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Abstract recalculate a valid topological ordering. More specifigall
LetG = (V,E) be a directed acyclic graph (dag) with= |V | the go_al is to maintz_;\in a _data structure that supports two
andm= |E|. We say that a total ordering on vertices/ is operations: (1) edge msertlo_ns, in which a new edge is added
atopological orderingif for every edge(u,v) € E, we have 0 the graphG; and (2) queries of the form: “Doascome
u < v. In this paper, we consider the problem of maintainirfggforev in the topological ordering?”In this paper, as well
a topological ordering subject to dynamic changes to tA& in previous work, queries are answere®it) time; the
underlying graph. That is, we begin with an empty gradﬁzy guestion is how fast can edge insertions be processed?
G=(V,0) consisting ohnodes. The adversary aduedges ) ) )
to the graptG, one edge at a time. Throughout this procesfior Work. The simplest solution to the problem of in-
we maintain aronlinetopological ordering of the grap®. cremental topological or.denng is to reqalculate a new or-
In this paper, we present a new algorithm that has a to‘i‘ﬁ””g after eaqh edge insertion, resultingdfn(m-+n))
cost of O(n?logn) for maintaining the topological orderingtime form ec_ige insertions. In recent years, _there have been
throughout all the edge additions. At the heart of ogfveral significant improvements. Marchetti-Spaccamela e
algorithm is a new approach for maintaining the ordering!- [1] gave the first nontrivial solution, handlimginser-
Instead of attempting to place the nodes in an ordered lest, }nS in a total ofO(mn) time. Alpern et al. [3] gave an al-
assign each node a label that is consistent with the orderi@gfithm that performs well in a greedy sense: given a topo-
and yet can be updated efficiently as edges are insertegical ordering and an edge insertion, their algorithm- per
When the graph is dense, our algorithm is more efficient thifms (almost) the minimum amount of work possible to find
existing algorithms. By way of contrast, the best knownpri@ New topological ordering. (This form of analysis, how-

algorithms achieve onl@(min(mt5,n25)) cost. ever, says little about the total time to performedge in-
sertions.) Katriel and Bodlaender [11] gave a variant of the
1 Introduction algorithm introduced by Alpern et al., which they show to

run in O(min{m*2logn,m*2 + n?logn}) time. They also
showed significantly better bounds for graphs of bounded
) . . treewidth. Liu and Chao [13] gave a tighter analysis of
V' is atopological orderingif for every edge(u,v) € E, the Katriel-Bodlaender algorithm, showing that it runs in

we haveu < v. Given a specific dadgs, there are two (/2 4 mnit/2logn) time. Kavitha and Mathew [12] gave

well-known approaches for finding a topological ordering in . / . /2 /2
O(n+m), either by depth-first search, or by repeated deletiglnSllghtly better variant takin@(m* + ml nlogn). Most

: . ) . recently, Haeupler et al. [8, 9] gave a variant of the Alpdrn e
of vertices with no incoming edges.

This paper addresses an incremental variant of this prc%—/ Katriel-Bodlaender algorithm that runs in tirggm/2).

: i . . . : .~ The algorithms mentioned thus far do no better than
lem, which arises in a variety of contexts, including comp|b(

3 _ 2\ A i
ers [14,16], deadlock detection [4], pointer analysis 1B, ) for d.ens.e graphs whera = O(r). Ajwani et '?'-.[.2]
and incremental circuit evaluation [3], gave the first improvement for dense graphs, exhibiting an

. . . algorithm that runs if©(n?7®) time for any number of edge
In the problem of incremental topological ordering, our . : . :
. T . . Insertions. Haeupler et al. [8, 12] improved this algorithm
goal is to maintain a topological ordering even as edges are

. - . - - . 2'5 .
added to the graph. Initially, the graghis unknown; edges resulting in a simpler algorithm requiring ony(n“>) time.

