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Abstract

We present an algorithm to store data robustly in a large,
geographically distributed network. It depends on local-
ized regions of data storage that move in response to chang-
ing conditions. For example, data may migrate away from
failures or toward regions of high demand. ThePERSIS-
TENTNODE algorithm [2] provides this service robustly, but
with limited safety guarantees. We use theRAMBO frame-
work [10, 15] to transformPERSISTENTNODE into RAM -
BONODE, an algorithm that guarantees atomic consistency
in exchange for increased cost and decreased liveness. A
half-life analysis ofRAMBONODE shows that it is robust
against continuous low-rate failures. Finally, we provide
experimental simulations for the algorithm on 2000 nodes,
demonstrating how it services requests and examining how
it responds to failures.

1. Introduction

Robust storage is a key problem in wireless,ad hocnet-
works: data must be maintained in areliable, accessible,
andconsistentmanner. Robust atomic memory is a favored
solution in distributed algorithms.

The PERSISTENTNODE algorithm [2] implements a vir-
tual mobile node that travels through anad hocnetwork,
servicing read/write memory requests. In PERSISTENTN-
ODE, the data is robust and survives even extreme fail-
ure conditions; however atomicity is guaranteed only un-
der specific conditions. In this paper, we augment PERSIS-
TENTNODE using the RAMBO framework [10, 15], trading
increased communication cost and decreased liveness for
unconditional atomicity: the resulting algorithm is RAM -
BONODE. We then examine the trade-off between consis-
tency and availability in a large geographically distributed
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network such as a MetropolitanAd HocNetwork (MAN).
By adapting RAMBONODE for the MAN setting, we

are also able to make stronger performance guarantees than
prior RAMBO papers. We show that the RAMBONODE al-
gorithm can tolerate continuous, ongoing failures, as long
as the rate of failures in any region of the network is not too
high.

For a more complete version of this paper, see [4].

2. The Metropolitan Ad HocNetwork Model

We consider the MAN scenario [19], a large city popu-
lated by millions to billions of computational devices, each
connected to its neighbors by short-range wireless links.

A MAN consists of an unknown number of partially syn-
chronous nodes embedded in Euclidean space with links to
all neighbors within a fixed radius. Messages may be lost
or reordered, but not corrupted. Nodes fail by stopping and
may be rebooted, losing all state and choosing a new UID.

The MAN setting has several key properties:Locality:
Communication cost is dominated by number of hops, so
geographically local algorithms are significantly cheaper
than those that require long-distance communication.Con-
tinuous Failures: It is unrealistic to talk about a fixednum-
ber of failures; rather, we consider therateof failure within
a geographic area.Immobility: If nodes are moved only by
humans, then most nodes are immobile most of the time,
in a large enough network.Self-Organization: Due to large
scale and ongoing failures, direct human administration is
impractical. These systems must be self-organizing and
must adapt robustly to changes in the network topology.
No Infrastructure: We assume no network services, such
as routing, naming, and coordinates, due to the practical
difficulties of deploying services at this scale.

Other algorithms for the MAN setting includes Beal’s
prior work with PERSISTENTNODE [2, 3], where the net-
work is partitioned into clusters that can be grouped to-
gether to form a hierarchy suitable for tasks like routing.

The study of networks with properties of a MAN has
often fallen under the rubric of “sensor networks” (e.g., [6,



11,17]). There are a number of aspects that differentiate the
MAN from traditional sensor networks.

Much of the research on sensor networks is organized
around the collection and propagation of sensor data. Con-
sider, for example, a typical application, the TinyDB project
[16], that has implemented a real-time database that stores
consistent data. The database allows a specially designated
“root” node to access distributed sensor data, by issuing
complex queries. In our model, there is no special root
node, and any node can access the shared memory. In gen-
eral, we aim to enable a MAN to support higher level dis-
tributed computation, not just to collect and process data
from real-time sensors.

Another aspect typical of sensor networks research is the
severe resource constraints imposed by the tiny, lightweight
sensor devices: the tiny motes have small batteries and
small processors. MAN nodes are less limited: they are not
necessarily small, and may be connected to power sources.

Communication bandwidth is still a limiting resource:
with billions of nodes participating in the algorithm, the vol-
ume of data transmissions must be small.

