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Abstract

Future civilian rescue and military operations will depend on a complex system of commu-
nicating devices that can operate in highly dynamic environments. In order to present a
consistent view of a complex world, these devices will need to maintain data objects with
atomic (linearizable) read/write semantics.

Lynch and Shvartsman have recently developed a reconfigurable atomic read/write mem-
ory algorithm for such environments [12, 13] This algorithm, called Rambo, guarantees
atomicity for arbitrary patterns of asynchrony, message loss, and node crashes. Rambo
installs new configurations lazily, transferring data from old configurations to new config-
urations using a background information transfer task. That task handles configurations
sequentially, transferring information from each configuration to the next.

This paper presents a new algorithm, Rambo II, that implements a radically differ-
ent approach to installing new configurations: instead of operating sequentially, the new
algorithm reconfigures “aggressively”, transferring information from old configurations in
parallel. This improvement substantially reduces the time necessary to remove obsolete con-
figurations, which in turn substantially increases the fault-tolerance. This paper presents
a formal specification of the new algorithm, a correctness proof, and a conditional analysis
of its performance. Preliminary empirical studies performed using LAN implementations of
Rambo and the new algorithm illustrate the advantages of the new algorithm.
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Chapter 1

Introduction

Future large scale civilian rescue and military deployment operations will involve large num-

bers of communication and computing devices operating in highly dynamic network sub-

strates. Successful coordination and marshaling of human resources and equipment involves

collecting information about a complex real-world situation using sensors and input devices,

gathering the information in survivable repositories, and providing appropriate and coherent

information to the stakeholders.

Data objects with atomic (linearizable) read/write semantics commonly occur in such

settings. Replication of objects is a prerequisite for fault-tolerance and availability, and with

replication comes the need to maintain consistency. Additionally, in dynamic settings where

participants may join and leave the environment, may fail, and where the physical objects

migrate, one needs to be able to effectively move the corresponding data objects from one

set of data owners to another.

Lynch and Shvartsman developed a reconfigurable atomic read/write memory algorithm

for dynamic networks [12, 13]. The algorithm, called Rambo, guarantees atomicity for

arbitrary patterns of asynchrony, message loss, and node crashes. Conditional performance

analysis of the algorithm shows that when the environment timing stabilizes, when failures

are within specific parameters, and when the reconfigurations are not frequent and not bursty,

then read and write operations have small latency bounded in terms of the maximum message

delay and the periodic gossip interval. However when the reconfigurations are frequent or
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bursty, this algorithm may perform poorly because of the inherently sequential processing

of the new configurations once they become determined by the algorithm. In particular, the

number of configurations maintained by the algorithm may grow without bound, leading to

the unbounded number of messages necessary in processing the read and write operations.

Such situations may arise due to failures or asynchrony, yet these are not the only reasons.

Even in synchronous failure-free environments the world dynamics may require that frequent

reconfigurations are performed to keep track of the rapidly moving physical objects or rapidly

changing set of stakeholders.

This thesis presents a new algorithm, Rambo II, integrated with Rambo, that imple-

ments a radically different approach to installing new configurations: instead of operating

sequentially, the new algorithm reconfigures “aggressively”, transferring information from

old configurations in parallel. This improvement substantially reduces the time necessary to

process new configurations and to remove obsolete configurations from the system, which in

turn substantially increases fault-tolerance. This is due to the fact that once a configuration

is removed, the system no longer depends on it, and as soon as the configuration is removed,

it is allowed to fail. The process executing the new algorithm achieves a linear speed-up

in the number of old configurations known to the process. For example, our conditional

performance analysis shows that if a process knows about a sequence of h configurations,

then the it can eliminates all but one of these configurations in time O(1), as compared to

the original Rambo, where this takes Θ(h) time. Additionally, the new algorithm reduces

the number of messages necessary to process these configurations

This thesis presents a formal specification of the new algorithm, a correctness proof, and

a conditional analysis of its performance. Preliminary empirical studies performed using

LAN implementations of Rambo and the new algorithm illustrate the advantages of the

new algorithm.

Background. Starting with the work of Gifford [6] and Thomas [18], intersecting collec-

tions of sets found use in several algorithms providing consistent data in distributed settings.

Depending on the algorithm and its setting, such collections of sets, called quorums when any

two have non-empty intersection, represent either sets of processors or their knowledge. Up-
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fal and Wigderson [19] use majority sets of readers and writers to emulate shared memory in

a distributed setting. Vitányi and Awerbuch [20] implement multi-writer/multi-reader reg-

isters using matrices of single-writer/single-reader registers where the rows and the columns

are written and respectively read by specific processors. Attiya, Bar-Noy and Dolev [1] use

majorities of processors to implement single-writer/multi-reader objects in message passing

systems. Such algorithms assume a static processor universe and rely on static static quorum

systems.

In long-lived systems where processors may dynamically join and leave the system, it is

important to reconfigure a quorum system to adapt it to the new set of processors [8, 4, 7, 17].

Prior approaches required that the new quorum system include processors from the old

quorum system. This is stated as a static constraint on the quorum system that needs to

be satisfied during or even before the reconfiguration. In our work on reconfigurable atomic

memory [15, 5, 12] we replace the space-domain requirement on successive quorum system

intersections with the time-domain requirement that some quorums from the old and the

new system are involved in the reconfiguration algorithm. Such systems are more dynamic

because they allow for more choices of new quorum systems and do not require that successive

configurations intersect.

Reconfiguration in Highly Dynamic Settings. Lynch and Shvartsman’s earlier algo-

rithms [15, 5] allowed a single distinguished process to act as the quorum system reconfigurer.

The advantage of the single-reconfigurer approach is its relative simplicity and efficiency: any

process maintains at most two configurations, the current configuration and the proposed

new configuration. The disadvantage of the single reconfigurer is that it is a single point of

failure – no further reconfiguration is possible if the reconfigurer fails.

The Rambo algorithm [12, 13] removed the requirement of having a single reconfig-

urer, thus enabling any process within its own current configuration to begin reconfiguration

to a new quorum system supplied by the environment. The algorithm implements atomic

shared memory suitable for use in highly dynamic settings, and it guarantees atomicity in

any asynchronous execution and in the presence of arbitrary process and network failures.

However the multiple-reconfigurer approach introduces the problem of maintaining multi-
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ple configurations and removing old configurations from the system. Rambo implements

a sequential “garbage-collection” algorithm where processes remove obsolete configurations

one-at-a-time. Configuration removal requires that information is propagated from the ear-

liest known configuration to its successor. Since arbitrarily many new configurations may

be introduced this leads to an unbounded number of old configurations that need to be

sequentially removed.

The environment may introduce new configurations for several reasons: (i) due to failures

and network instability that endanger installed configurations, (ii) due to the mobility of the

physical objects represented by the abstract memory objects and the mobility of the processes

maintaining the object replicas, and (iii) due to the need to rebalance loads on processes

within installed configurations. Frequent or bursty reconfiguration can substantially increase

the number of installed configurations and, since a process performing a read or a write

operation potentially needs to contact quorums in all configurations known to it, this leads

to the corresponding increase in the number of messages needed to perform the operation.

The New Algorithm. The primary contribution of this thesis is a new algorithm for

reconfigurable atomic memory, based on the original Rambo, that implements an aggressive

configuration-replacement protocol where any locally-known contiguous sequence of config-

urations is replaced by the last configuration in the sequence. The removal of the old con-

figurations is done in parallel, while preserving all other properties of the original Rambo.

Specifically, we maintain a loose coupling between the reconfiguration algorithms and the

original Rambo algorithms implementing the read and write operations.

In order to achieve availability in the presence of failures, the objects are replicated at

several network locations. In order to maintain memory consistency in the presence of small

and transient changes, the algorithm uses configurations , each of which consists of a set of

members plus sets of read-quorums and write-quorums. In order to accommodate larger

and more permanent changes, the algorithm supports reconfiguration, by which the set of

members and the sets of quorums are modified. Such changes do not cause violations of

atomicity. Any quorum configuration may be installed at any time—no intersection require-

ment is imposed on the sets of members or on the quorums of distinct configurations.
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The algorithm is composed of a main algorithm, which handles reading, writing, and

replacement of old configurations with a successor configuration, and a global configuration

announcement service, Recon, which provides the main algorithm with a consistent sequence

of configurations. Several configurations may be known to the algorithm at one time, and

read and write operations can use them all without any harm.

The main algorithm performs read and write operations requested by clients using a

two-phase strategy, where the first phase gathers information from read-quorums of active

configurations and the second phase propagates information to write-quorums of active con-

figurations. This communication is carried out using background gossiping, which allows

the algorithm to maintain only a small amount of protocol state information. Each phase is

terminated by a fixed point condition that involves a quorum from each active configuration.

Different read and write operations may execute concurrently: the restricted semantics of

reads and writes permit the effects of this concurrency to be sorted out afterward.

The main algorithm provides a new configuration-replacement algorithm that removes

old configurations while ensuring that their use is no longer necessary for maintaining con-

sistency. Configuration-replacement also uses a two-phase strategy, where the first phase

communicates in parallel with all old configurations being removed and the second phase

communicates with a new configuration. A configuration-replacement operation ensures that

both a read-quorum and a write-quorum of each old configuration learn about the new con-

figuration, and that the latest value from all old configurations is conveyed to a write-quorum

of the new configuration. The strength of the new algorithm is that it proceeds aggressively

in parallel. An arbitrary number of old configurations can be replaced in constant time

(assuming bounded message latency and non-failure of active configurations).

The configuration announcement service is implemented by a distributed algorithm that

uses distributed consensus to agree on the successive configurations. Any member of the

latest configuration c may propose a new configuration at any time; different proposals

are reconciled by an execution of consensus among the members of c. Consensus is, in

turn, implemented using a version of the Paxos algorithm [9], as described formally in [3].

Although such consensus executions may be slow—in fact, in some situations, they may not

even terminate—they do not cause any delays for read and write operations.

15



All services and algorithms, and their interactions, are specified using I/O automata.

We show correctness (atomicity) of the algorithm for arbitrary patterns of asynchrony and

failures. On the other hand, we analyze performance conditionally , based on certain failure

and timing assumptions. For example, assuming that gossip and configuration-replacement

occur periodically, and that quorums of active configurations do not fail, we show that read

and write operations complete within time 8d, where d is the maximum message latency.

Note that the original Rambo algorithm also had to assume also that garbage-collection

is able to keep up—this assumption is not necessary in the new algorithm due to the new

configuration replacement algorithm. For the configuration replacement algorithm we show

that any number of configurations can be replaced by their successor in constant time.

At the same time, all the performance results of the original Rambo algorithm still hold;

in instances where the network is reliable and timely throughout the execution, the bounds

described in the previous Rambo papers [12, 13] still hold.

Implementations of Rambo and Rambo II on a LAN are currently being completed [16].

Preliminary empirical studies performed using this implementation illustrate the advantages

of the new algorithm over the previous one.

Document Structure. In Chapter 2 we describe the original Rambo algorithm of Lynch

and Shvartsman, and then in Chapter 3 present and discuss the formal specification of

Rambo II. In Chapter 4 we present some notation, and restate some basic lemmas, only

slightly modified from Rambo. In Chapter 5 we prove that the new algorithm guarantees

atomic consistency. In Chapter 6 we present the reconfiguration service. In Chapter 7 we

analyze the performance of Rambo II, and discuss in detail the areas in which this algorithm

improves over the original Rambo algorithm. In Chapter 8 we discuss the preliminary

performance results. Finally, in Chapter 9 we summarize the results, and areas for future

research.
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Chapter 2

The Original Rambo Algorithm

In this chapter, we present the original Rambo algorithm, on which the new algorithm

Rambo II is based. Rambo is an algorithm designed to support read/write operations on

an atomic shared memory.

In order to achieve fault tolerance and availability, Rambo replicates data at several

network locations. The algorithm uses configurations to maintain consistency in the presence

of small and transient changes. Each configuration consists of a set of members plus sets

of read-quorums and write-quorums. The quorum intersection property requires that every

read-quorum intersect every write-quorum. Read and write operations are implemented as

a two-phase protocol, in which each phase accesses a set of read or write quorums.

Rambo supports reconfiguration, which modifies the set of members and the sets of

quorums, thereby accommodating larger and more permanent changes without violating

atomicity. In this way, failed nodes can be removed from active quorums, and newly joined

nodes can be integrated into the system. Any quorum configuration may be installed at any

time – no intersection requirement is imposed on the sets of members or on the quorums of

distinct configurations.

The Rambo algorithm consists of three kinds of automata:

• Joiner automata, which handle join requests,

• Recon automata, which handle reconfiguration requests, and generate a totally ordered

sequence of configurations, and

17



• Reader-Writer automata, which handle read and write requests, manage garbage col-

lection, and send and receive gossip messages.

In this thesis, we discuss only the Reader-Writer automaton. The Joiner automaton is quite

simple; it sends a join message when node i joins, and sends a join-ack message in response

to join messages. The Recon automaton depends on a consensus service, implemented using

Paxos [9], to agree on a total ordering of configurations. However, we assume that this total

ordering exists, and therefore need not discuss this automaton any further. For more details

of these two automata, see the original Rambo paper [12, 13].

The complete implementation S is the composition of all the automata described above—

the Joiner i, Reader-Writer i, and Recon i automata for all i, and all the channels, with all

the actions that are not external actions of the Rambo specification hidden.

Input:
join(rambo, J)x,i, J a finite subset of I − {i}, x ∈ X, i ∈ I,

such that if i = (i0)x then J = ∅
readx,i, x ∈ X, i ∈ I
write(v)x,i, v ∈ Vx, x ∈ X, i ∈ I
recon(c, c′)x,i, c, c′ ∈ C, i ∈ members(c), x ∈ X, i ∈ I
faili, i ∈ I

Output:
join-ack(rambo)x,i, x ∈ X, i ∈ I
read-ack(v)x,i, v ∈ Vx, x ∈ X, i ∈ I
write-ackx,i, x ∈ X, i ∈ I
recon-ack(b)x,i, b ∈ {ok, nok}, x ∈

X, i ∈ I
report(c)x,i, c ∈ C, c ∈ X, i ∈ I

Figure 2-1: Rambo(x): External signature

The external signature for Rambo appears in Figure 2-1. The algorithm is specified for

a single memory location, and extended to implement a complete shared memory. A client

uses the joini action to join the system. After receiving a join-acki, the client can issue readi

and writei requests, which results in read-acki and write-acki responses. The client can issue

a reconi request to propose a new configuration. Finally, the faili action is used to model

node i failing.

The signature and state for the Reader-Writer automata is presented in Figure 2-2.

The code for the Reader-Writer automata is presented in Figure 2-3. All three operations,

read, write, and garbage-collect, are implemented using gossip messages. Unlike in many

other algorithms, there are no directed messages specified in this algorithm; at no point

does a given node, say i, decide to send a message specifically to node j. Instead, at regular

intervals node i will non-deterministically send all of its public state to other nodes. Progress

18



Signature:

Input:
readi

write(v)i, v ∈ V
new-config(c, k)i, c ∈ C, k ∈ N+

recv(join)j,i, j ∈ I − {i}
recv(m)j,i, m ∈M , j ∈ I
join(rw)i

faili

Output:
join-ack(rw)i

read-ack(v)i, v ∈ V
write-acki

send(m)i,j , m ∈M , j ∈ I

Internal:
query-fixi

prop-fixi

gc(k)i, k ∈ N
gc-query-fix(k)i, k ∈ N
gc-prop-fix(k)i, k ∈ N
gc-ack(k)i, k ∈ N

State:

status ∈ {idle, joining, active, failed}, initially idle
world , a finite subset of I, initially ∅
value ∈ V , initially v0

tag ∈ T , initially (0, i0)
cmap ∈ CMap, initially cmap(0) = c0,

cmap(k) = ⊥ for k ≥ 1
pnum1 ∈ N, initially 0
pnum2 , a mapping from I to N, initially

everywhere 0
failed , a Boolean, initially false

op, a record with fields:
type ∈ {read,write}
phase ∈ {idle, query, prop, done}, initially idle
pnum ∈ N
cmap ∈ CMap
acc, a finite subset of I
value ∈ V

gc, a record with fields:
phase ∈ {idle, query, prop}, initially idle
pnum ∈ N
acc, a finite subset of I
cmap ∈ CMap
index ∈ N

Figure 2-2: Reader-Writer i: Signature and state

in an operation occurs when enough information has been exchanged. After initiating an

operation, the automaton waits until it can be sure that it has shared state with enough

other nodes (using gossip messages), and then declares the operation complete. The phase

numbering regime, implemented using pnum1 and pnum2 is used to determine when enough

communication has completed.

Every node maintains a tag and a value for the data object. Every new value is assigned a

unique tag, with ties broken by process-ids. These tags are used to determine an ordering of

the write operations, and therefore determine the value that a read operation should return.

Read and write operations require two phases, a query phase and a propagation phase,
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Output send(〈W, v, t, cm, pns, pnr〉)i,j

Precondition:
¬failed
status = active
j ∈ world
〈W, v, t, cm, pns, pnr〉 =
〈world , value, tag , cmap, pnum1 , pnum2 (j)〉

Effect:
none

Input recv(〈W, v, t, cm, pns, pnr〉)j,i

Effect:
if ¬failed then

if status 6= idle then
status ← active
world ← world ∪W
if t > tag then (value, tag)← (v, t)
cmap ← update(cmap, cm)
pnum2 (j)← max(pnum2 (j), pns)
if op.phase ∈ {query, prop} and pnr ≥ op.pnum then

op.cmap ← extend(op.cmap, truncate(cm))
if op.cmap ∈ Truncated then

op.acc ← op.acc ∪ {j}
else

op.acc ← ∅
op.cmap ← truncate(cmap)

if gc.phase ∈ {query, prop} and pnr ≥ gc.pnum then
gc.acc ← gc.acc ∪ {j}

Input new-config(c, k)i

Effect:
if ¬failed then

if status 6= idle then
cmap(k)← update(cmap(k), c)

Input readi

Effect:
if ¬failed then

if status 6= idle then
pnum1 ← pnum1 + 1
〈op.pnum, op.type, op.phase, op.cmap, op.acc〉
← 〈pnum1 , read, query, truncate(cmap), ∅〉

Input write(v)i

Effect:
if ¬failed then

if status 6= idle then
pnum1 ← pnum1 + 1
〈op.pnum, op.type, op.phase, op.cmap, op.acc, op.value〉
← 〈pnum1 ,write, query, truncate(cmap), ∅, v〉

Internal query-fixi

Precondition:
¬failed
status = active
op.type ∈ {read,write}
op.phase = query
∀k ∈ N, c ∈ C : op.cmap(k) = c
⇒ ∃R ∈ read-quorums(c) : R ⊆ op.acc

Effect:
if op.type = read then op.value ← value
else value ← op.value

tag ← 〈tag .seq + 1, i〉
pnum1 ← pnum1 + 1
op.pnum ← pnum1
op.phase ← prop
op.cmap ← truncate(cmap)
op.acc ← ∅

Internal prop-fixi

Precondition:
¬failed
status = active
op.type ∈ {read,write}
op.phase = prop
∀k ∈ N, c ∈ C : op.cmap(k) = c
⇒ ∃W ∈ write-quorums(c) : W ⊆ op.acc

Effect:
op.phase = done

Output read-ack(v)i

Precondition:
¬failed
status = active
op.type = read
op.phase = done
v = op.value

Effect:
op.phase = idle

Output write-acki

Precondition:
¬failed
status = active
op.type = write
op.phase = done

Effect:
op.phase = idle

Figure 2-3: Reader-Writer i: Read/write transitions
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Internal gc(k)i

Precondition:
¬failed
status = active
gc.phase = idle
cmap(k) ∈ C
cmap(k + 1) ∈ C
k = 0 or cmap(k − 1) = ±

Effect:
pnum1 ← pnum1 + 1
gc.pnum ← pnum1
gc.phase ← query
gc.acc ← ∅
gc.index ← k

Internal gc-query-fix(k)i

Precondition:
¬failed
status = active
gc.phase = query
gc.index = k
cmap(k) 6= ±
∃R ∈ read-quorums(cmap(k)) :
∃W ∈ write-quorums(cmap(k)) :

R ∪W ⊆ gc.acc
Effect:

pnum1 ← pnum1 + 1
gc.pnum ← pnum1
gc.phase ← prop
gc.acc ← ∅

Internal gc-prop-fix(k)i

Precondition:
¬failed
status = active
gc.phase = prop
gc.index = k
∃W ∈ write-quorums(cmap(k + 1)) : W ⊆ gc.acc

Effect:
cmap(k)← ±

Internal gc-ack(k)i

Precondition:
¬failed
status = active
gc.index = k
cmap(k) = ±

Effect:
gc.phase = idle

Figure 2-4: Reader-Writer i: Rambo Garbage-collection transitions

each of which accesses certain quorums of replicas. Assume the operation is initiated at

node i. See Figure 2-5 for a summary of the two phases. First, in the query phase, node i

contacts read quorums to determine the most recent available tag and value. Then, in the

propagation phase, node i contacts write quorums. If the operation is a read operation, the

second phase propagates the largest tag discovered in the query phase, and its associated

value. If the operation is a write operation, node i chooses a new tag, strictly larger than

every tag discovered in the query phase and propagates the new tag and the new value to

the write quorums. Note that every operation accesses both read and write quorums.

During a phase of an operation, whenever node i receives a gossip message from node j,

it compares the largest phase number j has received from i (by examining pns) to the local
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Operation initiated by readi or write(v)i

Phase 1 :

• Node i communicates with a read-quorum from each configuration in op.cmap in order to
determine the largest value/tag pair.

Phase 2 :

• Node i communicates with a write-quorum from each configuration in in op.cmap to notify it
of the current largest value/tag pair (or the new value/tag pair, if it is a write operation).

Figure 2-5: Summary of two phase read or write operation

phase number when the operation began. If j initiated the gossip message after receiving a

message from i sent after the phase began, then i adds j to the acc set. In effect, there has

been a round-trip message sent from i to j back to i. Also, i then updates its op.cmap if

necessary.

Garbage collection operations remove old configurations from the system. A garbage

collection operation involves two configurations: the old configuration being removed and

the new configuration being established. See Figure 2-6 for a summary of the two phases.

A garbage collection operation requires two phases, a query phase and a propagation phase.

The first phase contacts a read-quorum and a write-quorum from the old configuration, and

the second phase contacts a write-quorum from the new configuration.

Note that, unlike a read or write operation, the first phase of the garbage-collection

operation must contact two types of quorums: a read-quorum and a write-quorum for the

Operation initiated by gc(k)i

Phase 1 :

• Node i communicates with a read-quorum from configuration c(k) in order to determine the
largest value/tag pair.

• Node i communicates with a write-quorum from configuration c(k) in order to notify it of
configuration k + 1.

Phase 2 :

• Node i communicates with a write-quorum from configuration c(k+1) to notify it of the current
largest value/tag pair.

Figure 2-6: Summary of two phase garbage-collection operation
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configuration being garbage-collected. This ensures that enough nodes are aware of the new

configurations, and ensures that any ongoing read/write operations will include the new,

larger, configuration.

The cmap is a mapping from integer indices to configurations ∪{⊥,±}, that initially

maps every index to ⊥. The cmap tracks which configurations are active, which are not

defined, indicated by ⊥, and which are removed, indicated by ±. The total ordering on

configurations determined by the Recon automata ensures that all nodes agree on which

configuration is stored in each position in the array. We define c(k) to be the configuration

associated with index k.

The record op stores information about the current phase of an ongoing read or write

operation, while gc stores information about an ongoing garbage collection operation. (A

node can process read and write operations even when a garbage collection operation is

ongoing.) The op.cmap subfield records the configuration map for an operation. This consists

of the node’s cmap when a phase begins, augmented by any new configurations discovered

during the phase. A phase can complete only when the initiator has exchanged information

with quorums from every non-removed configuration in op.cmap. The pnum subfield records

the phase number when the phase begins, allowing the initiator to determine which responses

correspond to the current phase. The acc subfield records which nodes from which quorums

have responded during the current phase.

In Rambo, configurations go through three phases: proposal, installation, and upgrade.