. o This bound is not known to be tight, however, so this
are added one at a time. After each edge addition, we MYSt by : . .
algorithm’s true running time could potentially match our

own.

bendzsg's sS]rc]ystz[jnupUter Science,  Stony  Brook University,  pegrce and Kelly [18] gave an algorithm that they
TCSAIL, MIT, | fi neman@sai | . mi t . edu showed to be fast in practice on random sparse graphs, but
*EPFL,set h. gi | bert @pfl.ch
SThis research was supported in part by NSF grants CCF-IAlthough there may be many valid topological orderings, ativeers
0621511, CNS-0615215, CCF-0541209, CCF-0621439/0621€ZF- given by the data structure after theh edge insertion/deletion must be
0540897/05414009, CCF-0634793/0632838, and CNS-0627645 consistent witlthe sametopological ordering.

LetG= (V,E) be a directed acyclic graph (dag) wiik= |V|
andm= |E|. We say that a total ordering on vertices




that is provably worse than that Alpern et al. algorithm ifor predecessor) in the topological ordering?” (Such aseri
the worst case. Ajwani and Friedrich [1] proved that there supported by most previous algorithms.) Second, it can
Alpern et al., Katriel and Bodlaender, and Pearce and Kellg augmented to detect cycles in the gr&hwe assume
algorithms all take expected tin@(npolylog(n)) for edges throughout this paper that the grahis acyclic; however,
forming a complete graph inserted in a random order.  with a small amount of bookkeeping we can detect anoma-

The only nontrivial general lower bound that we ar®us graphs. Finally, our data structure can readily suppor
aware of is am(nlogn) lower bound fom — 1 edge inser- edge deletions as well as edge insertions; however, perfor-
tions due to Ramalingam and Reps [19]. Katriel [10] givesance guarantees apply only to executions consisting only
an Q(n?) lower bound wherm = O(n) for algorithms that of insertions. We comment on these extensions in Section 3.
explicitly maintain the rank of each vertex in the topologi-
cal order. Of known algorithms, this lower bound only agRoadmap. The remainder of the paper is organized as fol-
plies to those algorithms that store the topological ordgi lows. First, in Section 2, we present some preliminary def-
an array—those of Marchetti-Spaccamela et al., Pearce anitions, along with an overview of our approach for main-
Kelly, and Ajwani et al. It does not apply to our algorithmtaining a topological ordering. As a simple example of this
nor does it apply to any of the sparse-graph algorithms. Haproach, we give an algorithm that achie@{sn) running
upler et al. [9] give ai2(nmt/?) lower bound for algorithms time. Next, in Section 3, we present our new algorithm in
that only update the “affected region” of the topological odetail. Finally, we analyze the algorithm in Section 4, and
dering on an edge insertion. This lower bound applies to edinclude in Section 5.
previous algorithms, but it does not apply to our algorithm.

2 Basic strategy

Our Results.In this paper, we present a new algorithniis section describes our basic strategy for maintaining a
that takesO(n*logn) time to support any number of edgqqopological ordering. We show how this strategy can be
insertions. Our analysis is tight in that there exist grap%mied in a simple fashion to achieve @tmn) algorithm

and edge-insertion sequences causing our algorithm 10 81, vertices andn edge insertions. While this bound is not

in ©(n*logn) time. This bound beats th&(n*°) bound npew, it demonstrates a quite different approach. In Seion
of Haeupler et al. [8, 12] and beats tR¥m*?) bound of \ye show how this same basic approach can be more carefully
Haeupler et al. [8,9] whenever> n*/3log?/3n. We analyze applied to develop a more efficient algorithm that yields
our algorithm in the RAM model (as is the case for all prig{nning timeO(n?logn)
algorithms).

Our approach is quite different from previous algorerminology. Given a dagG = (V,E), we say that a node
rithms. Typically, a topological ordering is maintained ex ig apredecessoof a nodev (and thatv is a successoof
plicitly as either a linked list or an array. When adding &), if there is a directed path fromto vin G. Notice that,
edge(u,v), the algorithm first checks whetherappears be- 5ccording to this terminology, a nodes a predecessor (and
fore or afterv in the existing topological ordering; if ap- syccessor) of itself. When the edgev) exists, we say that

u precedew in the ordering, as is required by the insertiogyccessor of)).

