latency of read/write op-
erations for the new algorithm is progressively improved.
As expected, the decrease in latency becomes substantial
for bursty reconfigurations (at 20 reconfigurations per gos-
sip interval). For less frequent reconfigurations the latency
is similar, at about 4 gossip intervals depending on the set-
tings (not shown). This is expected and consistent with our
analysis, since the two algorithms are essentially identical
whencmaps contain one or two configurations. Figure 3(b)
shows the average number of configurations incmaps as a
function of reconfiguration frequency. This further explains
the difference in performance, since the average number of
configurations incmaps is lower in the new algorithm as
the frequency of reconfigurations increases.

Finally we observe that the modest number of machines
used in this study favored the original algorithm. This is be-
cause the machines are often members of multiple configu-
rations, thus the number of messages needed to reach fixed-
points by the read/write operations of the original algorithm
is much lower than is expected when each processor is a
member of a few configurations. Full performance evalua-
tion is currently in progress. We are investigating how the
performance depends on the number of machines and vari-
ous timing parameters.

7. Conclusions and Future Work

We have presented RAMBO II, a new algorithm im-
proving on the original RAMBO by Lynch and Shvartsman.
While RAMBO performs well in the context of benign net-
work behavior and infrequent reconfiguration, RAMBO II
recovers rapidly after periods of arbitrary asynchrony and
message loss. Additionally, RAMBO II performs better dur-
ing frequent reconfiguration. As a result, RAMBO II is more
reliable in long running, dynamic systems, and has shorter
read and write operation latency during instability.

One important open problem is to design an algorithm
that chooses new configurations and when to initiate recon-
figuration. The improved configuration management pro-
tocol in RAMBO II makes it more practical to consider the
design of such algorithms. In the earlier RAMBO algorithm,
the requirements of a configuration-choosing algorithm are
unclear. This paper shows that the configuration chooser
must provide exactly(α′, e, 23d)-configuration-viability.

Based on the analysis of Karger and Liben-Nowell[13],
we might assume that the long running, dynamic, system
has a bounded half-life, defined as the time in which ei-
ther half the processes fail or the number of active pro-
cesses doubles. It is then possible to design a configuration
choosing algorithm that initiates a reconfiguration a fixed
number of times in every half-life. By choosing appropri-
ate quorums and appropriate numbers of reconfigurations,
(α′, e, 23d)-configuration-viabilityshould be possible.

There are a number of other open problems. How can the
algorithm recover if viability is compromised and too many
quorums fail? Is it possible for read operations to return
more rapidly? Can the join protocol be improved, to allow
more rapid integration into the system? In general, how can
RAMBO II be adapted for peer-to-peer or mobile settings?
Does a similar strategy support stronger data objects, rather
than just read or write data? What are the lower bounds
on how fast a reconfigurable system can recover when the
network stabilizes?

In conclusion, we have presented a new algorithm for
atomic memory in highly dynamic environments. We
showed that it is correct, and that operations terminate
rapidly under certain well-defined conditions. This, then,
creates the framework for introducing and solving many in-
teresting open problems.

Acknowledgments. We thank Peter Musial for valuable
feedback that improved the quality of the formal presenta-
tion, and for the preliminary experimental results compar-
ing the new algorithm to the RAMBO algorithm.

References

[1] Communications of the ACM, 39(4), 1996. (Special section
on group communication).



0

5

10

15

20

25

30

0.0 5.0 10.0 15.0 20.0 25.0

Number of reconfigurations per one gossip period
(a)

La
te

nc
y

RAMBO

RAMBO II

Figure 3. Preliminary empirical evaluation of: (a) the average operation latency measured as the
number of gossip intervals, and (b) the average number of configurations in cmap’s, as functions of
reconfiguration frequency, measured as number of reconfigurations per one reconfiguration period.

[2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory ro-
bustly in message-passing systems.Journal of the ACM,
42(1):124–142, 1995.

[3] K. Birman and T. Joseph. Exploiting virtual synchrony in
distributed systems. InProceedings of the 11th ACM Sym-
posium on Operating Systems Principles, December 1987.