First, a configuration is proposed by a recon event. Next, if the proposal is successful, the

Recon service achieves consensus on the new configuration, and notifies participants with

decide events. When every non-failed member of the previous configuration has been notified,

the configuration is installed . The configuration is upgraded when every configuration with

a smaller index has been removed at some process in the system. Once a configuration has

been upgraded, it is responsible for maintaining the data.
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Chapter 3

Formal Specification of Rambo II

In this chapter we present the new algorithm in detail, and discuss how it differs from the

Rambo algorithm. The complete implementation, S, is the composition of all the automata

described—the Joiner i and Recon i automata described in Rambo, the new Reader-Writer i

automaton described here, for all i, and all the channels – with all the actions that are not

external actions of the Rambo II specification hidden.

The key problem that prevents rapid stabilization in the original algorithm is the sequen-

tial nature of the configuration upgrade mechanism: in Rambo, configurations are upgraded

one at a time, in order. (Recall that in Rambo, a configuration is upgraded when every

configuration with a smaller index has been garbage collected.) Configuration c(k) can be

upgraded only if configuration c(k−1) has previously been upgraded. This requirement arises

from the need to ensure that information is preserved as configurations are changed. As in

Rambo, a configuration in Rambo II is upgraded when every configuration with a smaller

index has been removed at some process in the system. Rambo II, however, implements

a new reconfiguration protocol that can upgrade any configuration, even if configurations

with smaller indices have not been upgraded. Unlike in Rambo, then, there may be config-

urations that are not upgraded until they themselves are removed, at the same instant that

some configuration with a larger index is upgraded.

After Rambo II completes an upgrade operation for some configuration, all configura-

tions with smaller indices can be removed. Thus a single upgrade operation in Rambo II
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Signature:
As in Rambo, with the following modifications:
Internal:

cfg-upgrade(k)i, k ∈ N>0

cfg-upg-query-fix(k)i, k ∈ N>0

cfg-upg-prop-fix(k)i, k ∈ N>0

cfg-upgrade-ack(k)i, k ∈ N>0

Configuration Management State:
As in Rambo, with the following replacing the
gc record:
upg , a record with fields:

phase ∈ {idle, query, prop}, initially idle

pnum ∈ N
cmap ∈ CMap,
acc, a finite subset of I

target ∈ N

Configuration Management Transitions:

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)
(J)

Internal cfg-upgrade(k)i

Precondition:
¬failed
status = active
upg .phase = idle
cmap(k) ∈ C
cmap(k − 1) ∈ C1

∀` ∈ N, ` < k : cmap(`) 6= ⊥
Effect:

pnum1 ← pnum1 + 1
upg ← 〈query, pnum1 , cmap, ∅, k〉

Internal cfg-upg-query-fix(k)i

Precondition:
¬failed
status = active
upg .phase = query
upg .target = k
∀` ∈ N, ` < k : upg .cmap(`) ∈ C
⇒ ∃R ∈ read-quorums(upg .cmap(`)) :
∃W ∈ write-quorums(upg .cmap(`)) :

R ∪W ⊆ upg .acc
Effect:

pnum1 ← pnum1 + 1
upg .pnum ← pnum1
upg .phase ← prop
upg .acc ← ∅

Internal cfg-upg-prop-fix(k)i

Precondition:
¬failed
status = active
upg .phase = prop
upg .target = k
∃W ∈ write-quorums(upg .cmap(k)) : W ⊆ upg .acc

Effect:
for ` ∈ N : ` < k do
cmap(`)← ±

Internal cfg-upgrade-ack(k)i

Precondition:
¬failed
status = active
upg .target = k
∀` ∈ N, ` < k : cmap(`) = ±

Effect:
upg .phase = idle

Output send(〈W, v, t, cm, pns, pnr〉)i,j

Precondition:
¬failed
status = active
j ∈ world
〈W, v, t, cm, pns, pnr〉 =
〈world , value, tag , cmap, pnum1 , pnum2 (j)〉

Effect:
none

Input recv(〈W, v, t, cm, pns, pnr〉)j,i

Effect:
if ¬failed then

if status 6= idle then
status ← active
world ← world ∪W
if t > tag then (value, tag)← (v, t)
cmap ← update(cmap, cm)
pnum2 (j)← max(pnum2 (j), pns)
if op.phase ∈ {query, prop} and pnr ≥ op.pnum then

op.cmap ← extend(op.cmap, truncate(cm))
if op.cmap ∈ Truncated then

op.acc ← op.acc ∪ {j}
else

op.acc ← ∅
op.cmap ← truncate(cmap)

if upg .phase ∈ {query, prop} and pnr ≥ upg .pnum then
upg .acc ← upg .acc ∪ {j}

Figure 3-1: Reader-Writer i: Configuration Management transitions
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potentially has the effect of many garbage collection operations in Rambo, each of which

can only remove a single configuration. The name has been changed to emphasize the oper-

ation’s active role in configuration management: configuration upgrade is an inherent part

of preparing a configuration to assume responsibility for the data. The code for the new

configuration management mechanism appears in Figure 3-1. All labeled lines in this section

refer to the code therein.

We now describe in more detail the configuration upgrade operation, which is at the

heart of Rambo II. A configuration upgrade is a two-phase operation, much like the garbage-

collection operation in Rambo. See Figure 3-2 for a summary of the two phases. An upgrade

operation is initiated at node i with a cfg-upgrade(k) event. When this happens, cmap(k)

must be defined, that is, must be a valid configuration ∈ C (line A). Additionally, for every

configuration ` < k, cmap(`) must be either ∈ C or removed, that is, ± (line B).

We refer to configuration c(k) as the target of the upgrade operation, and we refer to the

set of configurations to be removed, {c(`) : ` < k ∧ upg .cmap(`) ∈ C}, as the removal-set of

the configuration upgrade operation. The configuration management mechanism guarantees

that the removal-set consists of configurations with a contiguous set of indices.

As a result of the cfg-upgrade event, node i initializes its upg state (line C), and begins

the query phase of the upgrade operation. In particular, node i stores its current cmap in

upg .cmap, which records the configurations that are currently active. Only these configura-

tions (and, in fact, only those with index smaller than k) matter during the operation; new

configurations are ignored.

The query phase continues until node i receives responses from enough nodes. In par-

ticular, for every configuration c(`) with index less than k in upg .cmap, there must exist a

read-quorum, R, of configuration c(`), and a write-quorum, W , of configuration c(`) such

that i has received a response (that is, a recent gossip message) from every node in R ∪W

(lines D–E).

When the query phase completes, a cfg-upg-query-fix event occurs. When this event

1In the conference version of the thesis, this line was omitted. The removal of this line has no detrimental
effect on the algorithm, since the operation then completes in zero time. However for clarity sake it is
included.
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Operation initiated by cfg-upgrade(k)i:

Phase 1 :

• Node i communicates with a read-quorum from each configuration being removed in order to
determine the largest value/tag pair.

• Node i communicates with a write-quorum from each configuration being removed to notify it
of the new, active configuration.

Phase 2 :

• Node i communicates with a write-quorum from the target configuration being upgraded, to
notify it of the current largest value/tag pair.

Figure 3-2: Summary of two phase configuration upgrade operation

occurs, node i then has the most recent tag and value discovered by operations using con-

figurations with index smaller than k. Further, all configurations with indices smaller than

k have been notified of configuration c(k). Node i then reinitializes upg to begin the propa-

gation phase (lines F–G).

The propagation phase continues until node i receives responses from a write-quorum in

configuration c(k). In particular, there must exist a write-quorum, W , of configuration c(k),

such that i has received a response from every node in W (line H).

When the propagation phase completes, a cfg-upg-prop-fix event occurs, which verifies the

termination condition. At this point node i has ensured that configuration c(k) has received

the most recent value known to i, which, as a result of the query phase, is itself a recent

value. At this point, the configurations with index < k are no longer needed, and node i

removes these configurations from its local cmap, setting cmap(`) = ± for all ` < k (line

I–J). Gossip messages may eventually notify other processes that these configurations have

been removed.

Finally, a cfg-upgrade-ack(k) event notifies the client that configuration c(k) has been

successfully upgraded.

Notice that the algorithm allows a nondeterministic choice of which configuration to up-

grade – and therefore which configurations to remove. Therefore it is possible to restrict

the algorithm so that it removes only the smallest configuration, upgrading the configura-

tions one at a time. In this case the algorithm progresses exactly as the original Rambo

28



algorithm. Therefore it is clearly possible, by restricting the nondeterminism appropriately,

to implement Rambo II in such a way as to guarantee equivalent performance as Rambo.

However we will show that by allowing greater flexibility we can achieve equivalent safety

results and improved performance.

The new algorithm introduces several difficulties not present in Rambo. Consider, for ex-

ample, a nice property guaranteed by the sequential garbage collection algorithm in Rambo:

every configuration is upgraded before it is removed. In Rambo II, on the other hand, some

configurations never receive up to date information; a configuration may be upgraded at the

same instant it is removed.

As a result of this fact, a number of plausible improvements fail. Assume that during

an ongoing upgrade operation for configuration c(k) initiated by node i, node i receives a

message indicating that configuration c(k′) has been removed, for some k′ < k. In Rambo II,

node i sets cmap(k′) = ±, but does not change upg .cmap. Consider the following incorrect

modification to the configuration management mechanism. When node i receives such a

message, it sets upg .cmap(k′) to ±. Since the configuration has been removed, it seems

plausible that the configuration upgrade operation can safely ignore it, thus completing

more quickly. It turns out, however, that this improvement results in a race condition that

can lead to data loss. The configuration upgrade operation that removes configuration c(k′)

might occur concurrently with the operation at node i upgrading configuration c(k). This

concurrency might result in data being propagated from configuration c(k′) to a configuration

c(k′′) : k′ < k′′ < k that has already been processed by the upgrade operation at node i. The

data thus propagated might then be lost.
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Chapter 4

Notation and Basic Lemmas

This chapter is, to a large extent, a restatement of notation and results from the original

Rambo paper [13]. Some of the notation in the proofs has been slightly modified to account

for the new configuration management mechanism, and some of the proofs have therefore

been updated, but the results are essentially unchanged. Much of this chapter is taken

directly from [13].

4.1 Good Executions

Throughout the rest of this thesis, we will talk about “good” executions of the algorithm.

In this section, we present a set of environment assumptions that define a “good” execution.

In general, the assumptions we will present require well-formed requests: clients follow the

protocol to join and to initiate reconfigurations; clients initiate only one operation at a time;

clients wait for appropriate acknowledgments before proceeding.

We consider executions of S (recall that S is the entire system combining Reader-Writer ,

Recon and Joiner automata) whose traces satisfy certain assumptions about the environ-

ment. We call these good executions. In particular, an “invariant” is a statement that is

true of all states that are reachable in good executions of S. The environment assumptions

are simple “well-formedness” conditions:

• Well-formedness for Reader-Writer:
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– For every x and i:

∗ No join(rambo, ∗)x,i, readx,i, write(∗)x,i, or recon(∗, ∗)x,i event is preceded by

a faili event.

∗ At most one join(rambo, ∗)x,i event occurs.

∗ Any readx,i, write(∗)x,i, or recon(∗, ∗)x,i event is preceded by a join-ack(rambo)x,i

event.

∗ Any readx,i, write(∗)x,i, or recon(∗, ∗)x,i event is preceded by an -ack event for

any preceding event of any of these kinds.

– For every x and c, at most one recon(∗, c)x,∗ event occurs. (This says that config-

uration identifiers that are proposed in recon events are unique. It does not say

that the membership and/or quorum sets are unique—just the identifiers. The

same membership and quorum sets may be associated with different configura-

tion identifiers.) Uniqueness of configuration identifiers is achievable using local

process identifiers and sequence numbers.

– For every c, c′, x, and i, if a recon(c, c′)x,i event occurs, then it is preceded by:

∗ A report(c)x,i event, and

∗ A join-ack(rambo)x,j event for every j ∈ members(c′).

• Well-formedness for Recon:1

– For every i:

∗ No join(recon)i or recon(∗, ∗)i event is preceded by a faili event.

∗ At most one join(recon)i event occurs.

∗ Any recon(∗, ∗)i event is preceded by a join-ack(recon)i event.

∗ Any recon(∗, ∗)i event is preceded by an -ack for any preceding recon(∗, ∗)i

event.

– For every c, at most one recon(∗, c)∗ event occurs.

1The following properties appear in Chapter 6, but we repeat them here for completeness.
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– For every c, c′, x, and i, if a recon(c, c′)i event occurs, then it is preceded by:

∗ A report(c)i event, and

∗ A join-ack(recon)j for every j ∈ members(c′).

4.2 Notational conventions

In this section, we introduce some definitions and notational conventions, and we add certain

history variables to the global state of the system S.

Definitions:

• update, a binary function on C±, defined by update(c, c′) = max(c, c′) if c and c′ are

comparable (in the augmented partial ordering of C±), update(c, c′) = c otherwise.

• extend , a binary function on C±, defined by extend(c, c′) = c′ if c = ⊥ and c′ ∈ C, and

extend(c, c′) = c otherwise.

• CMap, the set of configuration maps , defined as the set of mappings from N to C±.

The update and extend operators are extended element-wise to binary operations on

CMap.

• truncate, a unary function on CMap, defined by truncate(cm)(k) = ⊥ if there exists

` ≤ k such that cm(`) = ⊥, truncate(cm)(k) = cm(k) otherwise. This truncates

configuration map cm by removing all the configuration identifiers that follow a ⊥.

• Truncated , the subset of CMap such that cm ∈ Truncated if and only if truncate(cm) =

cm.

• Usable, the subset of CMap such that cm ∈ Usable iff the pattern occurring in cm

consists of a prefix of finitely many ±s, followed by an element of C, followed by an

infinite sequence of elements of C ∪{⊥} in which all but finitely many elements are ⊥.

An operation is a pair (n, i) consisting of a natural number n and an index i ∈ I. Here,

i is the index of the process running the operation, and n is the value of pnum1 i just after

the read, write, or cfg-upgrade event of the operation occurs.
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We introduce the following history variables:

• in-transit , a set of messages, initially ∅.

A message is added to the set when it is sent by any Reader-Writer i to any Reader-Writer j.

No message is ever removed from this set.

• For every k ∈ N:

1. c(k) ∈ C, initially undefined.

This is set when the first new-config(c, k)i occurs, for some c and i. It is set to

the c that appears as the first argument of this action.

• For every operation π:

1. tag(π) ∈ T , initially undefined.

This is set to the value of tag at the process running π, at the point right after π’s

query-fix or cfg-upg-query-fix event occurs. If π is a read or configuration upgrade

operation, this is the highest tag that it encounters during the query phase. If π

is a write operation, this is the new tag that is selected for performing the write.

• For every read or write operation π:

1. query-cmap(π), a CMap, initially undefined.

This is set in the query-fix step of π, to the value of op.cmap in the pre-state.

2. R(π, k), for k ∈ N, a subset of I, initially undefined.

This is set in the query-fix step of π, for each k such that query-cmap(π)(k) ∈ C.

It is set to an arbitrary R ∈ read-quorums(c(k)) such that R ⊆ op.acc in the

pre-state.

3. prop-cmap(π), a CMap, initially undefined.

This is set in the prop-fix step of π, to the value of op.cmap in the pre-state.

4. W (π, k), for k ∈ N, a subset of I, initially undefined.

This is set in the prop-fix step of π, for each k such that prop-cmap(π)(k) ∈ C.

It is set to an arbitrary W ∈ write-quorums(c(k)) such that W ⊆ op.acc in the

pre-state.
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• For every configuration upgrade operation γ for k:

1. removal-set(γ), a subset of N, initially undefined.

This is set in the cfg-upgrade step of γ, to the set {` : ` < k, cmap(`) 6= ±}.

2. R(γ, `), for ` ∈ N, a subset of I, initially undefined.

This is set in the cfg-upg-query-fix step of γ, for each ` ∈ removal-set(γ), to an

arbitrary R ∈ read-quorums(c(`)) such that R ⊆ upg .acc in the pre-state.

3. W1(γ, `), for ` ∈ N, a subset of I, initially undefined.

This is set in the cfg-upg-query-fix step of γ, for each ` ∈ removal-set(γ), to an

arbitrary W ∈ write-quorums(c(`)) such that W ⊆ upg .acc in the pre-state.

4. W2(γ), a subset of I, initially undefined.

This is set in the cfg-upg-prop-fix step of γ, to an arbitraryW ∈ write-quorums(c(k))

such that W ⊆ upg .acc in the pre-state.

In any good execution α, we define the following events (more precisely, we are giving

additional names to some existing events):

1. For every read or write operation π:

(a) query-phase-start(π) , initially undefined.

This is defined in the query-fix step of π, to be the unique earlier event at which

the collection of query results was started and not subsequently restarted. This

is either a read, write, or recv event.

(b) prop-phase-start(π), initially undefined.

This is defined in the prop-fix step of π, to be the unique earlier event at which

the collection of propagation results was started and not subsequently restarted.

This is either a query-fix or recv event.

4.3 Configuration map invariants

In this section, we give invariants describing the kinds of configuration maps that may appear

in various places in the state of S. We begin with a lemma saying that various operations

35



yield or preserve the “usable” property:

Lemma 4.3.1 1. If cm, cm ′ ∈ Usable then update(cm, cm ′) ∈ Usable.

2. If cm ∈ Usable, k ∈ N , c ∈ C, and cm ′ is identical to cm except that cm ′(k) =

update(cm(k), c), then cm ′ ∈ Usable.

3. If cm, cm ′ ∈ Usable then extend(cm, cm ′) ∈ Usable.

4. If cm ∈ Usable then truncate(cm) ∈ Usable.

Proof. Part 1 is shown using a case analysis based on which of cm and cm ′ has a longer

prefix of ±s. Part 2 uses a case analysis based on where k is with respect to the prefix of

±s. Part 3 and Part 4 are also straightforward. �

The next invariant (recall from Section 4.1 that this means a property of all states

that arise in good executions of S) describes some properties of cmapi that hold while

Reader-Writer i is conducting a configuration upgrade operation:

Invariant 4.3.2 If upg .phase i 6= idle and upg .target i = k, then:

1. ∀` : ` ≤ k ⇒ cmap(`)i ∈ C ∪ {±}.

2. If k1 = min{` : ` ≤ k and upg .cmap(`) 6= ±} then k1 = 0 or cmap(k1 − 1)i = ±.

Proof. By the precondition of cfg-upgrade(k)i and monotonicity of all the changes to

cmapi. �

We next proceed to describe the patterns of C, ⊥, and ± values that may occur in

configuration maps in various places in the system state.

Invariant 4.3.3 Let cm be a CMap that appears as one of the following:

1. The cm component of some message in in-transit.

2. cmapi for any i ∈ I.

3. op.cmapi for some i ∈ I for which op.phase 6= idle.
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4. query-cmap(π) or prop-cmap(π) for any operation π.

5. upg .cmapi for some i ∈ I for which upg .phase 6= idle.

Then cm ∈ Usable.

In the following proof and elsewhere, we use dot notation to indicate components of a

state, for example, s.cmapi indicates the value of cmapi in state s.

Proof. By induction on the length of a finite good execution.

Base: Part 1 holds because initially, in-transit is empty. Part 2 holds because initially,

for every i, cmap(0)i = c0 and cmap(k)i = ⊥; the resulting CMap is in Usable. Part 3 and

Part 5 hold vacuously, because in the initial state, all op.phase and upg .phase values are

idle. Part 4 also holds vacuously, because in the initial state, all query-cmap and prop-cmap

variables are undefined.

Inductive step: Let s and s′ be the states before and after the new event, respectively.

We consider Parts 1–5 one by one.

For Part 1, the interesting case is a sendi event that puts a message containing cm in

in-transit . The precondition on the send action implies that cm is set to s.cmapi. The

inductive hypothesis, Part 2, implies that s.cmapi ∈ Usable, which suffices.

For Part 2, fix i. The interesting cases are those that may change cmapi, namely, new-configi,

recvi for a gossip (non-join) message, and cfg-upg-prop-fixi. The latter case is the only one

modified from the original Rambo algorithm.

1. new-config(c, ∗)i.

By inductive hypothesis, s.cmapi ∈ Usable. The only change this can make is changing

a ⊥ to c. Then Lemma 4.3.1, Part 2, implies that s′.cmapi ∈ Usable.

2. recv(〈∗, ∗, cm, ∗, ∗〉)i.

By inductive hypothesis, cm ∈ Usable and s.cmapi ∈ Usable. The step sets s′.cmapi

to update(s.cmapi, cm). Lemma 4.3.1, Part 1, then implies that s′.cmapi ∈ Usable.
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3. cfg-upg-prop-fix(k)i.

This sets cmap(`)i to ± for all ` < k. By the definition of this step, s′.cmap(`)i = ±

for ` < k.

If s.cmap(k − 1)i = ±, then the operation has no effect, and s′.cmapi = s.cmapi ∈

Usable. Assume, then, that s.cmap(k − 1)i ∈ C ∪ {⊥}. This implies, by the inductive

hypothesis showing s.cmapi ∈ Usable, that s.cmap(`)i ∈ C ∪ {⊥} for all ` ≥ k − 1.

By Invariant 4.3.2, we know that s.cmap(k)i ∈ C ∪ {±}, and therefore s.cmap(k)i ∈

C. Therefore s′.cmap(k)i ∈ C and s′.cmap(`)i ∈ C ∪ {⊥} for all ` > k, since the

cfg-upg-prop-fix does not change entries in the cmap larger than k−1. Further, there are

only finitely many entries in s.cmapi that are in C (by the inductive hypothesis), and

so there are still only finitely many entries in s′.cmapi. Therefore, s′.cmapi ∈ Usable.

For Part 3, the interesting actions to consider are those that modify op.cmap, namely, readi,

writei, recvi, and query-fixi.

1. readi, writei, or query-fixi.

By inductive hypothesis, s.cmapi ∈ Usable. The new step sets s′.op.cmapi to truncate(s.cmapi);

since s.cmapi ∈ Usable, Lemma 4.3.1, Part 4, implies that this is also usable.

2. recv(〈∗, ∗, cm, ∗, ∗〉)i.

This step may alter op.cmapi only if s.op.phase ∈ {query , prop}, and then in only two

ways: by setting it either to extend(s.op.cmapi, truncate(cm)) or to truncate(update(s.cmapi, cm)).

The inductive hypothesis implies that s.op.cmapi, cmapi, and cm are all in Usable.

Lemma 4.3.1 implies that truncate, extend , and update all preserve usability. There-

fore, s′.op.cmapi ∈ Usable.

For Part 4, the actions to consider are query-fixi and prop-fixi.

1. query-fixi.

This sets s′.query-cmapi to the value of s.op.cmapi. Since by inductive hypothesis the

latter is usable, so is s′.query-cmapi.
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2. prop-fixi.

This sets s′.prop-cmapi to the value of s.op.cmapi. Since by inductive hypothesis, the

latter is usable, so is s′.prop-cmapi.

For Part 5, the actions to consider are cfg-upgrade(k)i and cfg-upg-query-fix(k)i. These set

s′.upg .cmapi to the value of s.cmapi. Since by the inductive hypothesis the latter is usable,

so is s′.upg .cmapi. �

We now strengthen Invariant 4.3.3 to say more about the form of the CMaps that are

used for read and write operations:

Invariant 4.3.4 Let cm be a CMap that appears as op.cmapi for some i ∈ I for which

op.phase i 6= idle, or as query-cmap(π) or prop-cmap(π) for any operation π. Then:

1. cm ∈ Truncated.

2. cm consists of finitely many ± entries followed by finitely many C entries followed by

an infinite number of ⊥ entries.

Proof. We prove that the desired properties hold for a cm that is op.cmapi. The

same properties for query-cmapi and prop-cmapi follow by the way they are defined, from

op.cmapi.

To prove Part 1 we proceed by induction. In the initial state, op.phase i = idle, which

makes the claim vacuously true. For the inductive step we consider all actions that alter

op.cmapi:

1. readi, writei, or query-fix i.

These set op.cmapi to truncate(cmapi), which is necessarily in Truncated .

2. recvi.

This first sets op.cmapi to a preliminary value and then tests if the result is in

Truncated . If it is, we are done. If not, then this step resets op.cmapi to truncate(cmapi),

which is in Truncated .

To see Part 2, note that cm ∈ Usable by Invariant 4.3.3. The fact that cm ∈ Truncated

then follows from the definition of Usable and Part 1. �
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4.4 Phase guarantees

In this section, we present results saying what is achieved by the individual operation phases.

We give four lemmas, describing the messages that must be sent and received and the

information flow that must occur during the two phases of configuration-upgrades and during

the two phases of read and write operations.

Note that these lemmas treat the case where j = i uniformly with the case where j 6= i.