of edge(u,v). During the insertion, the algorithm modifies

only vertices in the “affected region” of the list/arraye.i. | apels and OrdersWe associate with each vertexan
those vertices that lie betwegiandu. The key to these a|90'(integer) labell(u). From these labels, we derive a total
rithms is to efficiently discover which vertices in the atet 5,qer in the natural way: I (u) < L(v), thenu<v. If L(u) =
region need to be moved. o L(v), then we break the tie in an arbitrary but consistent
~Our algorithm, by contrast, does not maintain an arrgyshion, say, using the unique identifiers of the vertices in
or linked list, but instead assigndabelto each vertex in the question.
graph, reassigning labels as edges are insérfBde labels It is easy to see that the ordering induced by the labels
induce a topological ordering on the dag and are also usegktg topological ordering as long as the labels are consisten
assist in efficient updates during edge insertions. with the underlying dag. That is, wheneverv) is an edge
Our data structure can be readily extended in varioisg e havel (u) < L(v).
ways. First, it can be augmented to support additional oper- | gpels are updated dynamically as edges are added to
ations, such as queries of the form: “Whatils successor the graph. When adding edda,v), we update the label
atv, if necessary, along with some subsewsfsuccessors.
ZPrevious linked-list-based algorithms implicitly use lab® perform The first step involves determining whether the labelof

gueries as part of an o_rder—mzyntengn;:e data stru_cture. [By’tontrast, needs to be increased. We refer to this procewmg
our labels have semantic meaning within the graph itself aaglgkey role ; .
If Vv's label needs to be increased, a new value of the

in determining which vertices to update.



label is chosen. After visiting a node we perform a
truncated depth-first search on the dag, starting and
visiting successors of in turn. When we traverse an edge
in the dag, we say that we af@lowing the edge. Choosing
when to follow edges and how to update labels is at the heart
of achieving an efficient algorithm.

A simple algorithm. As an example of how to apply this
paradigm, we consider a simple algorithm in which the label Vi Wi
L(v) represents thelepth of v, where depth is defined as

usual: ifv has no immediate predecessors, théw = 0;

otherwise, L(v) = max,yceL(u) + 1. If each node is Figure 1: When the dotted edge is added, the depth of
labelled with its depth, it is clear that the labelling in@8@ increases by 1. The simple algorithm perfor®i&?2) work,
topological ordering: it precedes in the dagG andu # v,  following edgesvi,w;) forall 1 <i, j <k.
thenL(u) < L(v).

Initially, as there are no edges in the gra@hL(u) =0
for every vertexu. Every time an edge is added to the da 2 : . .
the labels on the vertices are updated to reflect the chan?ﬁ#éj\{:i?elgg;Zetﬁélgést?]gsé;g;he%imLtji?ﬁesse;/tigg: S'Eggal
in depth caused by the new edge. Specifically, when add'cno%t ofo(n?)
edge(u,v), we compare the labels atandv: if L(u) < :

. The main goal of our algorithm is to reduce the number
L(v), then the depth of remains unchanged. I, howeverbf times that we visit a particular vertey, that is, to bound
L(u) > L(v), then we update's label: L(v) — L(u)+ 1. We b ™% ’

. ; . .~ the number of visits byD(nlogn). (By contrast, the simple
then recursively follow all of/'s outgoing edges, recurswelyal orithm may visit each node up @(n?) times.)
performing the same “update label/follow edges” procedureg y P '

at each ofv's immediate successors. When this depth—firﬁt e .
. . o . ey Madifications. In order to achieve better performance,
traversal terminates, each vertex is labelled with its lol@pt

the graph we make two key modifications to the simple algorithm.

There is a straightforward analysis of this algorithm. Fc'J:rlrSt’ we do not blindly follow all outgoing edges from

each vertex, the maximum depth is— 1, and hence.(u) < wheneven's label increases. Instead, for each edgev),
n—-1 Sincé labels/depth arepnondecr'easin it follows that cache the value of's label atv and only follow the edge
L(u) increases at mos?— 1 times. and thus%he total cosT\i/’W) if the cached information indicates thas label needs
) o o o increase. Specifically, we associated with each ¢dge
of upd_atlng labels i©(n%). The remaining cost comes frorT}he valuecachev,w), which records the label af as of the
following edges. (Recall that we may some’qmes follow 8st time the algorithm followed edde w). Since labels are
edge(v.w) but not update the label at, as it is already nondecreasing;achév,w) < L(w). Thus, we do not follow
sufficiently large.) Notice that the algorithm follows thdge (v,w) unlessL(v) > caéth_w) ‘ '
(v,w) only when (1)(v, w) is added, or (2y's labelincreases. *~ This first im?)roveme7nt .alone does not improve the
Since the label at increases at most— 1 times, each edge

can be followed at most times. We conclude that the tc)tat;/orst—case running time of our algorithm, as exhibited mgai
cost to insertn edges iO(mn) ' y the bipartite-clique example in Figure 1: after each edge

insertion completes, the cache at each edge leayiogr-

. rectly records the depth of each node however, whery;