3. Background

In an earlier memo [2], Beal develops PERSISTENTN-
ODE, an algorithm for geographically-optimized atomic
memory in the MAN setting. In PERSISTENTNODE, a clus-
ter of nodes maintains replicas of the atomic data. This
cluster acts as a “virtual mobile node”, moving through the
network. The PERSISTENTNODE moves by occasionally
choosing a new set of replicas (often including many of the
current replicas) and sending the data to these new replicas.
By carefully choosing the new replicas, PERSISTENTNODE

is able to avoid failed regions of the network, keeping the
data near to nodes performing read and write operations.

While the PERSISTENTNODE algorithm implements an
atomic shared memory, data consistency is timing depen-
dent: if too many messages between nodes are delayed or
lost, atomic consistency can be violated. Our goal, then, is
to guarantee atomic consistency, regardless of whether the
network is delivering messages rapidly or reliably.

We transform the PERSISTENTNODE algorithm using
the RAMBO framework (ReconfigurableAtomic Memory
for BasicObjects), developed by Lynch, Shvartsman, and
Gilbert [10,15] to implement atomic memory in highly dy-
namic networks. RAMBO guarantees atomicity in all exe-
cutions.

The RAMBO algorithm is presented in an abstract form,
and does not specify what configurations (i.e., quorums of
replicas) should be used; nor does it specify when to initiate
reconfiguration. Also, RAMBO assumes an all-to-all com-
munication network, and therefore does not operate well in
the MAN setting.

The RAMBO algorithm uses replicas to provide fault tol-
erance. In order to ensure consistency among replicas, each
write operation is assigned a unique tag, and these tags are
then used to determine which value is most recent. The
RAMBO algorithm usesconfigurationsto maintain consis-
tency. Each configuration consists of a set of participants
and a set ofquorums, where each pair of quorums inter-
sect. Quorums were first used to solve the problem of
consistency in a replicated data system by Gifford [8] and
Thomas [20], and later by many others (e.g., Attiya, Bar-
Noy and Dolev [1]).

The RAMBO algorithm allows the set of replicas to
change dynamically, allowing the system to respond to fail-
ures and other network events. The algorithm supports a
reconfiguration operation that chooses a new set of partici-
pants and a new set of replica quorums. Earlier algorithms
also address the reconfiguration problem (e.g. [5,7,12,18]),
but RAMBO provides more flexibility, and is therefore more
suitable for our application. For more details comparing
these algorithms, see RAMBO [10].

Each node maintains a set of active configurations.
When a new configuration is chosen, it is added to the set
of active configurations; when a configuration is upgraded,
old configurations can be removed from the set of active
configurations.

RAMBO decouples the reconfiguration mechanism and
the read/write mechanism: a separate service is used to gen-
erate and agree on new configurations, and the read/write
mechanism uses all active configurations. In order to de-
termine an ordering on configurations, a separate consensus
service such as Paxos [13] is used.

The use of RAMBO improves on the PERSISTENTNODE

algorithm by guaranteeing consistency, while maintaining
the ability to tolerate significant and recurring failures. On
the other hand, the new algorithm is more expensive, requir-
ing more state and communication, and provides reduced
availability: the PERSISTENTNODE algorithm can return a
response if even one replica remains active and timely. It
is impossible to guarantee a consistent, available, partition-
tolerant atomic memory [9]; thus we explore the trade-off
between consistency and availability in the MAN setting.

4. RAMBO NODES

The RAMBONODE algorithm consists of the RAMBO

read/write mechanism, the PERSISTENTNODE configura-
tion service, and the Paxos consensus service. (See Figure 1
for an overview of the algorithm.)

Communication. In RAMBO, each round depends on
gossip-based, all-to-all communication: a round completes
when an initiating node learns that a majority of nodes have
received gossip messages for that round. The MAN setting



Write Operations: (at nodei)

1. Gossip untili gets tag/value from a majority of nodes in active configurations.
2. Choose new tag.
3. Gossip untili gets acknowledgments that a majority of nodes in active config-

urations have received new tag/value.

Read operations:(at nodei)

1. Gossip untili gets tag/value from a majority of nodes in active configurations.
2. Gossip untili gets acknowledgments that a majority of nodes in active config-

urations have received tag/value.

Reconfiguration:

1. Nodei is designated to initiate a reconfiguration.
2. Initiate broadcast/convergecast to choose new members.
3. Initiate Paxos consensus to agree on the new configuration.
4. Add configuration outputted by Paxos to the set of active configs.