This is because, in the Reader-Writer algorithm, communication from a location to itself

is treated uniformly with communication between two different locations. We first consider

the query phase of a configuration-upgrade:

Lemma 4.4.1 Suppose that a cfg-upg-query-fix(k)i event for configuration upgrade operation

γ occurs in α and k′ ∈ removal-set(γ). Suppose j ∈ R(γ, k′) ∪W1(γ, k
′).

Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the cfg-upgrade(k)i event of γ.

2. m′ is sent after j receives m.

3. m′ is received before the cfg-upg-query-fix(k)i event of γ.

4. In any state after j receives m, cmap(`)j 6= ⊥ for all ` ≤ k.

5. tag(γ) ≥ t, where t is the value of tag j in any state before j sends message m′.

Proof. The phase number discipline implies the existence of the claimed messages m and

m′.

For Part 4, the precondition of cfg-upgrade(k) implies that, when the cfg-upgrade(k)i

event of γ occurs, cmap(`)i 6= ⊥ for all ` ≤ k. Therefore, j sets cmap(`)j 6= ⊥ for all ` ≤ k

when it receives m. Monotonicity of cmapj ensures that this property persists forever.

For Part 5, let t be the value of tag j in any state before j sends message m′. Let t′ be

the value of tag j in the state just before j sends m′. Then t ≤ t′, by monotonicity. The tag

component of m′ is equal to t′, by the code for send. Since i receives this message before the

cfg-upg-query-fix(k), it follows that tag(γ) is set by i to a value ≥ t. �
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Next, we consider the propagation phase of a configuration upgrade:

Lemma 4.4.2 Suppose that a cfg-upg-prop-fix(k)i event for a configuration upgrade opera-

tion γ occurs in α. Suppose that j ∈ W2(γ).

Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the cfg-upg-query-fix(k)i event of γ.

2. m′ is sent after j receives m.

3. m′ is received before the cfg-upg-prop-fix(k)i event of γ.

4. In any state after j receives m, tag j ≥ tag(γ).

Proof. The phase number discipline implies the existence of the claimed messages m and

m′.

For Part 4, when j receives m, it sets tag j to be ≥ tag(γ). Monotonicity of tag j ensures

that this property persists in later states. �

Next, we consider the query phase of read and write operations:

Lemma 4.4.3 Suppose that a query-fixi event for a read or write operation π occurs in α.

Let k, k′ ∈ N. Suppose query-cmap(π)(k) ∈ C and j ∈ R(π, k).

Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the query-phase-start(π) event.

2. m′ is sent after j receives m.

3. m′ is received before the query-fix event of π.

4. If t is the value of tag j in any state before j sends m′, then:

(a) tag(π) ≥ t.

(b) If π is a write operation then tag(π) > t.

5. If cmap(`)j 6= ⊥ for all ` ≤ k′ in any state before j sends m′, then query-cmap(π)(`) ∈

C for some ` ≥ k′.
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Proof. The phase number discipline implies the existence of the claimed messages m and

m′.

For Part 4, the tag component of message m′ is ≥ t, so i receives a tag that is ≥ t during

the query phase of π. Therefore, tag(π) ≥ t. Also, if π is a write, the effects of the query-fix

imply that tag(π) > t.

Finally, we show Part 5. In the cm component of message m′, cm(`) 6= ⊥ for all ` ≤ k′.

Therefore, truncate(cm)(`) = cm(`) for all ` ≤ k′, so truncate(cm)(`) 6= ⊥ for all ` ≤ k′.

Let cm ′ be the configuration map extend(op.cmapi, truncate(cm)) computed by i during

the effects of the recv event for m′. Since i does not reset op.acc to ∅ in this step, by

definition of the query-phase-start event, it follows that cm ′ ∈ Truncated , and cm ′ is the

value of op.cmapi just after the recv step.

Fix `, 0 ≤ ` ≤ k′. We claim that cm ′(`) 6= ⊥. We consider cases:

1. op.cmap(`)i 6= ⊥ just before the recv step.

Then the definition of extend implies that cm ′(`) 6= ⊥, as needed.

2. op.cmap(`)i = ⊥ just before the recv step and truncate(cm)(`) ∈ C.

Then the definition of extend implies that cm ′(`) ∈ C, which implies that cm ′(`) 6= ⊥,

as needed.

3. op.cmap(`)i = ⊥ just before the recv step and truncate(cm)(`) /∈ C.

Since truncate(cm)(`) 6= ⊥, it follows that truncate(cm)(`) = ±. Since truncate(cm)(`) =

± and truncate(cm) ∈ Usable, it follows that, for some `′ > `, truncate(cm)(`′) ∈ C.

By the case assumption, op.cmap(`)i = ⊥ just before the recv step. Since, by In-

variant 4.3.4, op.cmapi ∈ Truncated , it follows that op.cmap(`′)i = ⊥ before the recv

step.

Then by definition of extend , we have that cm ′(`) = ⊥ while cm ′(`′) ∈ C. This

implies that cm ′ /∈ Truncated , which contradicts the fact, already shown, that cm ′ /∈

Truncated , So this case cannot arise.
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Since this argument holds for all `, 0 ≤ ` ≤ k′, it follows that cm ′(`) 6= ⊥ for all ` ≤ k′.

Since cm ′(`) 6= ⊥ for all ` ≤ k′, Invariant 4.3.3 implies that cm ′ ∈ Usable, which implies by

definition of Usable that cm ′(`) ∈ C for some ` ≥ k′. That is, op.cmapi(`) ∈ C for some

` ≥ k′ immediately after the recv step. This implies that query-cmap(π)(`) ∈ C for some

` ≥ k′, as needed. �

And finally, we consider the propagation phase of read and write operations:

Lemma 4.4.4 Suppose that a prop-fixi event for a read or write operation π occurs in α.

Suppose prop-cmap(π)(k) ∈ C and j ∈ W (π, k).

Then there exist messages m from i to j and m′ from j to i such that:

1. m is sent after the prop-phase-start(π) event.

2. m′ is sent after j receives m.

3. m′ is received before the prop-fix event of π.

4. In any state after j receives m, tag j ≥ tag(π).

5. If cmap(`)j 6= ⊥ for all ` ≤ k′ in any state before j sends m′, then prop-cmap(π)(`) ∈ C

for some ` ≥ k′.

Proof. The phase number discipline implies the existence of the claimed messages m and

m′.

For Part 4, letm.tag be the tag field of messagem. Sincem is sent after the prop-phase-start

event, which is not earlier than the query-fix, it must be that m.tag ≥ tag(π). Therefore, by

the effects of the recv, just after j receives m, tag j ≥ m.tag ≥ tag(π). Then monotonicity of

tag j implies that tag j ≥ tag(π) in any state after j receives m.

For Part 5, the proof is analogous to the proof of Part 5 of Lemma 4.4.3. In fact, it is

identical except for the final conclusion, which now says that prop-cmap(π)(`) ∈ C for some

` ≥ k′. �
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Chapter 5

Atomic Consistency

This section contains the proof of atomic consistency. The proof is carried out in several

stages. First in Section 5.1 we present some lemmas about the new configuration man-

agement mechanism, describing the relationship between configuration upgrade operations.

Section 5.2 describes the relationship between read/write operations and configuration up-

grade operations. Section 5.3 then considers two read or write operations, and culminates

in Lemma 5.3.3, which says that tags are monotonic with respect to non-concurrent read or

write operations. Finally, Section 5.4 uses the tags to define a partial order on operations

and verifies the four properties required for atomicity.

5.1 Behavior of configuration upgrade

This section presents the key new technical lemmas on which the proof of atomicity is based.

Specifically, we present lemmas describing information flow between configuration upgrade

operations. These lemmas assert the existence of a sequence of configuration upgrade opera-

tions on which we can make certain necessary guarantees. In particular, the key property is

that the tags are monotonically increasing with respect to the specific sequence of upgrade

operations, guaranteeing that value/tag information is propagated to newer configurations.

The first lemma shows that if all configuration upgrade operations remove two particular

configurations together, then those two configuration are always in the same state in all
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cmaps.

Lemma 5.1.1 Suppose that k > 0, and α is an execution in which no cfg-upg-prop-fix(k)

event occurs in α. Suppose that cm is a CMap that appears as one of the following in any

state in α:

1. The cm component of some message in in-transit.

2. cmapi for any i ∈ I.

If cm(k − 1) = ± then cm(k) = ±.

Proof. Fix some α and k > 0 such that no cfg-upg-prop-fix(k) event occurs in α. We

proceed by induction on the length of a finite prefix of α: for every action in α, if before

the action cm(k−1) = ± =⇒ cm(k) = ±, then the same implication holds after the action.

Base: For Part 1, the conclusion follows vacuously because initially in-transit is empty.

For Part 2, the conclusion again follows vacuously because initially cmapi(`) 6= ± for all i

and `.

Inductive step: Let s and s′ be the states before and after the new event, respectively. We

consider Parts 1 and 2 separately.

For Part 1, the interesting case is a sendi event that puts a message containing cm in

in-transit . The precondition on the send action implies that cm is set to s.cmapi. The

inductive hypothesis, Part 2, implies that if s.cmap(k − 1) = ±, then s.cmap(k) = ±.

Therefore in state s′, the same holds for cm, which has been added to in-transit .

For Part 2, fix i. The interesting cases are those that may change cmapi, namely, new-configi,

recvi for a gossip message, and cfg-upg-prop-fixi.

1. new-config(c, ∗)i.

If s′.cmap(k − 1)i = ±, then s.cmap(k − 1)i = ±, since installing a new configuration

does not set any entry to ±. Then by the inductive hypothesis s.cmap(k)i = ±, which

implies that s′.cmap(k)i = ±, since this action cannot modify an entry that is already

±.
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2. recv(〈∗, ∗, cm, ∗, ∗〉)i.

First, if cm(0) 6= ±, then the message does not cause any entry in s.cmap to be set

to ±, and as in Case 1 the desired property still holds. Also, if s.cmap(0) 6= ±, then

for all `, s′.cmap(`) = ± if and only if cm(`) = ±. By the inductive hypothesis

cm(k− 1) = ± =⇒ cm(k) = ±, so the desired conclusion follows. For the rest of this

case, we will assume that cm(0) = ± and s.cmap(0) = ±.

By Invariant 4.3.3, cm ∈ Usable. Therefore we can define kmsg-max such that cm(`) = ±

for all ` ≤ kmsg-max and cm(`) 6= ± for all ` > kmsg-max . Similarly, we can define kmax

such that s.cmap(`)i = ± for all ` ≤ kmax and s.cmap(`)i 6= ± for all ` > kmax. Define

k′max in the same way for the poststate, s′.

There are two cases. First, assume kmax ≥ kmsg-max . Then k′max = kmax, by the mono-

tonicity of CMap. By our inductive hypothesis s.cmap(k − 1) = ± =⇒ s.cmap(k) =

±; it follows, then, that if k− 1 ≤ kmax then k ≤ kmax. Therefore if k− 1 ≤ k′max, then

k ≤ k′max. Finally, then, if s′.cmap(k − 1) = ±, then s′.cmap(k) = ±.

Assume, then, that kmsg-max > kmax. Then after the update operation, k′max = kmsg-max .

By our inductive hypothesis, cm(k − 1) = ± =⇒ cm(k) = ±; it follows, then, that if

k− 1 ≤ kmsg-max , then k ≤ kmsg-max . Therefore if k− 1 ≤ k′max, then k ≤ k′max. Finally,

then, s′.cmap(k − 1) = ± implies that s′.cmap(k) = ±.

3. cfg-upg-prop-fix(k′)i.

By assumption, k 6= k′. If k < k′, then this operation sets both s′.cmap(k − 1)i = ±

and s′.cmap(k)i = ±. If k > k′, then this operation has no effect on cmap(k)i or

cmap(k − 1)i, and the desired property still holds.

�

The following corollary says that if a cfg-upgrade(k) event for an upgrade operation γ

occurs in an execution, then there is some previous configuration upgrade operation γ′ (that

completes before the upgrade event) where the target of γ′ is the configuration with the

smallest index removed by γ.
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Corollary 5.1.2 Let γ be a configuration upgrade operation, initiated by a cfg-upgrade(k)i

event in α, and let k1 = min{removal-set(γ)}. That is, k1 is the smallest element such

that upg-cmap(γ)(k1) ∈ C. Assume k1 > 0. Then a cfg-upg-prop-fix(k1)j event for some

configuration upgrade operation γ′ occurs in α for some j such that the cfg-upg-prop-fixj

event of γ′ precedes the cfg-upgrade(k)i event in α.

Proof. By the definition of k1, we know that in the state just after the cfg-upgrade event,

upg .cmap(k1 − 1)i = ± and upg .cmap(k1)i 6= ±. Since upg .cmapi is set by the cfg-upgrade

event to cmapi in the state just prior to the cfg-upgrade event, we know that cmap(k1−1)i =

± and cmap(k1)i 6= ± in the state just prior to the cfg-upgrade event. Lemma 5.1.1, then,

implies that some cfg-upgrade-prop-fix(k1) event for some operation γ′ occurs in α preceding

the cfg-upgrade event. �

The next lemma says that for a given configuration upgrade operation γ, there exists a

sequence of preceding upgrade operations satisfying certain properties. The lemma begins by

assuming that some configuration with index k is removed by the specified upgrade operation.

For every configuration with an index smaller than k, we choose a single upgrade operation –

that removes that configuration – to add to the sequence. Therefore the constructed sequence

may well contain the same configuration upgrade operation multiple times, if the operation

has removed multiple configurations. If two elements in the sequence are distinct upgrade

operations, then the earlier operation in the sequence completes before the later operation in

the sequence is initiated. Also, the target of an upgrade operation in the sequence is removed

by the next distinct upgrade operation in the sequence. As a result of these properties, the

configuration upgrade process obeys a sequential discipline.

Lemma 5.1.3 If a cfg-upgradei event for upgrade operation γ occurs in α such that k ∈

removal-set(γ), then there exists a sequence (possibly containing repeated elements) of con-

figuration upgrade operations γ0, γ1, . . . , γk with the following properties:

1. ∀ s : 0 ≤ s ≤ k, s ∈ removal-set(γs),

2. ∀ s : 0 ≤ s < k, if γs 6= γs+1, then the cfg-upg-prop-fix event of γs occurs in α and the
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cfg-upgrade event of γs+1 occurs in α, and the cfg-upg-prop-fix event of γs precedes the

cfg-upgrade event of γs+1, and

3. ∀ s : 0 ≤ s < k, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).

Proof. We construct the sequence in reverse order, first defining γk, and then at each step

defining the preceding element. We prove the lemma by backward induction on `, for ` = k

down to ` = 0, maintaining the following three properties at each step of the induction:

1 ′. ∀ s : ` ≤ s ≤ k, s ∈ removal-set(γs),

2 ′. ∀ s : ` ≤ s < k, if γs 6= γs+1, then the cfg-upg-prop-fix event of γs occurs in α and the

cfg-upgrade event of γs+1 occurs in α, and the cfg-upg-prop-fix event of γs precedes the

cfg-upgrade event of γs+1, and

3 ′. ∀ s : ` ≤ s < k, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).

To begin the induction, we first examine the base case, where ` = k. Define γk = γ. Property

1′ holds by assumption, and Property 2′ and Property 3′ are vacuously true.

For the inductive step, we assume that γ` has been defined and that properties 1′–3′ hold.

If ` = 0, then γ0 has been defined, and we are done. Otherwise, we need to define γ`−1. If

`− 1 ∈ removal-set(γ`), then let γ`−1 = γ`, and all the properties still hold.

Otherwise, ` − 1 /∈ removal-set(γ`) and ` ∈ removal-set(γ`), which implies that ` =

min{removal-set(γ`)} because each configuration upgrade operates on a consecutive sequence

of configurations. Then by Corollary 5.1.2, there occurs in α a configuration upgrade oper-

ation, that we label γ`−1, with the following properties: (i) the cfg-upg-prop-fix event of γ`−1

precedes the cfg-upgrade event of γ`, and (ii) target(γ`−1) = min{k′ : k′ ∈ removal-set(γ`)}.

Recall that ` = min{removal-set(γ`)}. Therefore, by Property (ii) of γ`−1, target(γ`−1) =

`. Since removal-set(γ`−1) 6= ∅, this implies that `−1 ∈ removal-set(γ`−1), proving Property

1′. Property 2′ follows from Property (i) of γ`−1. Property 3′ follows from Property (ii) of

γ`−1. �

The sequential nature of configuration upgrade has a nice consequence for propagation

of tags: for any sequence of upgrade operations like that in Lemma 5.1.3, tag(γs) is nonde-

creasing in s.
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Lemma 5.1.4 Let γ`, . . . , γk be a sequence of configuration upgrade operations such that:

1. ∀ s : 0 ≤ s ≤ k, s ∈ removal-set(γs),

2. ∀ s : 0 ≤ s < k, if γs 6= γs+1, then the cfg-upg-prop-fix event of γs occurs in α and the

cfg-upgrade event of γs+1 occurs in α, and the cfg-upg-prop-fix event of γs precedes the

cfg-upgrade event of γs+1, and

3. ∀ s : 0 ≤ s < k, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).

Then ∀ s : 0 ≤ s < k, tag(γs) ≤ tag(γs+1).

Proof. If γs = γs+1, then it is trivially true that tag(γs) ≤ tag(γs+1). Therefore assume

that γs 6= γs+1; this implies that the cfg-upg-prop-fix event of γs precedes the cfg-upgrade

event of γs+1. Let k2 be the largest element in removal-set(γs). We know by assumption that

k2+1 ∈ removal-set(γs+1). Therefore, W2(γs), a write-quorum of configuration c(k2+1), has

at least one element in common with R(γs+1, k2 +1); label this node j. By Lemma 4.4.2, and

the monotonicity of tag j, after the cfg-upg-prop-fix event of γs we know that tag j ≥ tag(γs).

Then by Lemma 4.4.1 tag(γs+1) ≥ tag j. Therefore tag(γs) ≤ tag(γs+1). �

Corollary 5.1.5 Let γ`, . . . , γk be a sequence of configuration upgrade operations such that:

1. ∀ s : 0 ≤ s ≤ k, s ∈ removal-set(γs),

2. ∀ s : 0 ≤ s < k, if γs 6= γs+1, then the cfg-upg-prop-fix event of γs occurs in α and the

cfg-upgrade event of γs+1 occurs in α, and the cfg-upg-prop-fix event of γs precedes the

cfg-upgrade event of γs+1, and

3. ∀ s : 0 ≤ s < k, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).

Then ∀ s, s′ : 0 ≤ s ≤ s′ ≤ k, tag(γs) ≤ tag(γs′)

Proof. This follows immediately from Lemma 5.1.4 by induction. �
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5.2 Behavior of a read or a write following a configu-

ration upgrade

Now we describe the relationship between an upgrade operation and a following read or write

operation. These three lemmas relate the removal-set of a preceding configuration upgrade

operation with the query-cmap of a later read or write operation.

The first lemma shows that if, for some read or write operation, k is the smallest index

such that query-cmap(k) ∈ C, then some configuration upgrade operation with target k

precedes the read or write operation.

Lemma 5.2.1 Let π be a read or write operation whose query-fix event occurs in α. Let k

be the smallest element such that query-cmap(π)(k) ∈ C. Assume k > 0. Then there must

exist a configuration upgrade operation γ such that k = target(γ), and the cfg-upg-prop-fix

event of γ precedes the query-phase-start(π) event.

Proof. This follows from Lemma 5.1.1. Let s be the state just before the query-phase-start(π)

event. By definition, query-cmap(π) = s.cmapi. Since s .cmap(k−1)i = ± and s .cmap(k)i 6=

±, there must exist such a configuration upgrade operation for k by the contrapositive of

Lemma 5.1.1. �

Second, if some upgrade removing k does complete before the query-phase-start event of

a read or write operation, then some configuration with index ≥ k + 1 must be included in

the query-cmap of a later read or write operation.

Lemma 5.2.2 Let γ be a configuration upgrade operation such that k ∈ removal-set(γ).

Let π be a read or write operation whose query-fix event occurs in α. Suppose that the

cfg-upg-prop-fix event of γ precedes the query-phase-start(π) event in α.

Then query-cmap(π)(`) ∈ C for some ` ≥ k + 1.

Proof. Suppose for the sake of contradiction that query-cmap(π)(`) /∈ C for all ` ≥ k+ 1.

Fix k′ = max({`′ : query-cmap(π)(`′) ∈ C}). Then k′ ≤ k.
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Let γ0, . . . , γk be the sequence of upgrade operations whose existence is asserted by

Lemma 5.1.3, where γk = γ. Then, by this construction, k′ ∈ removal-set(γk′), and the

cfg-upg-prop-fix event of γk′ does not come after the cfg-upg-prop-fix event of γ in α. By

assumption, the cfg-upg-prop-fix event of γ precedes the query-phase-start(π) event in α.

Therefore the cfg-upg-prop-fix event of γk′ precedes the query-phase-start(π) event in α.

Then, since k′ ∈ removal-set(γk′), write-quorumW1(γk′ , k′) is defined. Since query-cmap(k′) ∈

C), the read-quorum R(π, k′) is defined. Choose j ∈ W1(γk′ , k′) ∩ R(π, k′). Assume that

kt = target(γk′). Notice that k′ < kt. Then Lemma 4.4.1 and monotonicity of cmap imply

that, in the state just prior to the cfg-upg-query-fix event of γk′ , cmap(`)j 6= ⊥ for all ` ≤ kt.

Then Lemma 4.4.3 implies that query-cmap(π)(`) ∈ C for some ` ≥ kt. But this contradicts

the choice of k′. �

The next lemma describes propagation of tag information from a configuration up-

grade operation to a following read or write operation. For this lemma, we assume that

query-cmap(k) ∈ C, where k is the target of the upgrade operation,

Lemma 5.2.3 Let γ be a configuration upgrade operation. Assume that k = target(γ).

Let π be a read or write operation whose query-fix event occurs in α. Suppose that the

cfg-upg-prop-fix event of γ precedes the query-phase-start(π) event in execution α. Suppose

also that query-cmap(π)(k) ∈ C. Then:

1. tag(γ) ≤ tag(π).

2. If π is a write operation then tag(γ) < tag(π).

Proof. The propagation phase of γ accesses write-quorum W2(γ) of c(k), whereas the

query phase of π accesses read-quorum R(π, k). Since both are quorums of configuration

c(k), they have a nonempty intersection; choose j ∈ W2(γ) ∩R(π, k).

Lemma 4.4.2 implies that, in any state after the cfg-upg-prop-fix event for γ, tag j ≥ tag(γ).

Since the cfg-upg-prop-fix event of γ precedes the query-phase-start(π) event, we have that

t ≥ tag(γ), where t is defined to be the value of tag j just before the query-phase-start(π) event.

Then Lemma 4.4.3 implies that tag(π) ≥ t, and if π is a write operation, then tag(π) > t.

Combining the inequalities yields both conclusions of the lemma. �
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5.3 Behavior of sequential reads and writes

Read or write operations that originate at different locations may proceed concurrently.

However, in the special case where they execute sequentially, we can prove some relationships

between their query-cmaps, prop-cmaps, and tags. The first lemma says that, when two

read or write operations execute sequentially, the smallest configuration index used in the

propagation phase of the first operation is less than or equal to the largest index used in the

query phase of the second. In other words, we cannot have a situation in which the second

operation’s query phase executes using only configurations with indices that are strictly less

than any used in the first operation’s propagation phase.

Lemma 5.3.1 Assume π1 and π2 are two read or write operations, such that:

1. The prop-fix event of π1 occurs in α.

2. The query-fix event of π2 occurs in α.

3. The prop-fix event of π1 precedes the query-phase-start(π2) event.

Then min({` : prop-cmap(π1)(`) ∈ C}) ≤ max({` : query-cmap(π2)(`) ∈ C}).

Proof. Suppose for the sake of contradiction that min({` : prop-cmap(π1)(`) ∈ C}) >

k, where k is defined to be max({` : query-cmap(π2)(`) ∈ C}). Then in particular,

prop-cmap(π1)(k) /∈ C. The form of prop-cmap(π1), as expressed in Invariant 4.3.4, im-

plies that prop-cmap(π1)(k) = ±.

This implies that some cfg-upg-prop-fix event for some upgrade operation γ such that k ∈

removal-set(γ) occurs prior to the prop-fix of π1, and hence prior to the query-phase-start(π2)

event. Lemma 5.2.2 then implies that query-cmap(π2)(`) ∈ C for some ` ≥ k + 1. But this

contradicts the choice of k. �

The next lemma describes propagation of tag information, in the case where the prop-

agation phase of the first operation and the query phase of the second operation share a

configuration.