3 Algorithm for Dense Graphs incrgases by 1 on thepnext edge inseﬁion, we must again fol-

This section describes ad(n?logn) algorithm for incre- low all outgoing edges fron.

mental topological sort, which is based on the basic styateg oyr second modification is to use a more aggressive

described in Section 2. The analysis appears in Section 41abe|-update rule. If we could update the label of a node
The example in Figure 1 demonstrates ashortcomingtg,f a larger quantity (instead of incrementing it), then we

the simpleO(mn) algorithm. Consider a bipartite clique withyoyid cache that larger value and avoid unnecessary visits.

verticesvy, vz, ..., Vic and wa, Wy, ..., W, and an additional jowever, we want to avoid increasing the label too much,

source vertexi that has a directed edge to everyConsider \yhich may result in labels growing too big.

an execution of the simple algorithm. When the depth Thus, we no longer constrain the label of a node to rep-

of u increases, the algorithm follows each outgoing edgesentits depth, as itis expensive to maintain a node’sggrec

(u,vi), and the label of eack; also increases. Sinog's depth. Rather, we consider the lahél) to approximate the

label increases, the algorithm algo follows each e(dgwj_). total number of predecessors (not just immediate) ¢No-

Thus, whenever the depth af increases, the algorithmijce that the depth of a node is a very loose lower bound on



stores the (old) value df(v) when the algorithm last fol-

State maintained by each node V: lowed edge(u,v). (Note that the cached value may be out-
L(u), the label ofu. of-date, a.(v) may have increased since then). We organize
Vj€{0,1,...,lgn} : N(u, j), a counter bounded by 2%. all outgoing edges into a data structunetgoingv), which
Vj€{0,1,...,Ign}: A(u,j), an old label ofu. we describe later.

Y (u,v) € E : cachdu,v), an old label of. We also associate witha collection of countersl(v, j)
outgoingu), an array of outgoing edges. and corresponding labels(v, j), for eachj : 0 < j <lIg(n),
all initially 0. The jth counteN(v, j) satisfies the following

FoLLow(u,Vv) invariant: 0< N(v, j) < 2i*2. The labelA(v, j) stores the

value of v's label whenN(v, j) was last reset to 0. The
N(v, j) counter counts the number of incoming edges/)
that, when last followed, had 2' < L(v) — L(u) < 2J.

We now describe the algorithm in more detail. When
inserting the edg€u,v) into the dag, we proceed as fol-

1 ifL(u) >L(v)

2 then L(v) < L(u)+1

3 else > Check ifv has sufficiently many immediate
> predecessors to increase its label.

. IJ\I((_V f')gﬁa’zv‘.gf)lﬂ lows: (1) initialize cach@u,v) « 0; (2) insert(u,v) into
NV -~ -;12 outgoingu);, and (3) follow the edgéu,v) as described by
6 TNy, j) =2 i FoLLow(u,V) in Figure 2. This procedure updatés label
. j , .
; then l,:l((\\//) S(r_nzg(L(v) A1) +20) and other state, and then (selectively) calis Fow(v, *) re-
9 AW, ) — L(v) cursively on the ongoing edges of

When executing BLLow(u,V), we first check whether
L(u) < L(v). If not, we increaseL(v) by 1 in line 2,
thus ensuring that the resulting labelling induces a valid
topological ordering.

If, on the other hand, we already hav@) < L(v), then
we examine whethershould have its label increased due to
its counts of immediate predecessors. This step is where the
label is incremented more aggressively than in Section 2.