Configuration Upgrade: (if there is more than one active configuration)

1. Gossip untili gets a tag/value from a majority of nodes in all old configs.
2. Note largest tag/value.
3. Gossip untili gets acknowledgments that a majority of nodes in the new con-

figuration have received the tag/value.
4. Mark old configuration as removed.

Figure 1. Overview of RAMBO NODE algorithm.

is conducive to gossip, but it must use only local commu-
nication rather than all-to-all. We implement a local gossip
service which flows through all active participants, plus all
other nodes withink hops, allowing communication across
small gaps between active participants.

Reconfiguration. Each configuration consists of a cluster
of nodes maintaining replicas of the atomic data. The clus-
ter consists of nodes withinP hops of thecenter: the node
which initiated the configuration. Later, when analyzing the
performance of the algorithm, for the sake of simplicity we
assume a bound on the maximum density of the network in
order to limit the number of active participants. It is easy to
develop alternate mechanisms to limit the number of partic-
ipants (e.g., decreasingP during times of high density).

Every so often, a reconfiguration occurs, choosing a new
center and a new set of participants. There are two ways in
which potential new centers are chosen.

When the center does not fail, it chooses one of its neigh-
bors to be the new center. This choice is based on an ar-
bitrary distributed heuristic function calculated by gossip
among the members of the configuration (as in PERSIS-
TENTNODE). This function biases the direction in which
the data moves; for example, the function may attempt to
choose a direction in which fewer nodes have failed or from
which more nodes send read and write requests.

On the other hand, if a node believes that the center may
have failed, then it begins the process of creating a new
configuration. Based on available heuristic information, it
chooses one of its neighbors to try to become the new cen-
ter.

A node chosen to become the center runs a broad-
cast/convergecast to generate a proposal for a new configu-
ration.

When only the center designates a new center candidate,
only one node attempts to start a new configuration. In the
case where there are failures, many nodes may attempt to
become the center of the new configuration. Either way, it
is guaranteed that periodically at least one node attempts to
start a new configuration.

This mechanism implements an eventual leader-election
service sufficient to guarantee the liveness of the Paxos con-
sensus algorithm. Each prospective configuration is then
submitted to the Paxos consensus service, which ensures
that only one of the potentially many prospective leaders
succeeds.

The Paxos protocol involves two rounds of gossip in or-
der to agree on a new configuration: in the first, a majority
of the old configuration is told to prepare for consensus; in
the second, a majority of the old configuration is required
to vote on the new configuration. (See [13] for more de-
tails.) Then the new configuration is added to the list of ac-
tive configurations; this information spreads through gossip
to members of the old and new configurations.

Configuration Upgrade. In order to remove old config-
urations from the set of active configurations, anupgrade
operation occurs that upgrades the new configuration, trans-
ferring information from the old configurations to the new
configuration. The upgrade requires two phases. In the first
phase, a node gossips to ensure that it has a recent tag and
value. When it has contacted a majority of the nodes in ev-
ery old configuration, the second phase begins. In the sec-
ond phase, the node ensures that a majority of nodes in the
new configuration receive the recent tag and value. When
a majority of nodes in the new configuration have acknowl-
edged receiving the tag and value, the upgrade is complete
and the old configurations can be removed. The removal
information spreads through gossip to all participants.

Read/Write Operations. Each read or write operation
consists of two phases. In each phase, the node initiating the
operation communicates with majorities for all active con-
figurations. We assume that every node initiating a read or
write operation is near some member of an active configura-
tion. If this is not the case, some alternate routing system is
used to direct messages to a node that is nearby, which can
then perform the read/write operation: in the MAN setting,
we focus on local solutions to problems.

We first consider a write operation. In the first phase
of the operation, the initiator attempts to determine a new
unique tag. The initiating node begins gossiping, collect-
ing tags and values from members of active configurations.
When the initiator has received tags and values from a ma-
jority of nodes in every active configuration, the first phase
is complete. The node then chooses a new, unique tag larger
than any tag discovered in the first phase. At this point, the
second phase begins. The initiating node begins gossiping
the new tag and value. When it has received acknowledg-
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(a) The centermost node (shown by anx) sends
out a poll requesting “goodness” estimates,
which determine the new center candidate.

xx

(b) The new center candidate runs a con-
vergecast to discover the members of the
new configuration.

(c) The new center begins Paxos to decide on
the new configuration. If consensus succeeds,
the new configuration is installed.

Figure 2. Illustration of the reconfiguration process.

ments from a majority of nodes from every active configu-
ration, the operation is complete.