[4] O. Cheiner and A. Shvartsman. Implementing and evalu-
ating an eventually-serializable data service as a distributed
system building block. InNetworks in Distributed Comput-
ing, volume 45 ofDIMACS Series on Disc. Mathematics and
Theoretical Computer Science, pages 43–71. AMS, 1999.

[5] D. Dolev, I. Keidar, and E. Y. Lotem. Dynamic voting for
consistent primary components. InProceedings of the Six-
teenth Annual ACM Symposium on Principles of Distributed
Computing, pages 63–71. ACM Press, 1997.

[6] El Abbadi, Skeen, and Cristian. An efficient fault-tolerant
protocol for replicated data management. InProceedings of
the 4th Annual ACM Symposium on Principles of Databases,
pages 215–228, 1985.

[7] B. Englert and A. Shvartsman. Graceful quorum reconfigu-
ration in a robust emulation of shared memory. InProceed-

ings of the International Conference on Distributed Com-
puter Systems, pages 454–463, 2000.

[8] D. K. Gifford. Weighted voting for replicated data. InPro-
ceedings of the seventh symposium on Operating systems
principles, pages 150–162, 1979.

[9] S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II: Im-
plementing atomic memory in dynamic networks, using an
aggresive reconfiguration strategy. Technical Report LCS-
TR-890, Massachusetts Institute Technology, 2003.

[10] M. Herlihy. Dynamic quorum adjustment for partitioned
data.Trans. on Database Systems, 12(2):170–194, 1987.

[11] S. Jajodia and D. Mutchler. Dynamic voting algorithms for
maintaining the consistency of a replicated database.Trans-
actions on Database Systems, 15(2):230–280, 1990.

[12] L. Lamport. The part-time parliament.ACM Transactions
on Computer Systems, 16(2):133–169, 1998.

[13] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analy-
sis of the evolution of peer-to-peer systems. InProceedings
of the Twenty-First Annual Symposium on Principles of Dis-
tributed Computing, pages 233–242. ACM Press, 2002.

[14] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.



�

�

���

���

���

��� � ��� � ����� � ����� � ����� � ����� �
�
	���
�������������������������	��� "!#������$�%����������&�'��$�$��(%)%����#���'*

+�
',

- . /
01
2 3
45
6

798;:=<?>
798;:=<?>A@�@

Figure 4. Preliminary empirical evaluation of: (a) the average operation latency measured as the
number of gossip intervals, and (b) the average number of configurations in cmap’s, as functions of
reconfiguration frequency, measured as number of reconfigurations per one reconfiguration period.

[15] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable
atomic memory service for dynamic networks. InProceed-
ings of the 16th Intl. Symposium on Distributed Computing,
pages 173–190, 2002.

[16] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable
atomic memory service for dynamic networks. Technical
Report LCS-TR-856, M.I.T., 2002.

[17] N. Lynch and M. Tuttle. An introduction to input/output
automata.CWI-Quarterly, 2(3):219–246, September 1989.

[18] N. A. Lynch and A. A. Shvartsman. Robust emulation
of shared memory using dynamic quorum-acknowledged
broadcasts. InTwenty-Seventh Annual Intl. Symposium on
Fault-Tolerant Computing, pages 272–281, June 1997.

[19] P. Musial and A. Shvartsman. Implementing RAMBO. In
Progress.

[20] R. D. Prisco, A. Fekete, N. A. Lynch, and A. A. Shvartsman.
A dynamic primary configuration group communication ser-
vice. InProceedings of the 13th International Symposium on
Distributed Computing, pages 64–78, September 1999.

[21] R. H. Thomas. A majority consensus approach to concur-
rency control for multiple copy databases.Transactions on
Database Systems, 4(2):180–209, 1979.

[22] E. Upfal and A. Wigderson. How to share memory in a dis-
tributed system.Journal of the ACM, 34(1):116–127, 1987.

[23] P. Vitányi and B. Awerbuch. Atomic shared register ac-
cess by asynchronous hardware. InProceedings 27th An-
nual IEEE Symposium on Foundations of Computer Science,
pages 233–243, New York, 1986. IEEE.