First, we find the magnitude of difference betwé€n)

Figure 2: Pseudocode for updating labels, when following &RdL (V) in line 4—specifically, we find the smallegisuch
edge inthe dag. The triangles denote comments. EachwobatL(v) —L(u) < 2). We then increment the corresponding
maintains four data structures: a lahé¥), a counteN(v, j) counterN(v, j). If the countem(v, j) reaches its maximum
and old labeN(v, j) for 0 < j < Ig(n), and an outgoing-edgevalue of a+2, then. we pe_rform the our “more gggresswe"
setoutgoingv) organized byachev,w) — a cached version Update of’s label, increasind.(v) by up to 2 — 1 in line 7.

of w's label. We next resetN(v,j) to 0 and record the corresponding

A(v,j) inlines 8 and 9.
This label update may seem strange at this point, but

i i i i
the total number of predecessors.) That is, we assign a Ia}vg)%lwm show in Lemma 4.1 that wheR(v, j) +2! > L(v), v

H 1 . . . . .
L(v) such that 0< L(v) < Pred(v) < n, wherePred(v) is the as at Ieast{? distinct immediate predecessors with label
at leastA(v,j) —2). Thus, we know thav has at least
total number of predecessorswf(Of course, the labels also . i i1
. . . A(v,j) — 2! + 2"+ predecessors, and we update the label
must induce a valid topological order.)

. o . . accordingly.
When increasing’s label, the magnitude of the increase At this point, if v's label increases (whether in line 2

depends on the number of immediate predecessors known t? .
) or line 7), then we follow all outgoing edges whose targets
have large labels: the more predecessonstbft have large

labels, the higher we increment the labelofThis strategy have cached labels that atel(v), i.e., targets that may need

. ) : . to have their label increased. Finally, when the algorithm
captures the intuition that if a vertex has many immediate . : . : .

. : . as finished following outgoing edges, we associs@ew
predecessors with large labels, then it most likely has a v?r

large number of predecessors (immediate or otherwise)%be“‘.(v) with cgchQu,v) and update the edge, v) in u's
. ) S outgoing edge list.
the dag. By increasing the label significantly, we preveat to . .
We next comment on some of the implementation de-
frequent updates as further edges are added. tails

10 if L(v) has increased:
11 then for each (v,w) such thatachév,w) < L(v)
12 do FoLLow(v,w)
> Done following the edge.
> Update(v,w) in u's outgoing edge set.
13 cachédu,v) — L(v)
14 Update(u,v) in outgoingu).

The Algorithm. As previously noted, our algorithm main-, . . .
tains the valuel(v) (initially 0), with 0 < L(v) < n. We Implementing the Outgoing-Edge Seflhe outgoing-edge

associate with each edge,v) the valuecacheu,v), which set data structure is straightforward to implement. The



variableoutgoingV) is ann-slot array, each slot containingd(n?logn) for the O(n?) BST operations has no effect on
a linked list of outgoing edges. Hachdv,w) = x, then a the asymptotic running time of our algorithm.
pointer tow is stored in a linked list at slot in the array.
Notice that updating an edge (i.e., in line 14) is easy inithaDetecting a Cycle.Thus far, we have assumed that no edge
simply involves removing it from one linked list and addingnsertion introduces a cycle to the graph. It is easy to nyodif
it to another. our algorithm to detect the introduction of a cycle, althoug
To determine which edges to follow (in line 11), wehe performance bounds only hold until the first cycle is
follow all outgoing edges in array slots betweénold label detected; that is, we provide no mechanism for deleting an
andVv's new label. After following each edge, the target'sdge aside from rebuilding the entire data structure.
label (and hence the edge’s cached label) has increasedTo detect whether the addition @t v) introduces a
beyondv's current labelL(v). Thus, when BLLow(u,v) cycle, simply check whethen is ever visited during the
returns, there are no outgoing edges stored in array skiépth-first search performed while following edges. If so,
0,...,L(v). As aresult, we need only examine each slot dfere is a cycle. The nodes in the cycle can be found by a
the array once during an execution. separate graph search.