A read operation is very similar to a write operation. The
first phase again contacts a majority of nodes from each ac-
tive configuration, and thus learns the most recent tag and
value. The second phase is equivalent to the second phase
of a write operation: the discovered value is propagated to
a majority of nodes from every active configuration. This
second phase is necessary to help earlier write operations to
complete; if the initiator of an earlier write operation fails
or is delayed, the later read operation is required to help it
complete. This is necessary to ensure atomic consistency.

5. Atomic Consistency

The RAMBONODE algorithm guarantees atomic consis-
tency in all executions, regardless of the number of failures,
messages lost or delayed, or other asynchronous behavior.
The proof closely follows that presented in [10]. For the full
proofs, see [4].

6. Conditional Performance Analysis

As long as the rate of failure is not too high, read and
write operations always complete rapidly. For a more com-
plete analysis, see [4].

Assumptions. Good performance of our algorithm de-
pends on four additional assumptions about the failure pat-
terns and the network.

Half-Failure assumes that the rate of failure in any re-
gion of the network is not too high. If too many nodes in
one region can fail, then no localized algorithm can hope
to succeed. We say that a timed execution satisfies(P,H)-
Half-Failure if for all balls of radiusP , for every interval
of time of lengthH, fewer than half the nodes in the ball
fail during the interval. (The Half-Failure assumption is a

generalization of the bounded half-life criteria, introduced
by Karger, Balakrishnan, and Liben-Nowell [14].)

The Partition-Freedomassumption ensures that nearby
nodes are able to communicate with each other. If a parti-
tion occurs in the network, our algorithm continues to guar-
antee consistency; however it is impossible to guarantee fast
read and write operations. We say that an execution guar-
antees(P, k)-Partition-Freedomif for nodesi andj within
2P distance units of each other, there is always a route from
i to j of length less than4kP hops, for some fixedk.

Assume thati andj are two nodes in the network, and
that the distance fromi to j is less than the communication
radiusr. We assume that every message sent byi to j is
received within timed.

Lastly, we assume that nodes are not too densely dis-
tributed anywhere on the network. We say that a network is
(P,N )-Denseif for every ball of radiusP in the network,
there are no more than2N nodes in the ball. (In practice,
it is always possible to chooseP smaller to reduceN , or to
direct excess nodes to sleep and save energy.)

Liveness Analysis. Chooseδ = 4Pd, the time in which
any two nodes in a configuration of radiusP can communi-
cate. As in all quorum-based algorithms, liveness depends
on a quorum (i.e., a majority) of the nodes in active config-
urations remaining alive. We first notice that our main goal
is to ensure that enough nodes in each configuration remain
alive for the operations to complete:

Lemma 6.1 If π is a read or write operation, and through-
out the duration ofπ a majority of nodes in each active
configuration do not fail, thenπ terminates in8 · δ.

In order to show that a majority of nodes in a configuration
remain alive, we need to determine how long it takes for a
new configuration to be fully installed. The key part of this
proof is showing that Paxos terminates quickly, outputting
a new configuration. If the half-life,H, of the algorithm is



Configuration Time per Worst Case Time per
Radius Read/Write Read/Write Recon
R-Node – 2 hops 7.91 64 81.2
R-Node – 3 hops 11.59 96 113.5
R-Node – 4 hops 16.45 128 149.3
P-Node – 2 hops 6 6 26
P-Node – 3 hops 9 9 34
P-Node – 4 hops 12 12 42

Figure 3. Comparison of RAMBO NODE and
PERSISTENTNODE for node radius 2-4 (in units
of maximum message latency).

large enough, Paxos can terminate.

Lemma 6.2 If H > (40+22 ·N) ·δ, then Paxos will output
a decision within time11 · δ · N .

This result guarantees that a majority of nodes in each active
configuration do not fail. We can then combine Lemmas 6.1
and 6.2:

Theorem 6.3 AssumeH > (40 + 22 · N) · 4 · P · d. Then
every read and write operation initiated at a participating,
non-failing node completes within time8δ = 32 · P · d.

Discussion. To put the numbers in perspective, imagine
anad hocsensor network in which nodes are deployed with
a density of ten units per square meter. (For example, imag-
ine a smart dust application.) Choose a radius of six me-
ters for a configuration, and assume that adjacent nodes can
communicate in one millisecond. Then Theorem 6.3 re-
quires that no more than 50 units fail every five minutes.
Except in a catastrophic scenario, this rate of failure is ex-
treme. In smaller configurations, or lower density environ-
ments, it becomes even easier to satisfy the Half-Failure
property. Figure 4 graphs the permitted failure rates.