Lemma 5.3.2 Assume π1 and π2 are two read or write operations, and k ∈ N, such that:
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1. The prop-fix event of π1 occurs in α.

2. The query-fix event of π2 occurs in α.

3. The prop-fix event of π1 precedes the query-phase-start(π2) event.

4. prop-cmap(π1)(k) and query-cmap(π2)(k) are both in C.

Then:

1. tag(π1) ≤ tag(π2).

2. If π2 is a write then tag(π1) < tag(π2).

Proof. The hypotheses imply that prop-cmap(π1)(k) = query-cmap(π2)(k) = c(k). Then

W (π1, k) and R(π2, k) are both defined in α. Since they are both quorums of configuration

c(k), they have a nonempty intersection; choose j ∈ W (π1, k) ∩R(π2, k).

Lemma 4.4.4 implies that, in any state after the prop-fix event of π1, tag j ≥ tag(π1). Since

the prop-fix event of π1 precedes the query-phase-start(π2) event, we have that t ≥ tag(π1),

where t is defined to be the value of tag j just before the query-phase-start(π2) event. Then

Lemma 4.4.3 implies that tag(π2) ≥ t, and if π2 is a write operation, then tag(π2) > t.

Combining the inequalities yields both conclusions. �

The final lemma is similar to the previous one, but it does not assume that the prop-

agation phase of the first operation and the query phase of the second operation share a

configuration. The main focus of the proof is on the situation where all the configuration

indices used in the query phase of the second operation are greater than those used in the

propagation phase of the first operation.

Lemma 5.3.3 Assume π1 and π2 are two read or write operations, such that:

1. The prop-fix of π1 occurs in α.

2. The query-fix of π2 occurs in α.

3. The prop-fix event of π1 precedes the query-phase-start(π2) event.
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Then:

1. tag(π1) ≤ tag(π2).

2. If π2 is a write then tag(π1) < tag(π2).

Proof. Let i1 and i2 be the indices of the processes that run operations π1 and π2, respec-

tively. Let cm1 = prop-cmap(π1) and cm2 = query-cmap(π2). If there exists k such that

cm1(k) ∈ C and cm2(k) ∈ C, then Lemma 5.3.2 implies the conclusions of the lemma. So

from now on, we assume that no such k exists.

Lemma 5.3.1 implies that min({` : cm1(`) ∈ C}) ≤ max({` : cm2(`) ∈ C}). Invari-

ant 4.3.4 implies that the set of indices used in each phase consists of consecutive integers.

Since the intervals have no indices in common, it follows that s1 < s2, where s1 is defined to

be max({` : cm1(`) ∈ C}) and s2 is defined to be min({` : cm2(`) ∈ C}).

Lemma 5.2.1 implies that there exists a configuration upgrade operation that we will call

γs2−1 such that s2 = target(γs2−1), and the cfg-upg-prop-fix of γs2−1 precedes the query-phase-start(π2)

event. Then by Lemma 5.2.3, tag(γs2−1) ≤ tag(π2), and if π2 is a write operation then

tag(γs2−1) < tag(π2).

Next we will demonstrate a chain of configuration upgrade operations with non-decreasing

tags. Lemma 5.1.3, in conjunction with the already defined γs2−1, implies the existence of a

sequence of configuration upgrade operations γ0, . . . , γs2−1 such that:

1. ∀ s : 0 ≤ s ≤ s2 − 1, s ∈ removal-set(γs),

2. ∀ s : 0 ≤ s < s2 − 1, if γs 6= γs+1, then the cfg-upg-prop-fix event of γs precedes the

cfg-upgrade event of γs+1 in α,

3. ∀ s : 0 ≤ s < s2 − 1, if γs 6= γs+1, then target(γs) ∈ removal-set(γs+1).

As a special case of Property 1, since s1 ≤ s2− 1, we know that s1 ∈ removal-set(γs1). Then

Corollary 5.1.5 implies that tag(γs1) ≤ tag(γs2−1).

It remains to show that the tag of π1 is no greater than the tag of γs1 . Therefore we

focus now on the relationship between operation π1 and configuration upgrade γs1 . The

propagation phase of π1 accesses write-quorum W (π1, s1) of configuration c(s1), whereas the
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query phase of γs1 accesses read-quorum R(γs1 , s1) of configuration c(s1). Since W (π1, s1)∩

R(γs1 , s1) 6= ∅, we may fix some j ∈ W (π1, s1)∩R(γs1 , s1). Let message m1 from i1 to j and

message m′
1 from j to i1 be as in Lemma 4.4.4 for the propagation phase of γs1 .

Let message m2 from the process running γs1 to j and message m′
2 from j to the process

running γs1 be the messages whose existence is asserted in Lemma 4.4.1 for the query phase

of γs1 .

We claim that j sends m′
1, its message for π1, before it sends m′

2, its message for γs1 .

Suppose for the sake of contradiction that j sends m′
2 before it sends m′

1. Assume that

st = target(γs1 . Notice that st > s1, since s1 ∈ removal-set(γs1). Lemma 4.4.1 implies that

in any state after j receives m2, before j sends m′
2, cmap(k)j 6= ⊥ for all k ≤ st. Since

j sends m′
2 before it sends m′

1, monotonicity of cmap implies that just before j sends m′
1,

cmap(k)j 6= ⊥ for all k ≤ st. Then Lemma 4.4.4 implies that prop-cmap(π1)(`) ∈ C for

some ` ≥ st. But this contradicts the choice of s1, since s1 < st. This implies that j sends

m′
1 before it sends m′

2.

Since j sends m′
1 before it sends m′

2, Lemma 4.4.4 implies that, at the time j sends m′
2,

tag(π1) ≤ tag j. Then Lemma 4.4.1 implies that tag(π1) ≤ tag(γs1). From above, we know

that tag(γs1) ≤ tag(γs2−1), and tag(γs2−1) ≤ tag(π2), and if π2 is a write operation then

tag(γs2−1) < tag(π2). Combining the various inequalities then yields both conclusions. �

5.4 Atomicity

In order to prove that all executions of Rambo II are atomic, we use four sufficient con-

ditions. A memory is said to be atomic provided that the following conditions hold for all

good executions:

• If all the read and write operations that are invoked complete, then the read and write

operations for object x can be partially ordered by an ordering ≺, so that:

1. No operation has infinitely many other operations ordered before it.

2. The partial order is consistent with the external order of invocations and re-

sponses, that is, there do not exist read or write operations π1 and π2 such that
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π1 completes before π2 starts, yet π2 ≺ π1.

3. All write operations are totally ordered and every read operation is ordered with

respect to all the writes.

4. Every read operation ordered after any writes returns the value of the last write

preceding it in the partial order; any read operation ordered before all writes

returns the initial value.

This definition is sufficient to guarantee atomicity in terms of the other common definition

which is defined in terms of equivalence to a serial memory. (See, for example, Lemma 13.16

in [11].)

Let β be a trace of S, the system that implements Rambo II (recall that this includes the

Reader-Writer , Recon and Joiner automata), and assume that all read and write operations

complete in β. Consider any particular good execution α of S whose trace is β. We define

a partial order ≺ on read and write operations in β, in terms of the operations’ tags in

α. Namely, we totally order the writes in order of their tags, and we order each read with

respect to all the writes as follows: a read with tag t is ordered after all writes with tags ≤ t

and before all writes with tags > t.

Lemma 5.4.1 The ordering ≺ is well-defined.

Proof. The key is to show that no two write operations get assigned the same tag. This is

obviously true for two writes that are initiated at different locations, because the low-order

tiebreaker identifiers are different. For two writes at the same location, Lemma 5.3.3 implies

that the tag of the second is greater than the tag of the first. This suffices. �

Lemma 5.4.2 ≺ satisfies the four conditions in the definition of atomicity.

Proof. We begin with Property 2, which as usual in such proofs, is the most interesting

thing to show. Suppose for the sake of contradiction that π1 completes before π2 starts, yet

π2 ≺ π1. We consider two cases:

1. π2 is a write operation.
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Since π1 completes before π2 starts, Lemma 5.3.3 implies that tag(π2) > tag(π1). On

the other hand, the fact that π2 ≺ π1 implies that tag(π2) ≤ tag(π1). This yields a

contradiction.

2. π2 is a read operation.

Since π1 completes before π2 starts, Lemma 5.3.3 implies that tag(π2) ≥ tag(π1). On

the other hand, the fact that π2 ≺ π1 implies that tag(π2) < tag(π1). This yields a

contradiction.

Since we have a contradiction in either case, Property 2 must hold.

Property 1 follows from Property 2. Properties 3 and 4 are straightforward. �

Now we tie everything together for the proof of Theorem 5.4.3.

Theorem 5.4.3 Let β be a trace of S, the system that implements Rambo II. Then β

satisfies the atomicity guarantee.

Proof. Assume that all read and write operations complete in β. Let α be a good execution

of S whose trace is β. Define the ordering ≺ on the read and write operations in β as above,

using the execution α. Then Lemma 5.4.2 says that ≺ satisfies the four conditions in the

definition of atomicity. Thus, β satisfies the atomicity condition, as needed. �
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Chapter 6

Reconfiguration Service

In this chapter we present the specification and implementation for the reconfiguration spec-

ification. This section is a restatement of Sections 4 and 7 of the Rambo technical report,

and is taken directly from [13]. Our Rambo implementation for each object x consists of

a main Reader-Writer algorithm and a reconfiguration service, Recon(x); since we are sup-

pressing mention of x, we write this simply as Recon. First, in Section 6.1, we present the

specification for the Recon service, as an external signature and set of traces. In Section 6.2,

we present our implementation of Recon.

6.1 Reconfiguration Service Specification

The interface for Recon appears in Figure 6-1. The client of Recon at location i requests

to join the reconfiguration service by performing a join(recon)i input action. The service

acknowledges this with a corresponding join-acki output action. The client requests to re-

configure the object using a reconi input, which is acknowledged with a recon-acki output

action. Rambo reports a new configuration to the client using a reporti output action.

Crashes are modeled using fail actions.

Recon also produces outputs of the form new-config(c, k)i, which announce at location

i that c is the kth configuration identifier for the object. These outputs are used for com-

munication with the portion of the Reader-Writer algorithm running at location i. Recon
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announces consistent information, only one configuration identifier per index in the config-

uration identifier sequence. It delivers information about each configuration to members of

the new configuration and of the immediately preceding configuration.

Input:
join(recon)i, i ∈ I
recon(c, c′)i, c, c′ ∈ C, i ∈ members(c)
faili, i ∈ I

Output:
join-ack(recon)i, i ∈ I
recon-ack(b)i, b ∈ {ok, nok}, i ∈ I
report(c)i, c ∈ C, i ∈ I
new-config(c, k)i, c ∈ C, k ∈ N+, i ∈ I

Figure 6-1: Recon: External signature

Now we define the set of traces describing Recon’s safety properties. Again, these are

defined in terms of environment assumptions and and service guarantees. The environment

assumptions are simple well-formedness conditions, consistent with the well-formedness as-

sumptions for Rambo:

• Well-formedness:

– For every i:

∗ No join(recon)i or recon(∗, ∗)i event is preceded by a faili event.

∗ At most one join(recon)i event occurs.

∗ Any recon(∗, ∗)i event is preceded by a join-ack(recon)i event.

∗ Any recon(∗, ∗)i event is preceded by an -ack for any preceding recon(∗, ∗)i

event.

– For every c, at most one recon(∗, c)∗ event occurs.

– For every c, c′, x, and i, if a recon(c, c′)i event occurs, then it is preceded by:

∗ A report(c)i event, and

∗ A join-ack(recon)j for every j ∈ members(c′).

The safety guarantees provided by the service are as follows:

• Well-formedness: For every i:
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– No join-ack(recon)i, recon-ack(∗)i, report(∗)i, or new-config(∗, ∗)i event is preceded

by a faili event.

– Any join-ack(recon)i (resp., recon-ack(c)i) event has a preceding join(recon)i (resp.,

reconi) event with no intervening invocation or response action for x and i.

• Agreement: If new-config(c, k)i and new-config(c′, k)j both occur, then c = c′. (No

disagreement arises about what the kth configuration identifier is, for any k.)

• Validity: If new-config(c, k)i occurs, then it is preceded by a recon(∗, c)i′ for some i′

for which a matching recon-ack(nok)i′ does not occur. (Any configuration identifier

that is announced was previously requested by someone who did not receive a negative

acknowledgment.)

• No duplication: If new-config(c, k)i and new-config(c, k′)i′ both occur, then k = k′.

(The same configuration identifier cannot be assigned to two different positions in the

sequence of configuration identifiers.)

6.2 Reconfiguration Service Implementation

In this section, we describe a distributed algorithm that implements the Recon service for a

particular object x (and we suppress mention of x). This algorithm is considerably simpler

than the Reader-Writer algorithm. It consists of a Recon i automaton for each location i,

which interacts with a collection of global consensus services Cons(k, c), one for each k ≥ 1

and each c ∈ C, and with a point-to-point communication service.

Cons(k, c) accepts inputs from members of configuration c, which it assumes to be the

k − 1st configuration. These inputs are proposed new configurations. The decision reached

by Cons(k, c), which must be one of the proposed configurations, is determined to be the

kth configuration.

Recon i is activated by the joining protocol. It processes reconfiguration requests us-

ing the consensus services, and records the new configurations that the consensus services

determine. Recon i also conveys information about new configurations to the members of
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those configurations, and releases new configurations for use by Reader-Writer i. It returns

acknowledgments and configuration reports to its client.

6.3 Consensus services

In this section, we specify the behavior we assume for consensus service Cons(k, c), for a fixed

k ≥ 1 and c ∈ C. This behavior can be achieved using the Paxos consensus algorithm [9], as

described formally in [14]. Fix V to be the set of consensus values. (In the implementation

of the Recon service, V will be instantiated as C.) The external signature of Cons(k, c) is

given in Figure 6-2.

Input:
init(v)k,c,i, v ∈ V , i ∈ members(c)
faili, i ∈ members(c)

Output:
decide(v)k,c,i, v ∈ V , i ∈ members(c)

Figure 6-2: Cons(k, c): External signature

We describe the safety properties of Cons(k, c) in terms of properties of a trace β of

actions in the external signature. Namely, we define the client safety assumptions:

• Well-formedness: For any i ∈ members(c):

– No init(∗)k,c,i event is preceded by a fail(i) event.

– At most one init(∗)k,c,i event occurs in β.

And we define the consensus safety guarantees:

• Well-formedness: For any i ∈ members(c):

– No decide(∗)k,c,i event is preceded by a fail(i) event.

– At most one decide(∗)k,c,i event occurs in β.

– If a decide(∗)k,c,i event occurs in β, then it is preceded by an init(∗)k,c,i event.

• Agreement: If decide(v)k,c,i and decide(v′)k,c,i′ events occur in β, then v = v′.

• Validity: If a decide(v)k,c,i event occurs in β, then it is preceded by an init(v)k,c,j.
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We assume that the Cons(k, c) service is implemented using the Paxos algorithm [9], as

described formally in [14]. This satisfies the safety guarantees described above, based on the

safety assumptions:

Theorem 6.3.1 If β is a trace of Paxos that satisfies the safety assumptions of Cons(k, c),

then β also satisfies the (well-formedness, agreement, and validity) safety guarantees of

Cons(k, c).

The Paxos algorithm also satisfies the following latency result:

Theorem 6.3.2 Consider a timed execution α of the Paxos algorithm and a prefix α′ of α.

Suppose that:

1. The underlying system “behaves well” after α′, in the sense that timing is “normal”

(what is called “regular” in [14])1 and no process failures or message losses occur.

2. For every i that does not fail in α, an init(∗)i event occurs in α′.

3. There exist R ∈ read-quorums(c) and W ∈ write-quorums(c) such that for all i ∈

R ∪W , no faili event occurs in α.

Then for every i that does not fail in α, a decide(∗)i event occurs, no later than 9d+ ε time

after the end of α′ (ε > 0).

6.4 Recon automata

A Recon i process is responsible for initiating consensus executions to help determine new

configurations, for telling the local Reader-Writer i process about a newly-determined con-

figuration, and for disseminating information about newly-determined configurations to the

members of those configurations. The signature and state of Recon i appear in Figures 6-3,

and the transitions in Figure 6-4.

1In [14], regular timing implies that messages are delivered reliably within time d, that local processing
time is 0, and that information is “gossiped” at intervals of d.
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Signature:

Input:
join(recon)i

recon(c, c′)i, c, c
′ ∈ C, i ∈ members(c)

decide(c)k,i, c ∈ C, k ∈ N+

recv(〈config, c, k〉)j,i, c ∈ C, k ∈ N+,
i ∈ members(c), j ∈ I − {i}

recv(〈init, c, c′, k〉)j,i, c, c′ ∈ C, k ∈ N+,
i, j ∈ members(c), j 6= i

faili

Output:
join-ack(recon)i

new-config(c, k)i, c ∈ C, k ∈ N+

init(c, c′)k,i, c, c′ ∈ C, k ∈ N+, i ∈ members(c)
recon-ack(b)i, b ∈ {ok, nok}
report(c)i, c ∈ C
send(〈config, c, k〉)i,j , c ∈ C, k ∈ N+,

j ∈ members(c)− {i}
send(〈init, c, c′, k〉)i,j , c, c

′ ∈ C, k ∈ N+,
i, j ∈ members(c), j 6= i

State:

status ∈ {idle, active}, initially idle.
rec-cmap ∈ CMap, initially rec-cmap(0) = c0

and rec-cmap(k) = ⊥ for all k 6= 0.
did-init ⊆ N+, initially ∅
did-new-config ⊆ N+, initially ∅

cons-data ∈ (N+ → (C ×C)): initially ⊥ everywhere
rec-status ∈ {idle, active}, initially idle
outcome ∈ {ok, nok,⊥}, initially ⊥
reported ⊆ C, initially ∅
failed , a Boolean, initially false

Figure 6-3: Recon i: Signature and state

Location i joins the Recon service when a join(recon) input occurs. Recon i responds with

a join-ack.

Recon i includes a state variable rec-cmap, which holds a CMap: rec-cmap(k) = c indi-

cates that i knows that c is the kth configuration identifier. If Recon i has learned that c is

the kth configuration identifier, it can convey this to its local Reader-Writer i process using a

new-config(c, k)i output action, and it can inform any other Reconj process, j ∈ members(c),

by sending a 〈config, c, k〉 message. Recon i learns about new configurations either by receiv-

ing a decide input from a Cons service, or by receiving a config or init message from another

process.

Recon i receives a reconfiguration request from its environment via a recon(c, c′)i event.

Upon receiving such a request, Recon i determines whether (a) i is a member of the known

configuration c with the largest index k − 1 and (b) it has not already prepared data for

a consensus for the next larger index k. If both (a) and (b) hold, Recon i prepares such

data, consisting of the pair 〈c, c′〉, where c is the k − 1st configuration identifier and c′ is

the proposed configuration identifier. Otherwise, Recon i responds negatively to the new

reconfiguration request.

Recon i initiates participation in a Cons(k, c) algorithm when its consensus data are pre-
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Input join(recon)i

Effect:
if ¬failed then

if status = idle then
status ← active

Output join-ack(recon)i

Precondition:
¬failed
status = active

Effect:
none

Output new-config(c, k)i

Precondition:
¬failed
status = active
rec-cmap(k) = c
k /∈ did-new-config

Effect:
did-new-config ← did-new-config ∪ {k}

Output send(〈config, c, k〉)i,j

Precondition:
¬failed
status = active
rec-cmap(k) = c

Effect:
none

Input recv(〈config, c, k〉)j,i

Effect:
if ¬failed then

if status = active then
rec-cmap(k)← c

Output report(c)i

Precondition:
¬failed
status = active
c 6∈ reported
S = {` : rec-cmap(`) ∈ C}
c = rec-cmap(max(S))

Effect:
reported ← reported ∪ {c}

Input recon(c, c′)i

Effect:
if ¬failed then

if status = active then
rec-status ← active
let S = {` : rec-cmap(`) ∈ C}
if S 6= ∅ and c = rec-cmap(max(S))

and cons-data(max(S) + 1) = ⊥ then
cons-data(max(S) + 1)← 〈c, c′〉

else outcome ← nok

Output init(c′)k,c,i

Precondition:
¬failed
status = active
cons-data(k) = 〈c, c′〉
if k ≥ 1 then k ∈ did-new-config
k 6∈ did-init

Effect:
did-init ← did-init ∪ {k}

Output send(〈init, c, c′, k〉)i,j

Precondition:
¬failed
status = active
cons-data(k) = 〈c, c′〉
k ∈ did-init

Effect:
none

Input recv(〈init, c, c′, k〉)j,i

Effect:
if ¬failed then

if status = active then
if rec-cmap(k − 1) = ⊥ then rec-cmap(k − 1)← c
if cons-data(k) = ⊥ then cons-data(k)← 〈c, c′〉

Input decide(c′)k,c,i

Effect:
if ¬failed then

if status = active then
rec-cmap(k)← c′

if rec-status = active then
if cons-data(k) = 〈c, c′〉 then outcome ← ok
else outcome ← nok

Output recon-ack(b)i

Precondition:
¬failed
status = active
rec-status = active
b = outcome

Effect:
rec-status = idle
outcome ← ⊥

Input faili
Effect:

failed ← true

Figure 6-4: Recon i: Transitions.

65



pared. After initiating participation in a consensus algorithm, it sends init messages to inform

the other members of c about its initiation of consensus. The other members use this infor-

mation to prepare to participate in the same consensus algorithm (and also to update their

rec-cmap if necessary). Thus, there are two ways in which Recon i can initiate participation

in consensus: as a result of a local recon event, or by receiving an init message from another

Reconj process.

When Recon i receives a decide(c′)k,i directly from Cons(k, c), it records configuration c′

in rec-cmap It also determines if a response to its local client is necessary (if a local recon-

figuration operation is active), and determines the response based on whether the consensus

decision is the same as the locally-proposed configuration identifier.

Each consensus service Cons(k, c) is responsible for conveying consensus decisions to

members(c). The Recon i components are responsible for telling members(c′) about c′ by

sending new-config messages.

Theorem 6.4.1 The Recon implementation guarantees well-formedness, agreement, and va-

lidity.
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Chapter 7

Conditional Performance Analysis

In this chapter we give a conditional latency analysis of the new algorithm, focusing on the

improvements realized by the aggressive configuration-upgrade mechanism. We show that

the new algorithm allows the system to recover rapidly after a period of unreliable network

connectivity or bursty reconfiguration. In particular, we prove that if configurations do not

fail too rapidly, then progress is guaranteed. First, in Section 7.1, we present a few general

definitions. In Section 7.2 and 7.3, we define the executions being considered, and the

environmental assumptions that these executions satisfy. Then in Sections 7.5, 7.6, and 7.7,

we prove a series of lemmas that describe how long it takes configuration-upgrade operations

to complete. Finally, in Section 7.8 we state the main stabilization theorem, and prove that

operations will complete as long as the execution assumptions are met. Throughout this

chapter, we compare the results with those proved in Section 9 of the Rambo technical

report [13].

7.1 Definitions

In this section, we present a few basic definitions. These definitions do not depend on timing,

but are needed only for the conditional performance analysis. For these definitions, assume

that α is an execution.

First we define what it means for a configuration to be installed: configuration c is
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installed when either of the following holds: (i) c = c0 or (ii) for some k > 0, for all non-

failed i ∈ members(c(k−1)), a decide(c)k,i event occurs in α. That is, configuration c = c(k)

is installed when every non-failed member of configuration c(k − 1) performs a decide(c(k))

event.

Next, we define an event that occurs when a configuration is guaranteed to be ready to

be upgraded (though an upgrade operation may occur earlier than this event). We define

the upgrade-ready(k) event, for k > 0, to be the first event in α after which, ∀` ≤ k, the

following hold: (i) configuration c(`) is installed, and (ii) ∀i ∈ members(c(k − 1)) such that

i has not failed at the time of the event, cmap(`)i 6= ⊥.

7.2 Limiting Nondeterminism

The algorithm, as presented, is highly nondeterministic. Therefore for the purposes of anal-

ysis, we restrict our attention to a subset of executions in which automata follow certain

timing-related rules. For the rest of this thesis we assume a fixed constant d > 0. We as-

sume that gossip occurs at fixed intervals of time d, and also that in times of good behavior

messages are delivered within time d1.