7. Experimental Results

We simulated the RAMBONODE algorithm, confirming
that every execution of RAMBONODE is atomic. We mea-
sured the effect of diameter and error rate on performance,
demonstrating robustness, but also illustrating the expenses
incurred by guaranteeing consistency.

We ran the algorithm in a partially synchronous, event-
based simulator with 2000 nodes distributed randomly on a
unit square. Communication channels link all nodes within
0.04 units of one another, yielding a network graph approx-
imately 40 hops in diameter. At the beginning of a run, a
random node is selected to create the initial configuration.
During the experiment, nodes involved in an active configu-
ration randomly invoke read and write operations. Failures
are simulated by deleting a node and replacing it with a new
one — this happens to any given node in any given round
with probabilitypk.

Experimental Latencies. Figure 3 shows operation la-
tency in failure free executions on 2000 nodes. (Simulations
with small rates of failure were quite similar.) For config-
urations with radiusP , read and write operations take, on
average, time4P , due to the two phase operations.

The worst case latency for read and write operations in
RAMBONODE is significantly worse than the experimental
latency. Failures can significantly increase the time an oper-
ation takes: the Partition-Failure assumption allows failures
to double the cost of communication. Also, inopportune re-
configuration can increase read and write latencies: a new
configuration can cause a phase to (effectively) restart.

Choosing a new configuration requires more phases than
a read or write operation, and thus is slower.

Comparing RAMBONODE to PERSISTENTNODE illus-
trates the cost of atomic consistency in a MAN. Read and
write operations take longer, and reconfiguration is much
slower due to the need for consensus. Fortunately, RAMBO

decouples read and write operations from reconfiguration.

Configuration Size. As the radius of a configuration in-
creases, the time to execute an operation and the time to
reconfigure are expected to increase linearly in failure-free
executions. The data we obtained for configurations of ra-
dius two, three, and four suggests that this is the case.

In order to complete an operation or a reconfiguration,
RAMBO requires the initiator to collect information on a
majority of members of the configuration. This, in turn,
requires every node in a configuration to maintain infor-
mation about the other nodes in the configuration and the
ongoing operations. A naive gossip implementation leads
to large amounts of storage (O(N2) per node), which in
turn causes the simulation to become untenable for large ra-
dius (P ≥ 5). An improved implementation would reduce
the storage (toO(N) per node); nevertheless, note that the
RAMBONODE algorithm is only efficient whenP , the node
radius, is relatively small, such that a configuration does
not contains too large a number of replicas, i.e.N is not too
large. PERSISTENTNODE, by contrast, requires onlyO(1)
storage per node.

Node Failures. We ran simulations with varying rates of
failure: pk varied from zero to an expected 20% failure
during a single reconfiguration (based on average recon-
figuration times). As long as no more than half the nodes
failed during a single half-life, the algorithm continued in-
definitely to respond to read and write requests, as predicted
by Theorem 6.3. We expected to find a sharp transition
from 100% success to complete failure of read and write
operations, and were not disappointed. From 0-2% failure
rate (per expected reconfiguration time), radius three RAM -
BONODESshowed no significant change in time per opera-
tion, or number of operations completed. Above 10% fail-
ure rate, nodes generally died after a few reconfigurations;
the exact behavior varies.
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(a) Constant minimum density: all regions remain populated by
at least a few nodes at all times.
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(b) Minimum density equals 1/100 maximum density. In this
case, the maximum density has little effect on the allowable rate
of failure; the radius is the key parameter.

Figure 4. Theoretical maximum rate of failure that the RAMBONODE algorithm can tolerate, when each
node communicates with its neighbors once per millisecond.

8. Conclusion

We have combined PERSISTENTNODE and RAMBO,
producing RAMBONODE, which captures the safety prop-
erties of RAMBO and the locality and mobility properties
of PERSISTENTNODE. We have shown that the new algo-
rithm guarantees atomic consistency in all executions, and
that the algorithm performs well, as long as the rate of fail-
ure is not too high. RAMBONODE is especially suitable for
deployment inad hocnetworks, like a MAN; it is highly
localized, tolerates continuous failures, and requires no net-
work infrastructure.
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