1. Each node, i ∈ I, performs a sendi,j for all j ∈ world i every time d as measured by the

local clock of i.

2. Each node, i ∈ I, performs a sendi,j (an “important” send) whenever any of the

following occurs:

• Just after a recv(join)j,i event occurs, if status i = active.

• (Responses for messages) Just after a recv(∗, ∗, ∗, ∗, pns , ∗)j,i event occurs, if pns >

pnum2 (j)i and status i = active.

• Just after a new-config(c, k)i event occurs if status i = active and j ∈ world i.

• Just after a recv(∗, ∗, ∗, cm, ∗, ∗)j,i event occurs, if op.phase i 6= idle and for some

k, cm(k) 6= ⊥ and cmap(k)i = ⊥.

1It seems, perhaps, that we should not be using d to represent both these quantities; however for consis-
tency with the original Rambo presentation, we continue to use this convention.
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Figure 7-1: Definition of J(t)

• Just after a readi, writei, or query-fixi event occurs, if j ∈ members(c), for some c

in the range of op.cmapi.

• Just after a cfg-upgrade(k)i event occurs for configuration-upgrade γ, if j ∈

members(cmap(k′)i) for any k′ ∈ removal-set(γ).

• Just after a cfg-upg-query-fix(k)i event occurs for configuration-upgrade γ, if j ∈

members(cmap(k′)i) where k′ = target(γ).

3. Locally controlled actions of any automaton in the system that have no effects, other

than the important sends described just above, are performed only once.

4. If an action is enabled to occur at node i, and has not yet been performed (and

therefore is not restricted by the previous rule), then it occurs immediately, with zero

time passing.

7.3 The Behavior of the Environment

Much of the analysis in the original Rambo algorithm makes guarantees about the latency

of requests when “normal behavior” holds. In Section 9 of [13], Lynch and Shvartsman begin

to examine how the system behaves in executions that achieve normal behavior after some

point. Here we adopt a similar model. We first define what it means for an execution to

exhibit “normal behavior” from some point onward.

For the rest of the thesis, we use the following notation: given some time t ∈ R≥0,

J(t, e, α) represents the set of all nodes j such that join-ackj occurs no later than time

t−e−2d in α. (Recall that d has been fixed, above.) In most cases, we will use the notation

J(t), when e and α are clear from the context.
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7.3.1 Normal Timing Behavior from Some Point Onward

Let α be an admissible timed execution, and α′ a finite prefix of α. Arbitrary behavior is

allowed in α′: messages may be lost or delivered late, clocks may run at arbitrary rates, and

in general any asynchronous behavior may occur. However we assume that after α′, good

behavior resumes. We say that α is an α′-normal execution if the following assumptions

hold:

1. Initial time: The join-acki0 event occurs at time 0, completing the join protocol for

node i0, the node that created the data object.2

2. Regular timing: The local clocks of all Rambo II automata (i.e., Reader-Writer i,Recon i, Joiner i)

at all nodes progress at exactly the rate of real time, after α′.

3. Reliable message delivery: No message sent in α after α′ is lost.

4. Message delay bound: If a message is sent at time t in α and it is delivered, then it is

delivered by time max(t, `time(α′)) + d.

7.3.2 Configuration–Viability

Next we will define configuration-viability, which is the key assumption needed to guarantee

that read and write operations complete. As in all quorum-based algorithms, liveness de-

pends on all the nodes in some quorums remaining alive. In Rambo II, a node can make

progress only if it is able to communicate with the read and write quorums of all extant

configurations. We say that a configuration has failed when either: (i) some node in every

read-quorum of the configuration has failed, or (ii) some node in every write-quorum of the

configuration has failed. If a configuration fails before a new configuration is installed and

the old configuration removed, then the system will be effectively crashed: no future read or

write request will ever complete. In order to guarantee that operations complete, then, it is

necessary for the client using the Rambo II system to initiate appropriate reconfigurations

2This assumption was assumed implicitly in the initial Rambo papers, and was missing from the list of
assumptions.
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to ensure that quorums remain accessible. The configuration viability assumption is a com-

plex property, depending on the behavior of the algorithm, the client initiating appropriate

reconfigurations, and on the patterns of node failure and message loss.

We define what it means for an execution to be (α′, e, τ)-configuration-viable: Let α be

an admissible timed execution, and let α′ be a finite prefix of α. Let e, τ ∈ R≥0. Then α is

(α′, e, τ)-configuration-viable if the following holds:

For all i, c, k such that cmap(k)i = c in some state in α, there exist R ∈ read-quorums(c)

and W ∈ write-quorums(c) such that at least one of the following holds:

1. No process in R ∪W fails in α.

2. There exists a finite prefix αinstall of α such that for all ` ≤ k + 1, configuration c(`)

is installed in αinstall and no process in R ∪ W fails in α by time max(`time(α′) +

e, `time(αinstall)) + τ .

By assuming that an execution is (α′,e,τ)-configuration-viable, we ensure that the algo-

rithm has at least time τ after a new configuration is installed to clean up obsolete configura-

tions. Also, since all configurations are viable until at least time e+ τ after α′, the algorithm

has at least time e+ τ after the system stabilizes to clean up obsolete configurations.

7.3.3 Recon-Spacing

While reconfigurations cannot impede a read/write operation, too frequent reconfigurations

can slow down a read/write operation by introducing new quorums that must be contacted.

In order to bound the time required for a read/write operation, we need to bound the

frequency of reconfigurations.

There are two components to Recon-Spacing. Let α be an α′-normal execution, and

e ∈ R≥0. Then α satisfies:

1. (α′,e)-recon-spacing-1 : if for any recon(c, ∗)i event in α after α′ the preceding report(c)i

event occurs at least time e earlier.
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2. (α′,e)-recon-spacing-2 : if for any recon(c, ∗)i event in α after α′ there exists a write-

quorum W ∈ write-quorums(c) such that for all j ∈ W , report(c)j precedes the

recon(c, ∗)i event in α.

We say that α satisfies (α′,e)-recon-spacing if it satisfies both (α′,e)-recon-spacing-1 and

(α′,e)-recon-spacing-2.

Notice that, instead of assuming the second part of this requirement, we could instead

modify the recon automaton to enforce this ordering: the automaton could collect gossip

messages indicating which nodes had performed a report(c), and delay or abort the next

recon if it preceded an appropriate set of report events. We choose to instantiate this as

an assumption, rather than as a modification to the automaton for two reasons. First, we

prefer to retain compatibility with the original Rambo analysis. Second, by stating this as

an assumption, it is possible that the client using the Rambo II algorithm might choose to

violate the second part of the assumption. As a result, those guarantees that depend on this

assumption will not hold; however reconfigurations may be more performed more frequently.

Even if the second part of this assumption is violated, safety is still guaranteed: atomicity is

maintained, and read and write operations are guaranteed to terminate. However, operations

might not terminate rapidly in 8d, as in Section 7.8.

7.3.4 Join-Connectivity

The hypothesis of join-connectivity is designed to ensure that all non-failing joining processes

are able to learn about each other. Otherwise, it is possible for the processes to join and fail

in such a way that the world-views of the nodes are partitioned into multiple components,

with different nodes aware of different, disconnected pieces of the world. It is also important

for the latency analysis to bound how long this process takes. If two nodes both complete

the join protocol and do not fail, then they should learn about each other within a bounded

time. For this reason, we define the notion of join-connectivity as follows:

Let α be an α′-normal execution, e ∈ R≥0. We say that α satisfies (α′,e)-join-connectivity

provided that: for any time t and nodes i, j ∈ J(t, e, α), if neither i nor j fails until after

max(t− 2d, `time(α′) + e), then by time max(t− 2d, `time(α′) + e), i ∈ world j.
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This indicates, then, that if two nodes both complete joining by some time t after α′,

then within time e the two nodes are aware of each other. If two nodes both complete joining

by some time t during α′, then within time e after α′ the two nodes are aware of each other.

Prior results on joining from [13] suggest that in some cases it can be shown that the

current simple join protocol in the Rambo II algorithm provides (α′, d+ ddlog(|J |)e)-join-

connectivity. However we will not prove - or depend on - this earlier result. Instead we will

assume that the system provides (α′,e)-join-connectivity for some e, and prove our results

in this context. We leave it as an open problem to determine the exact value of e; a more

complicated and interactive join protocol might well provide better results.

7.3.5 Recon-Readiness

The next assumption we make is related to the problem of reconfiguration by a node that

has recently joined. We will assume that every node that is proposed to be a member of

a configuration has been a member of the Rambo II system for a reasonable period of

time. This allows us to conclude that everyone is aware of nodes that are part of active

configurations.

An α′-normal execution α satisfies (α′, e)-recon-readiness if the following property holds:

if for some node i and some configurations c and c′, a recon(c, c′)i event occurs in α at time

t, then:

• If j ∈ members(c′), then j performs a join-ack prior to the recon event.

• If the recon event occurs after α′, and if j ∈ members(c′), then j ∈ J(t, e, α).

This prohibits nodes that have just joined the system, but are not yet in anyone’s world

view from forming new configurations. As long as e is not too large, this seems a reasonable

requirement.

7.3.6 Upgrade-Readiness

The last assumption we make ensures that a node initiates an upgrade operation only if it

has joined sufficiently long ago. This ensures that when a node performs an upgrade, it has
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relatively up-to-date information.

We say that an α′-normal execution α satisfies (α′, e)-upgrade-readiness if the following

property holds: if for some i a cfg-upgrade(∗)i event occurs in α after α′ at time t, then

i ∈ J(t).

In particular, we suggest that in an implementation of this algorithm, only members

of configuration c(k) initiate operations to upgrade configuration c(k). In this case, recon-

readiness guarantees upgrade-readiness.

7.3.7 Fixed Parameters

We have already fixed d such that gossip occurs at fixed intervals of time d, and in times of

good behaviour messages are delivered with time d. We now fix e as well. Additionally, for the

rest of the thesis, we fix α and α′, and assume that α is an α′-normal execution. We therefore

sometimes suppress these parameters, as they are clear from context. For example, we will

use the notation J(t) to represent J(t, e, α). When we refer to join-connectivity, we mean

(α′, e)-join-connectivity; recon-readiness is used to mean (α′, e)-recon-readiness; upgrade-

readiness is used to mean (α′, e)-upgrade-readiness; τ -recon-spacing is used to mean (α′, τ)-

recon-spacing; τ -configuration-viability is used to mean (α′, e, τ)-configuration viability.

7.4 Basic Lemmas

In this section, we prove a few basic lemmas that will be useful in the rest of the thesis.

The following two lemmas demonstrate some basic facts about the sets J(∗):

Lemma 7.4.1 1. If t ≤ t′, then J(t) ⊆ J(t′).

2. For all t, t′, J(t) ⊆ J(max(t, t′)).

Proof. By definition of J(·). �

The following lemma uses the recon-readiness assumption to say something stronger

about the joining time of members of a configuration:

74



�

�������	��


��

�������� ��������
� ��� � "!#�#$&%')(

*,+.-0/21

Figure 7-2: Lemma 7.4.2, Case 1
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Figure 7-3: Lemma 7.4.2, Case 2

Lemma 7.4.2 Assume that α is an α′-normal execution satisfying (α′, e)-recon-readiness.

If h is a configuration proposed at time t′ by a recon(∗, h) event, t ≥ t′, and t ≥ `time(α′) +

e+ 2d, then members(h) ⊆ J(t).

Proof. First, assume that t′ ≥ `time(α′). Then the result follows immediately by recon-

readiness and Lemma 7.4.1. Assume, then, that t′ < `time(α′). By recon-readiness, every

member of configuration h performs a join-ack by `time(α′). Therefore, by definition of J ,

members(h) ⊆ J(`time(α′)+e+2d). Since t ≥ `time(α′)+e+2d, Lemma 7.4.1 implies that

J(`time(α′) + e+ 2d) ⊆ J(t). �

The next lemma shows a similar result about upgrade-readiness:

Lemma 7.4.3 Assume that α is an α′-normal execution satisfying (α′, e)-upgrade-readiness.

If a cfg-upgrade(∗)i event occurs in α at time t, for some node i, then i ∈ J(max(t, `time(α′)+

e+ 2d)).

Proof. First, assume that the cfg-upgrade event occurs after α′. Then the lemma follows

immediately by the definition of upgrade-readiness and Lemma 7.4.1. Assume, then, that the

cfg-upgrade event occurs in α′. By the precondition of cfg-upgrade, i must perform a join-ack

prior to the cfg-upgrade event; otherwise status i 6= active when the cfg-upgrade occurs, which

contradicts the precondition of the cfg-upgrade. Therefore i performs a join-acki at latest at

time `time(α′), and therefore i ∈ J(`time(α′) + e + 2d), and the lemma again follows by

Lemma 7.4.1. �
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7.5 Propagation of Information

In this section, we introduce the notion of information being in the “mainstream”. Once a

sufficient set of nodes know a particular fact, then, under appropriate assumptions, this fact

will never be forgotten by the system as a whole. In particular, we show that this is true

about information in the cmap: updates to the cmap are propagated. Once every non-failed

node in J(t) updates its cmap, then at any time in the future, at time t′ ≥ t + 2d, every

non-failed node in J(t′) will be aware of this update.

If cm is a CMap and β is a finite prefix of α with `time(β) = t ≥ e + 2d, then we say

that cm is mainstream after β provided that the following holds: For every i ∈ J(t) such

that faili does not occur in β, cm ≤ `state(β).cmapi.

Further, we define the following notation: given an execution α and a time t ∈ R≥0, we

define β(t, α) to be the finite prefix of α such that `time(β(t, α)) = t and every event that

occurs at time t occurs in β(t, α). As we have already fixed α, for the rest of this paper we

use the simpler notation of β(t). We then say that a CMap cm is mainstream after t if it is

mainstream after β(t).

The first lemma shows a basic property of mainstream cmaps:

Lemma 7.5.1 Assume that α is an execution, t is a time, and cm, cm2 are CMaps. If

cm ≤ cm2 , and cm2 is mainstream after t, then cm is mainstream after t.

Proof. Immediate from the definition of mainstream. �

The following lemma shows that a node’s cmap is monotone:

Lemma 7.5.2 Assume that α′′ is a finite prefix of execution α, and that α′′′ is a prefix of

α′′. Assume that i is a node. Then `state(α′′′).cmapi ≤ `state(α′′).cmapi.

Proof. In the algorithm, cmapi is only modified by the update function, and the update

function is monotone; that is, for all CMaps new-cmap, cmap ≤ update(cmap, new-cmap).

�

Lemma 7.5.3 Assume that α is an execution, and t and t′ are times, and that t ≤ t′.

Assume that i is a node, and cm is a CMap.
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Figure 7-4: Lemma 7.5.4

1. If cm ≤ `state(β(t)).cmapi, then cm ≤ `state(β(t′)).cmapi.

2. `state(β(t)).cmapi ≤ `state(β(t′)).cmapi.

Proof. This follows by Lemma 7.5.2, where α′′′ = β(t) and α′′ = β(t′). �

Next, we demonstrate a particular case when a cmap becomes mainstream.

Lemma 7.5.4 Let α be an α′-normal execution satisfying (α′,e)-join-connectivity. Let t be

a time such that t ≥ `time(α′) + e. If i ∈ J(t + 2d), and i does not fail in β(t + d), then

`state(β(t)).cmapi is mainstream after t+ 2d.

Proof. Let cm = `state(β(t)).cmapi. To show that cm is mainstream after t+2d, we need

to show that for all j ∈ J(t + 2d) such that j does not fail in β(t + 2d), cm ≤ `state(β(t +

2d)).cmapj. Fix any such j. By join-connectivity, j ∈ world i by time max(t, `time(α′)+e) ≤

t.

By time t + d, i sends a gossip message, msg , to node j such that cm ≤ msg .cmapi.

By time t + 2d, j receives the gossip message and updates cmapj with msg .cmap. By the

monotonicity of the update function, msg .cmap ≤ update(cmapj,msg .cmap). Therefore

cm ≤ `state(β(t+ 2d)).cmapj, as required. �

The following lemma shows that if two nodes are both in the set J(t + 2d), then infor-

mation is propagated from one to the other.

Lemma 7.5.5 Let α be an α′-normal execution satisfying (α′,e)-join-connectivity. Assume

that t and t′ are times, and t′− 2d ≥ t ≥ `time(α′) + e. Assume that i and j are nodes, and

i, j ∈ J(t+ 2d). Also, assume that i does not fail in β(t+ 2d), and j does not fail in β(t′).

If cm ≤ `state(β(t)).cmapi, then cm ≤ `state(β(t′)).cmapj.
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Figure 7-5: Lemma 7.5.6

Proof. By Lemma 7.5.4, `state(β(t)).cmapi is mainstream after t + 2d. Notice that j ∈

J(t+ 2d), and therefore, by the definition of mainstream, `state(β(t)).cmapi ≤ `state(β(t+

2d)).cmapj. Since t+2d ≤ t′, by Lemma 7.5.3, `state(β(t+2d)).cmapj ≤ `state(β(t′)).cmapj.

Putting the inequalities together, cm ≤ `state(β(t′)).cmapj. �

We now show that once a cmap is in the mainstream, after 2d it will always be in the

mainstream. First, Lemma 7.5.6 considers a special case: it considers only times t′ after

the system has stabilized, when a recon(h, h′) event occurs. Second, Lemma 7.5.7 handles

the case where the cmap is in the mainstream at a time in α′. Third, Lemma 7.5.8 proves

the existence of a configuration with some necessary special properties to prove the main

theorem. Finally, Lemmas 7.5.9 and 7.5.10 prove the general result, as summarized in

Lemma 7.5.11.

First, we define a successful recon event as follows: a recon(∗, c) event is successful if at

some time afterwards a decide(c)k,i event occurs for some k and i.

Lemma 7.5.6 Let α be an α′-normal execution satisfying: (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, and (iv) (α′, e, 2d)-configuration-

viability.

Assume that t and t′ are times, and that t ≥ `time(α′) + e + 2d and t′ ≥ t. Let h and

h′ be two configurations, and assume that recon(h, h′)∗ occurs at time t′, and that this is a

successful recon event.

If cm is mainstream after t, then cm is mainstream after t′ + 2d.

Proof. Fix t and cm such that cm is mainstream after t. We prove the result by induction

on the number of successful recon events that occur at or after time t.
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As the base case, consider the first successful recon(h, h′) event that occurs in α at a time

t′ ≥ t. We need to show that cm is mainstream after t′+2d. Therefore fix some j′ ∈ J(t′+2d)

such that failj′ does not occur in β(t′+2d). We will show that cm ≤ `state(β(t′+2d)).cmapj′ .

Choose some node j ∈ members(h) such that j does not fail in β(t′ + 2d); that is, j does

not fail until after t′ + 2d. Configuration-viability ensures that such a node exists. Notice

that j ∈ J(t), by Lemma 7.4.2. Since cm is mainstream after t, then cm ≤ `state(β).cmapj.

Note that configuration h is proposed prior to time t, since the recon(h, h′) event is the

first successful recon event at or after time t. Therefore configuration h is also proposed prior

to time t′. By Lemma 7.4.1, j ∈ J(t′ + 2d). By assumption j′ ∈ J(t′ + 2d) and does not fail

in β(t′ + 2d). Therefore, by Lemma 7.5.5, cm ≤ `state(β(t′ + 2d)).cmapj′ , as needed.

Next we show the inductive step. Inductively assume the following: if recon(∗, ∗) is one

of the first n successful recon events in α that occur at time t′ ≥ t, then cm is mainstream

after t′.

Consider the (n+ 1)st successful recon(h, h′) event in α that occurs at or after t. Assume

this event occurs at time t′. We need to show that cm is mainstream after t′+2d. Therefore

fix some j′ ∈ J(t′ + 2d) such that failj′ does not occur in β(t′ + 2d). We will show that

cm ≤ `state(β(t′ + 2d)).cmapj′ .

Let ρ be the nth successful recon(∗, h) event, and assume that ρ occurs at time t1. Note

that the first argument of the (n + 1)st successful recon event must be the configuration

proposed by the nth successful recon event.

2d-recon-spacing-1 guarantees that t′ ≥ t1 +2d. The inductive hypothesis shows that cm

is mainstream after t1 + 2d.

Choose some node j ∈ members(h) such that no failj occurs in β(t′+2d). Configuration-

viability ensures that such a node exists. By recon-readiness and Lemma 7.4.1, j ∈ J(t′+2d).

By assumption j′ ∈ J(t′ + 2d) and j′ does not fail in β(t′ + 2d). By Lemma 7.5.5, cm ≤

`state(β(t′ + 2d)).cmapj′ , as needed. �

The next lemma considers the case where a cmap is mainstream in α′ or soon after, and

shows that it is mainstream after `time(α′) + e+ 4d.
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Figure 7-6: Lemma 7.5.7

Lemma 7.5.7 Let α be an α′-normal execution satisfying (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, and (iv) (α′, e, 4d)-configuration-

viability.

Assume that t is a time and that e + 2d ≤ t ≤ `time(α′) + e + 2d. If cm is mainstream

after t, then cm is mainstream after `time(α′) + e+ 4d.

Proof. Consider configuration c0. By configuration-viability, there exists a read-quorum,

R ∈ read-quorums(c0), and a write-quorum, W ∈ write-quorums(c0) such that no node in

R ∪W fails by `time(α′) + e+ 4d.

Let t1 = `time(α′) + e+ 2d. Consider i0 ∈ R ∪W ; i0 does not fail by `time(α′) + e+ 4d.

Since i0 performs a join-ack at time 0, by the assumption that α is an α′-normal execution,

and since t ≥ e+ 2d, i0 ∈ J(t). Also note that by Lemma 7.5.3, i0 ∈ J(t1).

Since cm is mainstream after t, cm ≤ `state(β(t)).cmapi0 . Therefore, we know by

Lemma 7.5.3 that cm ≤ `state(β(t1)).cmapi0 . By Lemma 7.5.4, we know that `state(β(t1)).cmapi0

is mainstream after t1 +2d. Therefore by Lemma 7.5.1, cm is mainstream after t1 +2d; that

is, cm is mainstream after `time(α′) + e+ 4d. �

The next lemma shows the existence of a certain configuration, h′, with some particular

properties. This will be useful in proving Lemma 7.5.11.

Lemma 7.5.8 Let α be an α′-normal execution satisfying: (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, and (iv) (α′, e, 4d)-configuration-

viability.

Assume that t and t′ are times. Assume that `time(α′) + e + 2d ≤ t ≤ t′ − 2d and

`time(α′) + e+ 6d ≤ t′. Assume that cm is mainstream after t. Then there exists a configu-

ration h, with index k, with the following properties:
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1. members(h) ⊆ J(t′).

2. For all members i of configuration h that do not fail in β(t′), cm ≤ `state(β(t′ −

2d)).cmapi.

3. No successful recon(h, ∗) event occurs in β(t′ − 4d).

Proof. There are three different sub-cases to consider.

1. No successful recon event occurs in β(t′ − 4d):

Let h = c0. Notice that members(h) ⊆ J(t), since i0 (the only member of c0) completes

a join-ack at time 0 (by assumption on α), and t > `time(α′) + e + 2d. This, then,

implies Property 1 by Lemma 7.4.1. Since i0 ∈ J(t) and cm is mainstream after

t, cm ≤ `state(β(t)).cmapi0 . Therefore, since t ≤ t′ − 2d, by Lemma 7.5.3, cm ≤

`state(β(t′ − 2d)).cmapi0 , as required for Property 2. Property 3 holds trivially.

2. A successful recon event occurs in β(t′ − 4d) after time t:

Consider the last successful recon event in α that occurs in β(t′ − 4d); let h be the

configuration identifier appearing as the second argument in this recon event. Assume

that this recon event occurs at time trec. Note that t < trec ≤ t′ − 4d. Therefore

(since t′ ≥ `time(α′) + e + 6d and t′ ≥ trec) by Lemma 7.4.2, members(h) ⊆ J(t′), as

required for Property 1. Since trec > t, Lemma 7.5.6 shows that cm is mainstream after

trec+2d. Recall that trec+2d ≤ t′−2d. By the mainstream property, for every member,

i, of configuration h that does not fail in β(t′ − 2d), cm ≤ `state(β(trec + 2d)).cmapi;

therefore, for each of these members, i, by Lemma 7.5.3, cm ≤ `state(β(t′−2d)).cmapi,

as required for Property 2. Property 3 holds by the selection of the last successful recon

event in β(t′ − 4d).

3. Neither Case 1 nor Case 2 holds, that is, a successful recon event occurs in β(t′ − 4d),

but no such recon event occurs after time t:

Consider the last successful recon event in α that occurs in β(t′ − 4d); let h be the

configuration identifier appearing as the second argument in this recon event. Assume

that this recon event occurs at time trec. Notice, then, that trec ≤ t. (Otherwise, Case
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Figure 7-7: Lemma 7.5.9

2 would hold.) Since t ≥ `time(α′)+e+2d, then by Lemma 7.4.2, members(h) ⊆ J(t).

By Lemma 7.5.3, then, members(h) ⊆ J(t′), which implies Property 1. Since cm is

mainstream after t (and members(h) ⊆ J(t)), for all j ∈ members(h) such that no failj

event occurs in β(t), cm ≤ `state(β(t)).cmapj. Since t ≤ t′ − 2d, by Lemma 7.5.3, for

all j such that no faili event occurs by time t′ − 2d, cm ≤ `state(β(t′ − 2d)).cmapj, as

required for Property 2. Property 3 holds by the selection of the last successful recon

event that occurs in β(t′ − 4d).

�

Finally we prove the main lemma of this section, showing that if a cmap is mainstream

at time t, then the cmap is also mainstream at times t′ ≥ t + 2d. There are two cases to

consider: (i) t ≥ `time(α′) + e + 2d, and (ii) t < `time(α′) + e + 2d. Lemma 7.5.9 shows

the first case, Lemma 7.5.10 shows the second case, and Lemma 7.5.11 presents the overall

conclusion.

Lemma 7.5.9 Let α be an α′-normal execution satisfying (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, and (iv) (α′, e, 4d)-configuration-

viability.

Assume that t and t′ are times. Assume that e+2d ≤ t ≤ t′−2d and `time(α′)+e+6d ≤ t′.

Additionally assume that t ≥ `time(α′) + e+ 2d. If cm is a mainstream CMap after t, then

cm is mainstream after t′.

Proof. By assumption, t ≥ `time(α′) + e + 2d. Lemma 7.5.8 shows that there exists a

configuration, h, with index k with the following three properties:

1. members(h) ⊆ J(t′).
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Figure 7-8: Lemma 7.5.10

2. For all members i of configuration h that do not fail in β(t′), cm ≤ `state(β(t′ −

2d)).cmapi.

3. No successful recon(h, ∗) event occurs in β(t′ − 4d).

Configuration-viability guarantees that some node of configuration h does not fail until

after the next configuration is installed. No successful recon(h, ∗) event occurs in β(t′− 4d),

by Property 3. Therefore some node, j ∈ members(h) does not fail in β(t′) (and therefore

does not fail in β(t′ − d)), by 4d-configuration-viability. By Property 1 of h, node j ∈ J(t′).

Therefore, by Lemma 7.5.4, `state(β(t′ − 2d)).cmapj is mainstream after t′.

Further, we know by Property 2 that cm ≤ `state(β(t′ − 2d)).cmapj. Therefore by

Lemma 7.5.1, cm is mainstream after t′. �

The following lemma considers the case where t < `time(α′) + e+ 2d:

Lemma 7.5.10 Let α be an α′-normal execution satisfying (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, and (iv) (α′, e, 4d)-configuration-

viability.

Assume that t and t′ are times. Assume that e+2d ≤ t ≤ t′−2d and `time(α′)+e+6d ≤ t′.

Additionally, assume that t < `time(α′) + e+ 2d. If cm is a mainstream CMap after t, then

cm is mainstream after t′.

Proof. By assumption, t < `time(α′)+e+2d. Let t1 = `time(α′)+e+2d. By Lemma 7.5.7,

cm is mainstream after t1 + 2d. By assumption, t1 + 2d ≤ t′ − 2d, and `time(α′) + e+ 2d ≤

t1 + 2d. By Lemma 7.5.9, however, we know that since cm is mainstream after t1 + 2d, then

cm is mainstream after t′. �
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The following lemma combines the previous two lemmas into a single conclusion. This lemma

is the main result of this section, and is used throughout the rest of the proof.

Lemma 7.5.11 Let α be an α′-normal execution satisfying (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, and (iv) (α′, e, 4d)-configuration-

viability.

Assume that t and t′ are times. Assume that e+2d ≤ t ≤ t′−2d and `time(α′)+e+6d ≤ t′.

If cm is a mainstream CMap after t, then cm is mainstream after t′.

Proof. By Lemmas 7.5.9 and 7.5.10. �

7.6 Upgrade-Ready Viability

In this section, we show the relationship between a configuration being upgrade-ready, and

a configuration being viable. In particular, we prove that if an execution α is (α′,e,22d)-

configuration-viable, then configuration c(k) is viable until at least 15d after the upgrade-ready(c(k+

1)) event.

The first lemma shows that soon after a configuration is installed, every node that joined

a while ago learns about the new configuration.

Lemma 7.6.1 Let α be an α′-normal execution satisfying: (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, e, 4d)-configuration-viability.

Assume that t ∈ R≥0 is a time, and configuration c(k) is installed at time t. Then there

exists a CMap, cm, such that cm(k) 6= ⊥, and cm is mainstream after max(t, `time(α′) +

e) + 2d.

Proof. We first find a node j ∈ members(c(k−1)) such that j ∈ J(max(t, `time(α′)+e)+

2d) and j does not fail in β(max(t, `time(α′)+e)+d). Configuration-viability guarantees that

there exists a read-quorum R ∈ read-quorums(c(k−1)) and a prefix α′′ of α such that c(k) is

installed in α and no node inR fails by max(`time(α′′), `time(α′)+e)+4d. Since configuration

c(k) is installed at time t, we know that t ≤ `time(α′′), and therefore no node in R fails
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by max(t, `time(α′) + e) + 4d. Therefore no node in R fails in β(max(t, `time(α′) + e) + d).

Choose some node j ∈ R.

Assume that configuration c(k− 1) is proposed at time trec. We next apply Lemma 7.4.2

where h = c(k − 1), t′ = trec, and t = max(t, `time(α′) + e) + 2d:

• max(t, `time(α′) + e) + 2d ≥ trec: c(k − 1) is proposed at trec ≤ t, since c(k − 1) must

be proposed prior to configuration c(k − 1) being installed, which must occur prior to

configuration c(k) being installed; t ≤ max(t, `time(α′) + e) + 2d.

• max(t, `time(α′) + e) + 2d ≥ `time(α′) + e+ 2d: Immediate.

We therefore conclude that members(c(k − 1)) ⊆ J(max(t, `time(α′) + e) + 2d). Therefore

we have shown that j ∈ members(c(k − 1)), j ∈ J(max(t, `time(α′) + e) + 2d), and j does

not fail in β(max(t, `time(α′) + e) + d).

Since configuration c(k) is installed at time t and j ∈ members(c(k−1)), `state(β(t)).cmap(k)j 6=

⊥, by the definition of a configuration being installed, and therefore (by Lemma 7.5.3)

`state(β(max(t, `time(α′) + e))).cmap(k)j 6= ⊥. We let cm = `state(β(max(t, `time(α′) +

e))).cmap(k)j; cm(k) 6= ⊥, as required.

We next apply Lemma 7.5.4, where t = max(t, `time(α′) + e) and i = j:

• max(t, `time(α′) + e) ≥ `time(α′) + e: Immediate.

• j ∈ J(max(t, `time(α′) + e) + 2d): Shown above.

• j does not fail in β(max(t, `time(α′) + e) + d): Shown above.

We therefore conclude that `state(β(max(t, `time(α′)+e))).cmapi is mainstream after max(t, `time(α′)+

e) + 2d, that is, cm is mainstream after max(t, `time(α′) + e) + 2d. �

The next lemma shows that soon after smaller configurations are installed, a configuration

is upgrade-ready.

Lemma 7.6.2 Let α be an α′-normal execution satisfying: (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, and (iv) (α′, e, 4d)-configuration-

viability.
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Let c be a configuration with index k, and assume that for all ` ≤ k, configuration c(`) is

installed in α by time t.

Then upgrade-ready(k) occurs in β(max(t, `time(α′) + e) + 6d).

Proof. For every configuration c(`) with index ` ≤ k, let t` be the time at which configu-

ration c(`) is installed. Therefore t ≥ max(ti).

We first show that for all ` ≤ k, there exists a CMap, cm` such that cm`(`) 6= ⊥ and

cm` is mainstream after max(t, `time(α′) + e) + 6d. Fix some ` ≤ k.

Lemma 7.6.1, where t = t` and k = `, shows that there exists a CMap, cm`, such that

cm`(`) 6= ⊥ and cm` is mainstream after time max(t`, `time(α′) + e) + 2d.

We next apply Lemma 7.5.11, where t = max(t`, `time(α′)+e)+2d and t′ = max(t, `time(α′)+

e) + 6d:

• max(t`, `time(α′) + e) + 2d ≥ e+ 2d: Immediate.

• max(t`, `time(α′) + e) + 2d ≤ max(t, `time(α′) + e) + 6d − 2d: We know that t` ≤ t,

and `time(α′) + e+ 2d ≤ `time(α′) + e+ 4d.

• max(t, `time(α′) + e) + 6d ≥ `time(α′) + e+ 6d: Immediate.

• cm` is mainstream after max(t`, `time(α′) + e) + 2d: Shown above.

We therefore conclude that cm` is mainstream after max(t, `time(α′) + e) + 6d. We have

thus shown that for all ` ≤ k, there exists a CMap, cm` such that cm`(`) 6= ⊥ and cm` is

mainstream after max(t, `time(α′) + e) + 6d.

Recall that upgrade-ready(k) is designated as the first event after which (i) all config-

urations with index ≤ k have been installed, and (ii) for all ` < k, for all members of

configuration c(k − 1) that do not fail prior to the upgrade event, cmap(`) 6= ⊥. The first

component occurs by time t, and therefore by time max(t, `time(α′)+e)+6d, by assumption.

We therefore need to show the second part. Fix some node j ∈ members(c(k − 1)) such

that j does not fail in β(max(t, `time(α′)+e)+6d). Fix some ` < k. We apply Lemma 7.4.2,

where h = c(k− 1), t = max(t, `time(α′) + e) + 6d, and t′ is the time at which configuration

c(k − 1) is proposed:
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• max(t, `time(α′) + e) + 6d is ≥ the time at which configuration c(k − 1) is proposed:

c(k − 1) is proposed prior to time tk−1 (the time at which configuration c(k − 1) is

installed), which is ≤ time t ≤ max(t, `time(α′) + e) + 6d.

• max(t, `time(α′) + e) + 6d ≥ `time(α′) + e+ 2d: Immediate.

We therefore conclude that members(c(k−1)) ⊆ J(max(t, `time(α′)+e)+6d), and therefore

j ∈ J(max(t, `time(α′) + e) + 6d).

We know from above that cm` is mainstream after max(t, `time(α′) + e) + 6d, which

implies, by the definition of being mainstream, that cm` ≤ `state(β(max(t, `time(α′) + e) +

6d)).cmap(`)j. This in turn implies that `state(β(max(t, `time(α′)+e)+6d)).cmap(`)j 6= ⊥,

as required. Therefore upgrade-ready(k) occurs in β(max(t, `time(α′) + e) + 6d). �

The next lemma directly relates the time when all quorums of configuration c(k − 1) fail to

the time at which upgrade-ready(k) occurs.

Lemma 7.6.3 Let α be an α′-normal execution satisfying: (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, and (iv) (α′, e, 22d)-configuration-

viability.

Let c be a configuration with index k, and assume that the upgrade-ready(k) event occurs

at time t. Then there exists a read-quorum, R, and a write-quorum, W , of configuration

c(k − 1) such that no node in R ∪W fails in β(max(t, `time(α′) + e) + 16d).

Proof. Let α′′ be the shortest prefix of α such that every configuration with index ≤ k is

installed in α. Let t′ = `time(α′′). Notice that for all ` ≤ k, configuration c(`) is installed in

β(t′).

Lemma 7.6.2, where t = t′ and c and k are as defined above, shows that the upgrade-ready(k)

event occurs in β(max(t′, `time(α′) + e) + 6d), that is, t ≤ max(t′, `time(α′) + e) + 6d.

Configuration-viability guarantees that there exists a read-quorum, R, and a write-

quorum, W , of configuration c(k−1) such that either (1) no process in R∪W fails in α, or (2)

there exists a finite prefix, αinstall of α such that for all ` ≤ k, configuration c(`) is installed

in αinstall and no process in R∪W fails in α by time max(`time(αinstall), `time(α′)+e)+22d.
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In the former case, we are done. We now consider the second case. Since α′′ is the short-

est prefix of α such that every configuration with index ≤ k is installed, we know that α′′

is a prefix of αinstall, and therefore t′ = `time(α′′) ≤ `time(αinstall). Therefore we know

that there exists a read-quorum, R ∈ read-quorums(c(k − 1)), and a write-quorum, W ∈

write-quorums(c(k−1)), such that no node in R∪W fails by time max(t′, `time(α′)+e)+22d.

Then, max(t, `time(α′) + e) + 16d ≤ max(t′, `time(α′) + e) + 22d, and as a result, no

node in R ∪W fails by time max(t, `time(α′) + e) + 16d. That is, no node in R ∪W fails in

β(max(t, `time(α′) + e) + 16d). �

The final lemma shows that if no upgrade-ready(k) occurs in α, then configuration c(k − 1)

is always viable.

Lemma 7.6.4 Let α be an α′-normal execution satisfying: (i) (α′,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, and (iv) (α′, e, 4d)-configuration-

viability.

Let c be a configuration with index k, and assume that no upgrade-ready(k + 1) event

occurs in α. Then there exists a read-quorum, R ∈ read-quorums(c), and a write-quorum,

W ∈ write-quorums(c), such that no node in R ∪W fails in α.

Proof. Assume that for some ` ≤ k + 1, configuration c(`) is not installed in α. By the

definition of configuration-viability, then, there exists a read-quorum, R ∈ read-quorums(c),

and a write-quorum, W ∈ write-quorums(c), such that no node in R ∪W fails in α.

Assume, instead, that for every ` ≤ k + 1, configuration c(`) is installed in α. Then by

Lemma 7.6.2, an upgrade-ready(k + 1) event occurs in α, contradicting the hypothesis. �

7.7 Configuration-Upgrade Latency Results

In this section we show that configuration-upgrade operations terminate rapidly, and that

any obsolete configuration is rapidly removed. In particular, these results hold in executions

that include periods of bad behavior. The configuration-upgrade mechanism in Rambo does

not make these guarantees. The original Rambo latency analysis required the assumption
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of (α′,∞)-configuration-viability3 for the entire execution. This is an unrealistic assumption

in a long-lived dynamic system. As a result of the new configuration-upgrade mechanism,

we need to assume only bounded configuration-viability to ensure liveness.

First we state a lemma about configuration-upgrade after the system stabilizes and good

behavior resumes.

Lemma 7.7.1 Let α be an α′-normal execution. Let t ∈ R≥0 be a time. Let i be a node

that does not fail until after max(t, `time(α′) + d) + 4d.

Assume a cfg-upgrade(k)i event occurs in α at time t. Additionally, assume that for

every configuration c(`) such that upg .cmap(`)i ∈ C, there exists a read-quorum, R`, and a

write-quorum, W`, of configuration c(`) such that no node in R` ∪W` fails by time t+ 3d.

Then a cfg-upgrade-ack(k)i event occurs no later than t+ 4d.

Proof. There are two cases to consider.

Case 1: t > `time(α′). At time t, node i begins the configuration-upgrade, with phase-

number p1 = upg.pnumi. By triggered gossip, node i immediately sends out messages

to every node in world i. Therefore for every configuration c(`) such that upg .cmap(`)i ∈

C, every node j ∈ R` ∪W` receives a message by time t+ d.

By triggered gossip, then, each of these nodes sends a response with phase-number p1.

Each response is received by time t + 2d, at which point a cfg-upg-query-fix(k)i event

occurs. Node i then chooses a new phase-number, p2, and sets upg .pnum i = p2.

Immediately, by triggered gossip node i sends out messages to every process in world i,

including every node in R` ∪W`, for every configuration c(`) such that upg .cmap(`)i ∈

C. Again, a response is sent by time t+ 3d, and node i receives a response from each

with phase-number p2 by time t + 4d. Immediately, then, a cfg-upg-query-fix(k) event

occurs. This is followed by a cfg-upgrade-ack(k), proving our claim.

Case 2: t ≤ `time(α′). At time t, node i begins the configuration-upgrade, with phase-

number p1 = upg.pnumi. By occasional gossip, i sends out messages to every node in

3Although we have not formally defined (α′,∞)-configuration-viability here, one can understand it to
mean (α′, e)-configuration-viability for arbitrarily large e.
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world i. Therefore for every configuration c(`) such that upg .cmap(`)i ∈ C, every node

j ∈ R` ∪W` receives a message by time max(t, `time(α′) + d) + d.

By triggered gossip, then, each of these nodes sends a response with phase-number

p1. Each response is received by time max(t, `time(α′) + d) + 2d, at which point a

cfg-upg-query-fix(k)i event occurs. Node i then chooses a new phase-number, p2, and

sets upg .pnum i = p2.

Immediately, by triggered gossip node i sends out messages to every process in world i,

including every node in R` ∪W`, for every configuration c(`) such that upg .cmap(`)i ∈

C. Again, a response is sent by time max(t, `time(α′) + d) + 3d, and node i receives a

response from each with phase-number p2 by time max(t, `time(α′))+4d. Immediately,

then, a cfg-upg-query-fix(k) event occurs. This is followed by a cfg-upgrade-ack(k),

proving our claim.

�

Next, we provide a conditional guarantee that a configuration is viable: if for some time

t every earlier cfg-upgrade operation completes rapidly within 4d, then every configuration

that is extant at time t will remain viable until t+ 3d.

We do this in four steps. First, Lemma 7.7.2 demonstrates that a node with certain good

properties exists. Second, Lemma 7.7.3 shows that this certain node with good properties

will begin an upgrade operation, in certain situations. Third, Lemma 7.7.4 shows that soon

after a configuration is upgrade-ready(k), some node completes an upgrade operation on

configuration c(k). Finally, Lemma 7.7.5 uses these preliminary lemmas to show that under

certain conditions, configurations remain viable sufficiently long.

Lemma 7.7.2 Let α be an α′-normal execution satisfying (i) (α′, e)-join-connectivity, (ii)(α′, e)-

recon-readiness, (iii) (α′, e)-upgrade-readiness, (iv) (α′, 2d)-recon-spacing-1, (v) (α′, e, 22d)-

configuration-viability.

Assume that an upgrade-ready(k2) event occurs at time t for some configuration c2 and

assume that k2 ≥ 1. Let k1 = k2 − 1, and c1 = c(k1). Then there exists a node i such that

the following hold:
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1. i is a member of configuration c1,

2. i does not fail in β(max(t, `time(α′) + e+ d) + 10d),

3. i ∈ J(max(t, `time(α′) + e+ d) + 8d),

4. i ∈ J(max(t, `time(α′) + e+ 2d)),

5. i performs a join-ack prior to the upgrade-ready(k2) event in α.

Proof. Lemma 7.6.3, applied with c = c2, k = k2, and t as defined above, implies

that there exists a read-quorum, R, of configuration c1 such that no member of R fails in

β(max(t, `time(α′)+e)+16d). Then we know that no member ofR fails in β(max(t, `time(α′)+

e + d) + 14d). We therefore choose a node i ∈ R ⊆ members(c1). We know that i does not

fail in β(max(t, `time(α′) + e+ d) + 10d). This i satisfies Parts 1 and 2.

Let tc1 be the time at which configuration c1 is proposed. Notice that max(t, `time(α′)+

e+2d) ≥ tc1 , because t, the time of the upgrade-ready(k2), cannot be smaller than tc1 , the time

at which configuration c1 is proposed (since an upgrade-ready(k2) event cannot occur until

after a recon(c1, c2) event, which cannot occur until after a recon(∗, c1) event). Therefore,

Lemma 7.4.2, applied where h = c1, t
′ = tc1 , and t = max(t, `time(α′) + e+ 2d), guarantees

that members(c1) ⊆ J(max(t, `time(α′) + e + 2d)). Since i ∈ members(c1), we know that

i ∈ J(max(t, `time(α′) + e+ 2d)), satisfying Part 4.

Since max(t, `time(α′) + e + 2d) ≤ max(t, `time(α′) + e + d) + 10d (since `time(α′) +

e + 2d ≤ `time(α′) + e + 10d), Lemma 7.4.1, applied where t = max(t, `time(α′) + e + 2d)

and t′ = max(t, `time(α′) + e + d) + 10d, implies that J(max(t, `time(α′) + e + 2d)) ⊆

J(max(t, `time(α′)+e+d)+10d), and thus i ∈ J(max(t, `time(α′)+e+d)+10d), satisfying

Part 3.

Finally, notice that recon-readiness requires that i performs a join-ack prior to the

recon(∗, c1) event, and therefore prior to the cfg-upgrade(k2) event. This satisfies Part 5.

�

The next lemma claims that when a configuration is upgrade-ready, and a node with certain

properties (as in Lemma 7.7.2) exists, then either the configuration is removed or an upgrade

operation begins.
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Lemma 7.7.3 Let α be an α′-normal execution satisfying (i) (α′, e)-join-connectivity, (ii)(α′, e)-

recon-readiness, (iii) (α′, e)-upgrade-readiness, (iv) (α′, 2d)-recon-spacing-1, (v) (α′, e, 22d)-

configuration-viability.

Assume upgrade-ready(k2) occurs at time t and k2 ≥ 1. Let k1 = k2−1 and c1 = c(k−1).

Further, assume that node i has the following properties:

1. i is a member of configuration c1,

2. i does not fail in β(max(t, `time(α′) + e+ d) + 10d),

3. i ∈ J(max(t, `time(α′) + e+ d) + 8d),

4. i ∈ J(max(t, `time(α′) + e+ 2d)),

5. i performs a join-ack prior to the upgrade-ready(k2) event.

Let t′ be a time such that t ≤ t′ < max(t, `time(α′) + e+ d) + 13d. Let α′′ be a prefix of

α such that:

1. t′ = `time(α′′),

2. an upgrade-ready(k2) event is in α′′,

3. `state(α′′).upg .phase i = idle.

Then either:

1. `state(β(t′)).cmap(k1)i = ±, or

2. i performs a cfg-upgrade(k′)i at time t′, for some k′ ≥ k2.

Proof. If `state(α′′).cmap(k1)i = ±, then the conclusion holds, since α′′ is a prefix of β(t′):

by Lemma 7.5.3, `state(β(t′)).cmap(k1)i = ±. Assume, then, that `state(α′′).cmap(k1)i 6= ±.

We examine in turn the preconditions for cfg-upgrade(k′)i just after α′′ (from Figure 3-1):

1. ¬`state(α′′).failed i: By Part 2 of the assumption on i, we know that i does not fail in

β(max(t, `time(α′) + e+ d) + 10d). However, t′ < max(t, `time(α′) + e+ d) + 10d, and

thus i does not fail in β(t′). Since α′′ is a prefix of β(t′), i does not fail in α′′.
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2. `state(α′′).status i = active: By Part 5 of the assumption on i we know that i performs

a join-ack prior to the upgrade-ready(k2) event.

3. `state(α′′).upg .phase i = idle: By assumption, this holds.

4. ∀` ∈ N, ` ≤ k2 : `state(α′′).cmap(`)i 6= ⊥: It suffices to show that by the point

in the execution at which the upgrade-ready(k2) event occurs, node i has already

learned of configuration c2 and all configurations with smaller indices. Let α′′′ be

the prefix of α ending in the upgrade-ready(k2) event. Part (ii) of the definition of the

upgrade-ready(k2) event guarantees that: for all ` ≤ k2, for all j ∈ members(c1) that

do not fail in α′′′, `state(α′′′).cmap(`)j 6= ⊥. Notice that by Part 1 of the assumption

about i, i ∈ members(c1) and that by Part 2 of the assumption about i, i does not fail

in α′′′, since `time(α′′′) = t ≤ max(t, `time(α′) + e+ d). Therefore we can conclude by

part (ii) that for all ` ≤ k2, `state(α′′′).cmap(`)i 6= ⊥. Since α′′′ is a prefix of α′′ (by

assumption that upgrade-ready(k2) is included in α′′), by Lemma 7.5.2 we know that

for all ` ≤ k2, `state(α′′).cmap(`)i 6= ⊥, as desired.

5. `state(α′′).cmap(k2)i ∈ C: By assumption, `state(α′′).cmap(k1)i 6= ±. Invariant 4.3.3

then implies that `state(α′′).cmap(k2)i 6= ±, since k1 < k2. Part 4, above, shows that

`state(α′′).cmap(k2)i 6= ⊥, thus implying the desired result.

6. `state(α′′).cmap(k1)i ∈ C: By assumption, `state(α′′).cmap(k1)i 6= ±. Part 4, above,

shows that `state(α′′).cmap(k1)i 6= ⊥, since k1 ≤ k2, thus implying the desired result.

Since enabled events occur in zero time (by assumption), either the event becomes disabled,

in which case `state(β(t′)).cmap(k1)i = ±, satisfying Part 1 of the conclusion, or at time

t′ = `time(α′′) a cfg-upgrade event for some configuration c with index k′ ≥ k2 occurs,

satisfying Part 2 of the conclusion. �

The next lemma conditionally guarantees that soon after a new configuration is upgrade-

ready, the old configuration is removed.
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Lemma 7.7.4 Let α be an α′-normal execution satisfying (i) (α′, e)-join-connectivity, (ii)(α′, e)-

recon-readiness, (iii) (α′, e)-upgrade-readiness, (iv) (α′, 2d)-recon-spacing-1, (v) (α′, e, 22d)-

configuration-viability.

Assume that t ∈ R≥0 is a time such that t > `time(α′) + e + 14d. Assume that c1 is a

configuration, and for some finite prefix α′′ of α, where t = `time(α′′), for some node i ∈ J(t)

that does not fail in α′′, for some index k1, `state(α′′).cmap(k1)i = c1.

Also, we assume the Upgrades-Complete Hypothesis: for every cfg-upgrade(∗)j event that

occurs in α at some time tupg < t at some node j ∈ J(max(tupg, `time(α′) + e + 2d)) where

j does not fail in β(max(tupg, `time(α′) + e+ d) + 4d), a matching cfg-upg-ack(∗)j occurs by

time max(tupg, `time(α′) + e+ d) + 4d.

Assume that an upgrade-ready(k1 + 1) event occurs at time t′ < t− 13d. Let k2 = k1 + 1

and c2 = c(k2). Then for some node i′ ∈ J(max(t′, `time(α′)+e+d)+8d) that does not fail in

β(max(t′, `time(α′)+e+d)+10d), `state(β(max(t′, `time(α′)+e+d)+8d)).cmap(k1)i′ = ±.

Proof. We first identify a node, i′, that is suitable. Then we show that i′ completes an

upgrade operation in the alotted time.

We apply Lemma 7.7.2, where t = t′, and therefore conclude that there exists a node i′

with the following five properties:

1. i′ is a member of configuration c1,

2. i′ does not fail in β(max(t′, `time(α′) + e+ d) + 10d),

3. i′ ∈ J(max(t′, `time(α′) + e+ d) + 8d),

4. i′ ∈ J(max(t′, `time(α′) + e+ 2d)),

5. i′ performs a join-ack prior to the upgrade-ready(k2) event.

Notice that Part 2 and Part 3 satisfy the first two requirements for i′ in the conclusion of

this lemma. It remains to show that i′ marks configuration c1 as ± at the appropriate point.

We consider what happens at time max(t′, `time(α′)+e+d). Let α′′′ be the prefix of α that

is the longer of the following two prefixes: (i) β(`time(α′)+e+d), or (ii) the shortest prefix of
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α that includes the cfg-upgrade(k2) event. Notice that `time(α′′′) = max(t′, `time(α′)+e+d),

and that the cfg-upgrade(k2) event is in α′′′.

If `state(α′′′)).cmap(k1)i′ = ±, then the claim is immediate: Lemma 7.5.2 implies that

`state(α′′′).cmapi′ ≤ `state(β(max(t′, `time(α′) + e + d) + 8d)).cmapi′ , since `time(α′′′) =

max(t′, `time(α′)+e+d) < max(t′, `time(α′)+e+d)+8d. Therefore, if `state(α′′′).cmap(k1)i′ =

±, then `state(β(max(t′, `time(α′) + e+ d) + 8d)).cmap(k1)i′ = ±.

We thus assume that `state(α′′′).cmap(k1)i′ 6= ±, and consider what happens at time

max(t′, `time(α′) + e+ d). There are now two cases to consider:

1. `state(α′′′).upg .phase i′ = idle or

2. `state(α′′′).upg .phase i′ 6= idle.

Case 1: Assume that `state(α′′′).upg .phase i′ = idle. We apply Lemma 7.7.3, where t = t′,

t′ = max(t′, `time(α′) + e+ d), α′′ = α′′′, and i′ is as chosen above:

• t′ ≤ max(t′, `time(α′) + e+ d) < max(t′, `time(α′) + e+ d) + 13d: immediate,

• i′ satisfies the criteria, by the properties of i′ above,

• `time(α′′′) = max(t′, `time(α′) + e + d) and upgrade-ready(k2) occurs in α′′′: by

the way in which α′′ was chosen,

• `state(α′′′).upg .phase i′ = idle: by the case assumption.

From this lemma, we conclude that either:

1. `state(β(max(t′, `time(α′) + e+ d))).cmap(k1)i′ = ±, or

2. i′ performs a cfg-upgrade(k′)i′ at time max(t′, `time(α′)+ e+d), for some k′ ≥ k2.

In the first case, where `state(β(max(t′, `time(α′) + e + d))).cmap(k1)i′ = ±, we are

done: Lemma 7.5.3 implies that `state(β(max(t′, `time(α′)+e+d)+8d)).cmap(k1)i′ =

±. Consider the second case, that is, i′ performs a cfg-upgrade(k′)i′ at time max(t′, `time(α′)+

e+ d), for some k′ ≥ k2.

We then apply the Upgrades-Complete Hypothesis, where j = i′ and tupg = t′; notice

that:
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• i′ ∈ J(max(t′, `time(α′) + e+ 2d)): by 4th property of i′,

• i′ does not fail in β(max(t′, `time(α′)+e+d)+4d): by Part 2 of the way in which

i′ was chosen, and

• max(t′, `time(α′)+e+d) < t: t′+13d < t, by assumption, and `time(α′)+e+14d <

t, by assumption, and therefore max(t′, `time(α′) + e+ d) + 13d < t.

Therefore, by the Upgrades-Complete Hypothesis we conclude that a cfg-upg-ack(k′)i′

occurs by time max(t′, `time(α′) + e + d) + 4d. Since k′ ≥ k2, then by the precon-

dition of a cfg-upg-ack operation we know that `state(β(max(t′, `time(α′) + e + d) +

4d).cmap(k1)i′ = ±. Lemma 7.5.3 implies that `state(β(max(t′, `time(α′) + e + d) +

8d).cmap(k1)i′ = ±, as desired.

Case 2: Assume that `state(α′′′).upg .phase i′ 6= idle. For this to occur, a cfg-upgrade(k′)i′

event must occur prior to the upgrade-ready(k2) event in α with no matching cfg-upg-ack(k′)i′

event prior to the upgrade-ready(k2) event, where k′ = `state(α′′).upg .target i′ . Other-

wise, if there were no ongoing upgrade operation, i′ would be idle. Let t1 be the time

at which this earlier cfg-upgrade(k′)i′ operation occurs.

We can then apply the Upgrades-Complete Hypothesis, where j = i′ and tupg = t1;

notice that:

• i′ ∈ J(max(t1, `time(α′)+ e+2d)): Lemma 7.4.3, applied where t = t1 and i = i′,

shows that i′ ∈ J(max(t1, `time(α′) + e+ 2d)).

• i′ does not fail in β(max(t1, `time(α′)+e+d)+4d): By Part 2 of the way in which

i′ was chosen, i′ does not fail in β(max(t′, `time(α′) + e+ d) + 10d). Notice that

t1 ≤ max(t′, `time(α′) + e+ d), since the earlier upgrade event occurs in α′′′ prior

to the upgrade-ready(k2) event. Therefore i′ does not fail in β(max(t1, `time(α′)+

e+ d) + 4d).

• max(t1, `time(α′) + e + d) < t: Again, notice that max(t1, `time(α′) + e + d) ≤

max(t′, `time(α′) + e + d), since t1 ≤ t′. Also, t′ + 13d < t, by assumption, and

`time(α′)+ e+14d < t, by assumption. Therefore, max(t′, `time(α′)+ e+ d) < t,

implying that max(t1, `time(α′) + e+ d) < t.
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We can then conclude that a cfg-upgrade-ack(k′)i′ occurs in α by time max(t1, `time(α′)+

e + d) + 4d ≤ max(t′, `time(α′) + e + d) + 4d. If k′ ≥ k2, then by the precondition of

the cfg-upgrade-ack(k′) action, i′ marks cmap(k1) = ±, and we are done.

Otherwise, we apply Lemma 7.7.3 to show that another cfg-upgrade operation begins:

let t2 be the time at which the cfg-upgrade-ack(k′)i′ occurs and α2 be the prefix of α

ending in the cfg-upgrade-ack(k′)i′ event. Notice that:

• t′ ≤ max(t2, `time(α′) + e + d): By the way in which the cfg-upgrade(k′) was

chosen, it has to complete no earlier than t′.

• max(t2, `time(α′) + e+ d) < max(t′, `time(α′) + e+ d) + 13d: Above, we showed

that that cfg-upgrade-ack(k′)i′ occurs by max(t′, `time(α′) + e + d) + 4d, that is,

t2 ≤ max(t1, `time(α′) + e + d) + 4d ≤ max(t′, `time(α′) + e + d) + 4d, since

t1 ≤ t′. Therefore, t2 < max(t′, `time(α′)+ e+d)+13d. Also, `time(α′)+ e+d <

`time(α′) + e+ 14d.

Then we apply Lemma 7.7.3 with t = t′, t′ = max(t2, `time(α′) + e+ d), α′′ = α2, and

i′ as chosen above:

• t′ ≤ max(t2, `time(α′)+e+d) < max(t′, `time(α′)+e+d)+13d: as shown above,

• i′ satisfies the criteria, by the properties of i′ above,

• `time(α2) = max(t2, `time(α′) + e + d) and upgrade-ready(k2) occurs in α′′: by

the way in which α2 was chosen and the fact that the cfg-upgrade-ack(k′)i′ must

come after the upgrade-ready(k2) event,

• `state(α2).upg .phase i′ = idle: by the effect of the cfg-upg-ack(k′)i′ event that is

the last event in α′′′.

We then conclude that either:

1. `state(β(max(t2, `time(α′) + e+ d))).cmap(k1)i′ = ±, or

2. i′ performs a cfg-upgrade(k′′)i′ at time max(t2, `time(α′)+e+d), for some k′′ ≥ k2.
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Again, if the first case holds, we are done: since t2 ≤ max(t′, `time(α′) + e + d) + 8d,

Lemma 7.5.3 implies that `state(β(max(t′, `time(α′) + e + d) + 8d)).cmap(k1)i′ = ±.

Therefore, we can assume that the second part holds, and i′ performs a cfg-upgrade(k′′)i′

at time max(t2, `time(α′) + e+ d), for some k′′ ≥ k2.

Once more, we apply the Upgrades-Complete Hypothesis, where j = i′ and tupg = t2;

notice that:

• i′ ∈ J(max(t2, `time(α′)+e+2d)): Recall that i′ ∈ J(max(t1, `time(α′)+e+2d)),

above. Since max(t1, `time(α′)+e+2d) ≤ max(t2, `time(α′)+e+2d) (i.e., the up-

grade begins before it completes), by Lemma 7.4.1, where t = max(t1, `time(α′)+

e + 2d) and t′ = max(t2, `time(α′) + e + 2d), J(max(t1, `time(α′) + e + 2d)) ⊆

J(max(t2, `time(α′) + e+ 2d)), implying that i′ ∈ J(max(t2, `time(α′) + e+ 2d)).

• i′ does not fail in β(max(t2, `time(α′) + e + d) + 4d): By Part 2 of the way

in which i′ was chosen, i′ does not fail in β(max(t′, `time(α′) + e + d) + 10d).

Notice that t2 ≤ max(t′, `time(α′) + e + d) + 4d, as shown above. Therefore

max(t2, `time(α′) + e+ d) + 4d ≤ max(t′, `time(α′) + e+ d) + 8d, and as a result

i′ does not fail in β(max(t2, `time(α′) + e+ d) + 4d).

• max(t2, `time(α′) + e + d) < t: Again, notice that max(t2, `time(α′) + e + d) ≤

max(t′, `time(α′)+e+d)+4d. Also, t′+13d < t, by assumption, and `time(α′)+

e+ d+ 13d < t, by assumption. Therefore, max(t′, `time(α′) + e+ d) + 13d < t.

Therefore, max(t2, `time(α′) + e+ d) ≤ max(t′, `time(α′) + e+ d) + 4d < t− 9d,

as desired.

We can then conclude that a cfg-upgrade-ack(k′′)i′ occurs in α by time max(t2, `time(α′)+

e+d)+4d ≤ max(t′, `time(α′)+e+d)+8d. Since k′′ ≥ k2, then by the precondition of

the cfg-upgrade-ack(k′) action, i′ marks cmap(k1) = ±, and Lemma 7.5.3 implies that

`state(β(max(t′, `time(α′) + e+ d) + 8d)).cmap(k1)i′ = ±.

�

In the next lemma, we provide a conditional guarantee that a configuration remains viable.
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Lemma 7.7.5 Let α be an α′-normal execution satisfying (i) (α′, e)-join-connectivity, (ii)(α′, e)-

recon-readiness, (iii) (α′, e)-upgrade-readiness, (iv) (α′, 2d)-recon-spacing-1, (v) (α′, e, 22d)-

configuration-viability.

Assume that t ∈ R≥0 is a time such that t > `time(α′) + e + 14d. Assume that c1 is a

configuration, and for some finite prefix α′′ of α, where t = `time(α′′), for some node i ∈

J(max(t, `time(α′)+e+2d)) that does not fail in α′′, for some index k1, `state(α′′).cmap(k1)i =

c1.

Also we assume the Upgrades-Complete Hypothesis: for all cfg-upgrade(∗)j events that

occur in α at some time tupg < t at some node j ∈ J(max(tupg, `time(α′) + e + 2d)) where

j does not fail in β(max(tupg, `time(α′) + e+ d) + 4d, a matching cfg-upg-ack(∗)j occurs by

time max(tupg, `time(α′) + e+ d) + 4d.

Then there exists a read-quorum, R ∈ read-quorums(c1), and a write-quorum, W ∈

write-quorums(c1), such that no node in R ∪W fails in β(t+ 3d).

Proof. Let k2 = k1+1, and let c2 = c(k2). First, consider the case where no upgrade-ready(k2)

event occurs in α. We apply Lemma 7.6.4, where c = c1 and k = k1; this implies,

then, that there exists a read-quorum, R ∈ read-quorums(c1), and a write-quorum, W ∈

write-quorums(c1), such that no node in R ∪W fails in α.

Next, consider the case where an upgrade-ready(k2) event occurs in α. Let t′ be the time

at which the upgrade-ready(k2) event occurs. We claim that upgrade-ready(k2) occurs no

earlier than t− 13d. That is, t′ + 13d ≥ t.

Assume, in contradiction, that t′ + 13d < t. We now apply Lemma 7.7.4 to con-

clude that there exists a node i′ ∈ J(max(t′, `time(α′) + e + d) + 8d) that does not fail in

β(max(t′, `time(α′)+e+d)+10d) such that `state(β(max(t′, `time(α′)+e+d)+8d)).cmap(k1)i′ =

±.

We now show that the information about configuration c1’s removal is propagated from

node i′ to node i. That is, we show the following:

Claim: `state(α′′).cmap(k1)i = ±.

Proof of claim: We do this in three steps. First, we show that `state(β(max(t′, `time(α′)+

e+ d) + 8d)).cmapi′ is mainstream after max(t′, `time(α′) + e+ d) + 10d. Second, we show
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that `state(β(max(t′, `time(α′) + e + d) + 8d)).cmapi′ is mainstream after t− d. Third, we

conclude that `state(α′′).cmap(k1)i = ±.

Step 1: We already know that i′ ∈ J(max(t′, `time(α′)+ e+d)+8d), and does not fail in

β(max(t′, `time(α′)+e+d)+10d). We then apply Lemma 7.5.4, where t = max(t′, `time(α′)+

e+ d) + 8d, and i = i′:

• max(t′, `time(α′) + e+ d) + 8d ≥ `time(α′) + e: Immediate.

• i′ ∈ J(max(t′, `time(α′) + e+ d) + 8d+ 2d): i′ ∈ J(max(t′, `time(α′) + e+ d) + 8d), as

shown above, therefore this follow from Lemma 7.4.1, where t = max(t′, `time(α′) +

e+ d) + 8d and t′ = max(t′, `time(α′) + e+ d) + 10d.

• i′ does not fail in β(max(t′, `time(α′) + e + d) + 8d + d), since i′ does not fail in

β(max(t′, `time(α′) + e+ d) + 8d+ 2d) as shown above.

Therefore we can conclude that `state(β(max(t′, `time(α′)+e+d)+8d)).cmapi′ is mainstream

after max(t, `time(α′) + e+ d) + 10d.

Step 2: We have assumed above that t′ < t − 13d, that is, t′ + 10d < t − d − 2d. Also,

we have assumed that `time(α′) + e+ 14d < t, that is, `time(α′) + e+ d+ 10d < t− d− 2d.

Therefore, max(t′, `time(α′) + e + d) + 10d < t − 3d. We now apply Lemma 7.5.11, where

t = max(t′, `time(α′) + e + d) + 10d, t′ = t − d, and cm = `state(β(max(t′, `time(α′) + e +

d) + 8d)).cmapi′ :

• e+ 2d ≤ max(t′, `time(α′) + e+ d) + 10d,

• max(t′, `time(α′) + e+ d) + 10d ≤ t− 3d,

• `state(β(max(t′, `time(α′)+e+d)+8d)).cmapi′ is mainstream after max(t, `time(α′)+

e+ d) + 10d.

We therefore conclude that `state(β(max(t′, `time(α′) + e+ d) + 8d)).cmapi′ is mainstream

after t− d.

Step 3: Notice, then, that by assumption i ∈ J(t) and i does not fail in β(t− d). There-

fore by the definition of mainstream, `state(β(max(t′, `time(α′) + e + d) + 8d)).cmapi′ ≤
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`state(β(t−d)).cmapi. Lemma 7.5.3 then implies that `state(β(t−d)).cmapi ≤ `state(α′′).cmapi,

since β(t−d) is a prefix of α′′. Therefore, `state(β(max(t′, `time(α′)+e+d)+8d)).cmapi′ ≤

`state(α′′).cmapi. Since `state(β(max(t′, `time(α′)+ e+ d)+8d)).cmap(k1)i′ = ± (as shown

above), this means that `state(α′′).cmap(k1)i = ±, as claimed above, concluding Step 3.

This claim that `state(α′′).cmap(k1)i = ±, though, leads to a contradiction: by assump-

tion of this lemma, `state(α′′).cmap(k1)i = c1. Therefore, we conclude that our assumption

that t′ < t − 13d is incorrect: that is, we must have t′ ≥ t − 13d. That is, we have shown

that the upgrade-ready(k2) event occurs at most 13d prior to time t.

We now apply Lemma 7.6.3, where c = c2, k = k2, and t = t′, to conclude that there

exists a read-quorum, R, and a write-quorum, W , of configuration c1 such that no node in

R∪W fails in β(max(t′, `time(α′) + e) + 16d). Above we showed that t′ + 13d ≥ t, therefore

t′ + 16d ≥ t + 3d, which implies that max(t′, `time(α′) + e) + 16d ≥ t + 3d. Therefore, we

can conclude that there exists a read-quorum, R, and a write-quorum, W , of configuration

c1 such that no node in R ∪W fails in β(t+ 3d). �

The next two lemmas claim that every configuration-upgrade operation completes soon

after it begins, or soon after the network stabilizes. The first lemma handles the case where

the upgrade begins before the network stabilizes, or during stabilization. The second lemma

handles the general case, for all t.

Lemma 7.7.6 Let α be an α′-normal execution satisfying: (i) (α′, e)-join-connectivity,

(ii) (α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, (iv) (α′, e, 22d)-configuration-

viability.

Assume that t ∈ R≥0 is a time such that t ≤ `time(α′)+e+14d, and that a cfg-upgrade(k)i

occurs at time t at node i. Assume that node i ∈ J(t) and that i does not fail in β(max(t, `time(α′)+

d) + 4d).

Then a cfg-upg-ack(k)i occurs no later than time max(t, `time(α′) + d) + 4d.

Proof. Let γ be the configuration-upgrade operation associated with the cfg-upgrade(k)

action. Lemma 7.7.1 shows that proving the following is sufficient to prove the lemma: for

every configuration in removal-set(γ) there exists a read-quorum, R and a write-quorum,

W , such that no node in R ∪W fail by time max(t, `time(α′) + d) + 3d.
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Consider any configuration, c1 with index k1 in removal-set(γ). If t1 is the time at which

configuration c(k1 + 1) is installed, configuration-viability ensures that configuration c1 does

not fail until max(t1, `time(α′) + e) + 22d. Notice that `time(α′) + e + 22d > t + 3d, since

t ≤ `time(α′) + e + 14d. Therefore, this guarantees that there exists a read-quorum, R,

and a write-quorum, W for configuration c1 such that no node in R ∪W fails until after

`time(α′) + e+ 22d > max(t, `time(α′) + d) + 3d. �

Lemma 7.7.7 Let α be an α′-normal execution satisfying: (i)(α′, e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, (iv) (α′, e, 22d)-configuration-viability.

Assume that t ∈ R≥0 is a time, and that a cfg-upgrade(k)i occurs in α at time t at node

i. Assume that node i ∈ J(t) and that i does not fail in β(max(t, `time(α′) + e+ d) + 4d).

Then a cfg-upg-ack(k)i occurs no later than time max(t, `time(α′) + e+ d) + 4d.

Proof. We prove this lemma by proving a stronger statement by strong induction on the

number of cfg-upgrade events in α: if a cfg-upgrade(∗)j event occurs in α at some time tupg ≤ t

at some node j ∈ J(tupg), and j does not fail in β(max(tupg, `time(α′) + e+ d) + 4d), then a

matching cfg-upg-ack(∗)j occurs no later than time max(tupg, `time(α′) + e+ d) + 4d.

As this is strong induction, we now examine the inductive step. Consider configuration-

upgrade γ, the k + 1st upgrade operation in α that occurs at time tupg ≤ t at node j ∈ J(t)

that does not fail in β(max(tupg, `time(α′) + e+ d) + 4d). Assume, inductively, that if γ′ is

one of the first k upgrade operations that occurs at time t′ ≤ t at some node j′ ∈ J(t′) that

does not fail in β(max(t′, `time(α′) + e+ d) + 4d), then a matching cfg-upg-ack(∗) occurs no

later than time max(t′, `time(α′) + e+ d) + 4d. There are two cases to consider.

Case 1: tupg ≤ `time(α′) + e+ 14d.

Recall that the cfg-upgrade event occurs at node j ∈ J(tupg) where j does not fail in

β(max(tupg, `time(α′) + e+ d) + 4d). Lemma 7.7.6 shows that a cfg-upg-ack(k)j occurs

by time max(tupg, `time(α′) + d) + 4d ≤ max(tupg, `time(α′) + e+ d) + 4d.

Case 2: tupg > `time(α′) + e+ 14d.

Lemma 7.7.1 shows that proving the following is sufficient to prove the lemma: for every

configuration in removal-set(γ) there exists a read-quorum, R and a write-quorum, W ,
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such that no node in R∪W fails in β(max(tupg, `time(α′)+d)+3d). Let α′′ be the prefix

of α ending with the cfg-upgrade event γ. Fix some configuration c ∈ removal-set(γ)

with index k; that is, `state(α′′).cmap(k)j = c. We now apply Lemma 7.7.5, where

c1 = c, k1 = k, α′′ is as just defined, and t = tupg:

• tupg > `time(α′′) + e+ 14d.

• tupg = `time(α′′).

• `state(α′′).cmap(k)j = c, since c ∈ removal-set(γ) and α′′ is the execution ending

with the event γ.

• j ∈ J(max(tupg, `time(α′) + e+ 2d)), since j ∈ J(tupg) and tupg > `time(α′) + e+

14d.

• Upgrades-Complete Hypothesis: for every cfg-upgrade(∗)j event that occurs in α

at some time t′ < tupg at some node j′ ∈ J(max(tupg, `time(α′) + e + 2d)) where

j′ does not fail in β(max(tupg, `time(α′) + e + d) + 4d), a matching cfg-upgradej′

occurs by time max(tupg, `time(α′) + e+ d) + 4d: this is the inductive hypothesis,

since any cfg-upgrade occuring at time t′ < tupg must be one of the first k upgrade

events.

Therefore, we conclude that there exists a read-quorum, R ∈ read-quorums(c), and a

write-quorum, W ∈ write-quorums(c), such that no node in R ∪W fails in β(t + 3d).

Since this is true for all c ∈ removal-set(γ), this then shows the desired result.

�

We next present two corollaries that follow from these lemmas. First, we present the uncon-

ditional version of Lemma 7.7.5:

Corollary 7.7.8 Let α be an α′-normal execution satisfying (i) (α′, e)-join-connectivity,

(ii)(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, (iv) (α′, e, 22d)-configuration-

viability.
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Assume that t ∈ R≥0 is a time. Assume that c is a configuration, and for some finite

prefix α′′ of α where t = `time(α′′), some node i ∈ J(t) that does not fail in α′′, for some

index k, `state(α′′).cmap(k)i = c.

Then there exists a read-quorum, R, and a write-quorum, W , such that no node in R∪W

fails in β(max(t, `time(α′) + e+ d) + 3d).

Proof. If t > `time(α′) + e+ 14d, then we show that the result follows from Lemma 7.7.7

and Lemma 7.7.5. We apply Lemma 7.7.7 where c1 = c, k1 = k: notice that Lemma 7.7.5

assumes that:

• t > `time(α′) + e+ 14d: By assumption.

• t = `time(α′′): By assumption.

• `state(α′′).cmap(k)i = c: By assumption.

• i ∈ J(max(t, `time(α′) + e+ 2d)): t > `time(α′) + e+ 14d.

• i does not fail in α′′: By assumption.

• Upgrade-Completes Hypothesis: Fix some cfg-upgrade(∗)j event that occurs at time

tupg < t at node j ∈ J(max(tupg, `time(α′)+e+2d) where j does not fail in β(max(tupg, `time(α′)+

e+d)+4d). We apply Lemma 7.7.7, where t = tupg and i = j. (Notice that j ∈ J(tupg)

by Lemma 7.4.1.) We therefore conclude that a cfg-upgrade(∗)j occurs no later than

max(tupg, `time(α′)+e+d)+4d, as required by the conclusion of the Upgrade-Completes

Hypothesis.

We thus conclude that there exists a read-quorum, R ∈ read-quorums(c) and a write-quorum,

W ∈ write-quorums(c) such that no node in R ∪W fails in β(t+ 3d). Since t > `time(α′) +

e+ 14d, this implies that no node in R ∪W fails in β(max(t, `time(α′) + e+ d) + 3d).

Alternatively, if t ≤ `time(α′) + e + 14d, configuration-viability guarantees that there

exists a read-quorum, R, and a write-quorum, W , such that no node in R ∪ W fails in

β(`time(α′) + e+ 22d), and again the result follows. �
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The second corollary guarantees the liveness of the system; that is, the following corollary

shows that read and write operations always terminate eventually:

Corollary 7.7.9 Let α be an α′-normal execution satisfying (i) (α′, e)-join-connectivity,

(ii)(α′, e)-recon-readiness, (iii) (α′, 2d)-recon-spacing-1, (iv) (α′, e, 22d)-configuration-

viability.

Assume that t ∈ R≥0. Assume that at time t, for some i ∈ J(t) that does not fail in α4,

a readi or writei occurs in α. Then the operation eventually completes.

Proof. The read or write operation completes if each phase of the operation completes.

Let ψ be the readi, writei, query-fixi, or recvi action that sets op.cmap to cmap, beginning

the phase. Each phase completes when for all ` : op.cmap(`)i ∈ C, i has sent a gossip

message to an appropriate quorum of nodes in c(`), and received a response. The only way

an operation can fail to terminate, then, is if there does not exist a non-failed read-quorum

or a write-quorum of some configuration in op.cmap.

Assume that c is a configuration with index k such that op.cmap(k)i is set to c at some

time t′ after ψ, and before the phase completes. Then for some α′′ where t′ = `time(α′′),

`state(α′′).cmap(k)i = c, since op.cmap is set by copying a truncated version of cmapi. By

Corollary 7.7.8, there exists a read-quorum, R, and a write-quorum, W , such that no node in

R∪W fails in β(max(t, `time(α′)+e+d)+3d). No later than time max(t, `time(α′)+e+d)+d,

node i sends a gossip message to every node in R∪W . By time max(t, `time(α′)+e+d)+2d

the message is received by every node in R∪W , and each node sends a response to i. By time

max(t, `time(α′) + e + d) + 3d, node i receives the response, and R ∪W ⊆ acc. Therefore,

for all configurations the read and write quorums survive long enough, and so the phase

completes. �

4More specifically, we are assuming that i does not fail until after the operation terminates; since we do
not here bound how long the operation may take, we instead assume that i does not fail in α. Obviously i
failing after the operation completes has no effect on the operation completing.
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7.8 Read-Write Latency Results

In this section we state and prove the main result of the latency analysis: if an execution

contains a period of time of good behavior, and if this section of the executions is 22d-

configuration-viable, then all read and write operations terminate, and terminate within 8d.

Notice that in the original Rambo paper, a similar result required the stronger assumption of

∞-configuration-viability , an arbitrarily unbounded failure assumption, depending on events

earlier in the execution. Here there is no dependency on earlier events: the algorithm is

guaranteed to stabilize rapidly, as soon as the network stabilizes.

We need one more lemma. This lemma shows that once a report(c) action occurs for

some configuration with index k, then soon every node has set cmap(`) 6= ⊥, for all ` ≤ k.

This will allow us to show that if a read or write operation begins long enough after a certain

report(c) operation, then it cannot be interrupted by learning about new configurations with

smaller indices.

Lemma 7.8.1 Let α be an α′-normal execution satisfying: (i) (α,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) 6d-recon-spacing, (iv) (α′, e, 4d)-configuration-viability.

Assume that α contains decide events for infinitely many configurations. Let ` be a

configuration index. Let c1 be the configuration with index `, and c2 be the configuration with

index `+ 1.

Let i be the node at which the first recon(c1, c2) event, π, occurs. Let t be the time at

which the report(c1)i event, φ, occurs.

Then there exists a CMap, cm, such that:

1. cm(`) 6= ⊥, and

2. cm is mainstream after max(t, `time(α′) + e+ d) + 6d.

Proof. There are two cases to consider. In each case, we first demonstrate an appropriate

cm: we identify a node that performs a report(c1) and does not fail too soon. We then show

that the cmap of that node is mainstream after max(t, `time(α′) + e+ d) + 6d.
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Case 1: recon(c1, c2)i occurs at some time ≤ `time(α′) + e+ 2d.

In this case, we use the Recon-Spacing-2 assumption to identify a node with an appro-

priate cmap, and then use configuration-viability to show that this node survives long

enough for its cmap to become mainstream after `time(α′)+ e+4d, which then allows

us to show that its cmap is mainstream after max(t, `time(α′) + e+ d) + 6d.

By the Recon-Spacing-2 assumption, there exists a write-quorum,W ∈ write-quorums(c1),

such that for every node j ∈ W , a report(c1)j occurs in α prior to π, the recon event that

proposes configuration c2. By configuration-viability, there exists some node j ∈ W

that does not fail by time `time(α′) + e+ 4d, since there exists some read-quorum, R,

that does not fail by time `time(α′) + e+ 4d, and by assumption R ∩W 6= ∅.

We now show that cmapj satisfies Property 1 after `time(α′) + e+ 2d. Notice that:

`state(β(time(π))).cmap(`)j 6= ⊥,

since the report action notifies j of the configuration c1 prior to π. By assumption we

know that time(π) ≤ `time(α′)+ e+2d. Therefore we know that `state(β(`time(α′)+

e+ 2d)).cmapj 6= ⊥.

Let cm = `state(β(`time(α′) + e + 2d)).cmapj. We know, then, that cm(`) 6= ⊥, as

desired.

Next we show that cm is mainstream after `time(α′)+ e+4d. We apply Lemma 7.5.4,

where i = j, t = `time(α′) + e+ 2d:

• j ∈ J(`time(α′) + e + 4d): If ` = 0, then j = i0 and we have, by assumption,

that i0 performs a join-acki0 at time 0, immediately implying the statement by

the definition of J .

Otherwise, we apply Lemma 7.4.2, where h = c1, t
′ = time(recon(c(`−1), c1)), and

t = `time(α′) + e+ 2d. Notice that `time(α′) + e+ 2d ≥ time(recon(c(`− 1), c1))

since `time(α′) + e + 2d ≥ time(π), and time(π) ≥ time(recon(c(`− 1), c1)). We

therefore conclude that members(c1) ⊆ J(`time(α′) + e+ 2d). In particular, this
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means that j ∈ J(`time(α′) + e + 2d). Next we apply Lemma 7.4.1, where t =

`time(α′)+e+2d and t′ = `time(α′)+e+4d to see that j ∈ J(`time(α′)+e+4d).

• `time(α′) + e+ 2d ≥ `time(α′) + e: Immediate.

• j does not fail in β(`time(α′) + e + 3d): as shown above j does not fail in

β(`time(α′) + e+ 4d), by choice of j and configuration-viability.

We then conclude, since cm = `state(β(`time(α′) + e + 2d)).cmapj, that cm is main-

stream after `time(α′) + e+ 4d.

We next apply Lemma 7.5.11, where t = `time(α′) + e + 4d, t′ = max(t, `time(α′) +

e+ d) + 6d, and cm is as defined above:

• e+ 2d ≤ `time(α′) + e+ 4d: Immediate.

• `time(α′) + e+ 4d ≤ max(t, `time(α′) + e+ d) + 6d− 2d: Immediate.

• cm is mainstream after `time(α′) + e+ 4d: As shown above.

Therefore, we conclude that cm is mainstream after max(t, `time(α′) + e+ d) + 6d, as

desired.

Case 2: recon(c1, c2)i occurs at some time > `time(α′) + e+ 2d.

We first notice that i has been notified of configuration c1 and then show that the

cmap of i is mainstream after max(t, `time(α′) + e+ d) + 6d.

Notice that `state(β(t)).cmap(`)i 6= ⊥, since the report(c1)i event notifies i of configu-

ration c1.

We now apply Lemma 7.5.4, where i is as defined above and t = max(t, `time(α′) +

e+ d), to show that cm is mainstream after max(t, `time(α′) + e+ d) + 2d:

• max(t, `time(α′) + e+ d) + 2d ≥ `time(α′) + e: Immediate.

• i ∈ J(max(t, `time(α′) + e + d) + 2d): We apply Lemma 7.4.2, where h = c1,

t′ is the time at which c1 is proposed, and t = max(t, `time(α′) + e + d) + 2d.

Notice that max(t, `time(α′) + e + d) + 2d is no earlier than the time at which

c1 is proposed, since a report(c1) occurs prior to max(t, `time(α′) + e + d) + 2d.
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Also, max(t, `time(α′) + e+ d) + 2d ≥ `time(α′) + e+ 2d. Therefore we conclude

that members(c1) ⊆ J(max(t, `time(α′) + e + d) + 2d). This implies that i ∈

J(max(t, `time(α′) + e+ d) + 2d).

• i does not fail in β(max(t, `time(α′) + e + d) + d): We know that i does not fail

prior to event π, that is, the recon(c1, c2)i event. By Recon-Spacing-1, we know

that time(π) ≥ t + 6d. By assumption of this case, we know that time(π) >

`time(α′) + e+ 2d. Therefore i does not fail in β(max(t, `time(α′) + e+ d) + d).

We therefore conclude that cm is mainstream after max(t, `time(α′) + e+ d) + 2d.

We next apply Lemma 7.5.11, where t = max(t, `time(α′)+e+d)+2d, t′ = max(t, `time(α′)+

e+ d) + 6d, and cm is as defined above:

• e+ 2d ≤ max(t, `time(α′) + e+ d) + 2d: Immediate.

• max(t, `time(α′) + e+ d) + 2d ≤ max(t, `time(α′) + e+ d) + 6d− 2d: Immediate.

• cm is mainstream after time(π`): As shown above.

Therefore, we conclude that cm is mainstream after max(t, `time(α′) + e+ d) + 6d, as

desired.

�

We finally prove the main theorem, showing that read and write operations terminate

rapidly. This result requires 12d+ε-recon-spacing, and is similar to Theorem 8.17 from [13].

This earlier theorem states that in a normal, steady-state case, with good environmental be-

havior, read and write operations terminate within time 8d. Although the following theorem

allows for more complicated behavior, deviating from the assumption of good environmental

assumptions, read and write operations still complete rapidly.

Theorem 7.8.2 Let α be an α′-normal execution satisfying: (i) (α,e)-join-connectivity, (ii)

(α′, e)-recon-readiness, (iii) 12d+ε-recon-spacing, (iv) (α′, e, 22d)-configuration-viability.

Let t > `time(α′)+e+17d, and assume a read or write operation starts at time t at some

node i. Assume i ∈ J(t+ 8d), and does not fail until the read or write operation completes.
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Also, assume that α contains decide events for infinitely many configurations. Then node i

completes the read or write operation by time t+ 8d.

Proof. Let c0, c1, c2, . . . denote the infinite sequence of successive configurations decided

upon in α; by infinite reconfiguration, this sequence exists. For each k ≥ 0, let πk be the

first recon(ck, ck+1)∗ event in α, let ik be the location at which this occurs, and let φk be the

corresponding, preceding report(ck)ik event. (The special case of this notation for k = 0 is

consistent with our usage elsewhere.)

We show that the time for each phase of the read or write operation is ≤ 4d – this will

yield the bound we need. Consider one of the two phases, and let ψ be the readi, writei or

query-fixi event that begins the phase.

We claim that time(ψ) > time(φ0) + 8d, that is, that ψ occurs more than 8d time

after the report(0)i0 event: We have that time(ψ) ≥ t, and t > time(join-acki) + 8d by

assumption that i ∈ J(t + 8d). Also, time(join-acki) ≥ time(join-acki0). Furthermore,

time(join-acki0) ≥ time(φ0), that is, when join-acki0 occurs, report(0)i0 occurs with no time

passage. Putting these inequalities together we see that time(ψ) > time(φ0) + 8d.

Fix k to be the largest number such that time(ψ) > time(φk) + 8d. The claim in the

preceding paragraph shows that such k exists.

Next, we show that within zero time of ψ occurring, cmap(`)i 6= ⊥ for all ` ≤ k. It is at

this point that the proof diverges from that of Lemma 8.17 from [12].

For the purposes of the next two lemmas, fix any ` ≤ k. We apply Lemma 7.8.1, where

` is as fixed above, t = time(φ`), φ = φ`, π = π`, c1 = c`,and i = i`. We therefore conclude

that there exists a CMap cm such that:

1. cm(`) 6= ⊥, and

2. cm is mainstream after max(time(φ`), `time(α′) + e+ d) + 6d.

We next apply Lemma 7.5.11, where t = max(time(φ`), `time(α′) + e + d) + 6d, t′ =

time(ψ), and cm is as above, to show that cm is mainstream after time(ψ):

• e+ 2d ≤ max(time(φ`), `time(α′) + e+ d) + 6d: Immediate.
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• max(time(φ`), `time(α′)+ e+d)+6d ≤ time(ψ)−2d: By the way in which k is chosen

we know that time(φk)+8d < time(ψ). Also, time(φ`) ≤ time(φk): either ` = k, or φ`

precedes π` which precedes φk. By assumption we know that `time(α′) + e + 8d < t,

and t ≤ time(ψ).

• cm is mainstream after max(time(φ`), `time(α′) + e) + 6d: As shown above.

Therefore, we conclude that cm is mainstream after time(ψ). We know that i ∈ J(t), and

t ≤ time(ψ), so by Lemma 7.4.1, i ∈ J(time(ψ)). Also, i does not fail until the read or

write operation completes, and therefore either the read or write operation completes at

time(ψ) (in which case we have proved the desired bound) or i does not fail in β(time(ψ)).

Therefore by definition of a CMap being mainstream, if cm is mainstream after time(ψ),

then cm ≤ `state(β(time(ψ))).cmapi.

Having shown this for fixed ` ≤ k, we now know that for all ` ≤ k there exists some

CMap, cm, such that cm(`) 6= ⊥ and cm is mainstream after time(ψ), this implies that for

all ` ≤ k, `state(β(time(ψ))).cmap(`)i 6= ⊥. Therefore we have shown that within zero time

of ψ occurring, cmap(`)i 6= ⊥ for all ` ≤ k.

Now, by choice of k, we know that time(ψ) ≤ time(φk+1) + 8d. The Recon-Spacing

condition implies that time(πk+1) (the first recon event that requests the creation of the

(k + 2)nd configuration) is > time(φk+1) + 12d. Therefore, for an interval of time of length

> 4d after ψ, the largest index of any configuration that appears anywhere in the system is

k+1. This implies that the phase of the read or write operation that starts with ψ completes

with at most one additional delay (of 2d) for learning about a new configuration. This yields

a total time of at most 4d for the phase, as claimed.

Finally, by Corollary 7.7.9, the operation eventually terminates, which guarantees that

ever configuration in op.cmap remains viable for long enough. �

This shows that assuming (α′, e, 22d)-configuration-viability is sufficient to guarantee

that read and write operations terminate quickly. As long as the reconfiguration algorithm

can guarantee this level of viability, the Rambo II algorithm will continue to make progress,

regardless of any bad behavior the network may experience. Further, while 22d may seem
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a long period of time to ensure viability, it must be remembered that d is typically a small

interval: we have been assuming that d is a single message delay in the network. Note

that simply deciding on a new configuration to install might take many intervals of d (in

[12], it is bounded by 11d). Also, this 22d bound is fairly conservative: by making stronger

assumptions as to who begins configuration-upgrade operations, and how gossip messages

propagate information about completed configuration-upgrade operations, it is probably

possible to improve this bound. In this thesis we are primarily interested in the fact that it

is a constant time bound.
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Chapter 8

Implementation and Preliminary

Evaluation

Musial and Shvartsman [16] have developed a prototype distributed implementation that in-

corporates both the original Rambo configuration management algorithm [12] and the new

Rambo II algorithm presented in this thesis. The system was developed by manually trans-

lating the Input/Output Automata specification to Java code. To mitigate the introduction

of errors during translation, the implementers followed a set of precise rules, similar to [2],

that guided the derivation of Java code from Input/Output Automata notation. The system

is undergoing refinement and tuning, however an initial evaluation of the performance of the

two algorithms has been performed in a local-area setting.

The platform consists of a Beowulf cluster with 13 machines running Linux (Red Hat 7.1).

The machines are Pentium processors in the range from 90 MHz to 900 MHz, interconnected

via a 100 Mbps Ethernet switch. The implementation of the two algorithms shares most of

the code and all low-level routines. Any difference in performance is traceable to the distinct

configuration management discipline used by each algorithm.

The machines vary significantly in speed. Given several very slow machines, Musial and

Shvartsman do not evaluate absolute performance and instead focus initially on comparing

the two algorithms.

The preliminary results in Figure 8-1 show the average latency of read/write operations
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Figure 8-1: Preliminary empirical evaluation of the average operation latency (measured
as the number of gossip intervals), as a function of reconfiguration frequency, measured as
number of reconfigurations per one reconfiguration period.
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Figure 8-2: Preliminary empirical evaluation of the average number of configurations in
cmap’s, as a function of reconfiguration frequency, measured as number of reconfigurations
per one reconfiguration period.
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as the frequency of reconfigurations grows from about two to twenty reconfigurations per

one gossip period. In order to handle such frequent reconfigurations, a large gossip interval

(8 seconds) is used. This interval is much larger than the round-trip message delay, thus

reducing the effects of network congestion encountered when reconfiguring very frequently.

The results show that the overall latency of read/write operations for the new algorithm

progressively improve, as the frequency of reconfiguration increases. As expected, the de-

crease in latency becomes substantial for bursty reconfigurations (at 20 reconfigurations per

gossip interval). For less frequent reconfigurations the latency is similar, at about 4 gossip

intervals depending on the settings (not shown). This is expected and consistent with our

analysis, since the two algorithms are essentially identical when cmaps contain one or two

configurations. Figure 8-2 shows the average number of configurations in cmaps as a function

of reconfiguration frequency. This further explains the difference in performance, since the

average number of configurations in cmaps is lower in the new algorithm as the frequency of

reconfigurations increases.

Finally notice that the modest number of machines used in this study favored the original

algorithm. This is because the machines are often members of multiple configurations, thus

the number of messages needed to reach fixed-points by the read/write operations of the

original algorithm is much lower than is expected when each processor is a member of a few

configurations.

Also, notice that this evaluation does not examine the effects of message loss and lack of

network connectivity. We hypothesize that, as in the case of frequent bursty reconfiguration,

when there are intervals of time in which the network is disconnected, the new algorithm

should recover more rapidly. This testing has not yet been performed.

Full performance evaluation is currently in progress. Shvartsman and Musial are in-

vestigating how the performance depends on the number of machines and various timing

parameters.
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Chapter 9

Conclusion and Open Problems

In this thesis we have presented a new algorithm, improving on the original Rambo algo-

rithm by Lynch and Shvartsman [12, 13]. While the original Rambo algorithm is analyzed

primarily in the context of good network behavior, we are able to show that our new algo-

rithm functions well even when the network experiences transient periods of bad behavior,

including message loss, clock skews, and arbitrary asynchrony, and when reconfiguration is

bursty and uneven.

The key to this improvement is a new rapid configuration-upgrade mechanism, which

allows the system to stabilize rapidly after a period of bad network behavior. In the previous

Rambo algorithm, it might take arbitrarily long to recover from a period of bad behavior.

In this new algorithm, however, within a constant time, the system returns to a steady-state

condition. This allows the algorithm to function more reliably in a long-running, dynamic

system: when a system is expected to function for months and years without failure, it is

necessary to rapidly recover from the inevitable transient network failures.

This improvement also makes practical the design of algorithms to choose new config-

urations. In the earlier version of Rambo, it is unclear what properties a reconfiguration

algorithm must support in order for it to be useful. This thesis shows that a reconfiguration

automaton must provide exactly (α′, 22d)-configuration-viability .

To design such a reconfiguration algorithm, then, is one of the major open problems

posed by this thesis. In particular, it seems important to show that if the rate of failure
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is bounded, then the algorithm continues to make progress. This is similar to the ideas

introduced by Karger and Liben-Nowell in [10], in which they assume that the system has

a bounded half-life: the time in which either half the processes fail or the number of active

processes doubles. Under this assumption, they show that their algorithm operates correctly.

By similarly assuming a bounded rate of failures, it should be possible in certain cases

to design a reconfiguration algorithm that guarantees liveness by initiating reconfiguration

with some minimum frequency. By choosing appropriate quorums and appropriate numbers

of reconfigurations, (α′, 22d)-configuration-viability should be possible.

Other open problems include improving the join protocol, and designing a leave protocol

to allow good detection of nodes that have exited the system. Currently, the join protocol

is quite simple and it would seem beneficial to require more communication before allowing

a node to initiate operations. And when nodes fail or leave, in the algorithm as stated,

they are just ignored. By introducing a formal protocol to leave the system, and a method

for detecting failed nodes, it might be possible to improve the long-run performance of the

system.

Another open problem is to determine how to recover when viability fails (and data is

inevitably lost). More generally, is a self-stabilizing version of Rambo feasible? It would

also be interesting to determine whether a version of Rambo could be adapted to tolerate

Byzantine faults.

Rambo may also allow the construction of other data types, such as weakly consistent

memory and sets. It may also be possible to optimize Rambo to return read values more

rapidly, in one phase, in certain cases. An important question would be to determine the most

powerful data object that can be implemented using the Rambo technique; one suspects

that it is impossible to implement consensus in this manner.

Finally, it would be interesting to examine how the Rambo algorithm could be adapted

to specific platforms. The algorithm is presented in a fairly abstract fashion. In real im-

plementations, it would be optimized depending on the target platform. In particular, we

suspect that Rambo should work well in sensor networks, mobile-networks, and peer-to-peer

networks.

In conclusion, this thesis has presented a new algorithm for atomic memory in a highly
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dynamic environment, proved that is always correct, and presented a set of conditions that

guarantee liveness. This provides significant improvements over existing algorithms, rapidly

recovering from transient network problems and bursty reconfiguration.
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