Calculating in the RAM model. Some machine models al4 The Analysis

low for a constant-time Ig calculation, but we do not raye now analyze the algorithm from Section 3. There are
quire such an assumption. Since we only compute this Iqgree key theorems. First, we argue that the ordering irtiuce
arithm for at mosi different values (i.e., the difference inOy the labels is, in fact, a topological order. Second, wearg
the possible labels), we can pre-compute a sif@garithm nat |abels are bounded Ioy Lastly, we analyze the cost of
table with all the necessary entries. Even a naive algoritlg@ge insertions, demonstrating that the total cost of fimger
for computing base-2 logarithms of 109-bit numbers re- m eqges iO(n2logn), and we show this analysis to be tight.

quires onlyO(log(n)) time using only additions (repeatedrne key observation is that no edge is followed too many
doubling) and comparisons. Ti@&(nlog(n)) time for pre- {jmes.

computing the entire table is dwarfed by t&¥n®log(n))

time of the topological-ordering algorithm. Correctness of the Topological Ordering/Ve begin by

__Similarly, we could pre-compute a table for calculatinghowing that the data structure maintains a valid topoligic
21+2 using only additions, thereby not requiring a bitshiffrdering:

operation in the machine model.
THEOREMA4.1. After completely processing each edge in-

Supporting Predecessor/Successor queriés described sertion, if((u,v)) € E, then L(u) < L(v).
so far, our data structure supports only queries of the form,
“Doesu precedev in the topological ordering?” It does notProof. Initially, the labels trivially induce a good ordering
(efficiently) support queries of the form, “What is the nexgince there are no edges in the dag. Assume, for the sake
vertex in the topological ordering afte?” These queries areof contradiction, that after some edge insertion the theore
easy to support without increasing the asymptotic runniisg violated. Consider the first edge insertion causing a
time. violation, and let edgéu,v) be an edge for which (u) >

Throughout the execution of the algorithm, maintainlgv). During the edge insertion, the lable{u) must have
linked list matching the topological ordering. To seardhcreased, thereby causing the violation. If we subsedyent
into the linked list, also maintain a balanced search trigdlowed (u,v), thenL(v) would have increased beyohgu)
(BST) (see [6], Chapter 13), ordered/keyed by label, whdfg line 2).
ties are broken by unique vertex identifiers. Initially the Suppose, therefore, that we did not follgwv) after the
vertices are simply sorted by identifier. Wheneverlabel last increase ta.(u). It follows thatcachdu,v) > L(u), as
increases, remove from the tree and reinsert it with keythe edge was not followed in lines 11-12. We know that the
equal to its new label. Query the BST fds predecessan, cached labetachdu,v) <L(v), sinceL(v) is nondecreasing.
and movev from its current location in the linked list, insteaddence L (v) > cachéu,v) > L(u), which is a contradiction.
locating v after its BST-predecessar.  Since labels havell
maximum value ofn— 1 (shown later in Lemma 4.1), a

nodev is reinserted at most— 1 times, resulting im BST  goynded Labels.We next show that the value of each label
insertions and predecessor queries, as wet Asked-list s hounded byr. (Notice that this fact also ensures that each

moves, per vertex. Each BST operations has Qifgn) |apel can be stored in a single word, which has been implicit
(using a reasonable BST implementation), and each linkegoughout.)

list operation has constant cost. The total additive cost of



LEMMA 4.1. Forv eV, let Predv) be the total number of “contributing predecessors.”

predecessors of v. Then at any point during the algorithm Let x be a topologically earliest contributing predeces-
execution, [v) < Pred(v) < n. sor. By inductive hypothesis, we haReed(x) > L(x). All of

X's predecessors are predecessors dforeover, none of the

Proof.  We proceed by induction over the number of edg%ﬁwer contributing predecessors, natself, are predecessors

that have been followed. Initially,(v) = 0, and the claim i1 i+1
holds trivially. Assume the lemma is true before followin(??/f\ ()i/ j;— Eu;,)iiezqi{y)_zl\?\r/ejd)i:); 2Noti§g|—§f)1(;t—~_tﬁe Iaﬁel

the edge(u,v). We show that it holds after following the e : J-
edge. If labeL(v) does not increase, then the claim followl§(v> Is increased té\(v, j) +2) completes the proof. L]

immediately, as (v) < Pred(v) by inductive hypothesis. _ ) _

Suppose instead that(v) increases while following Complexity Analysis of Insgmon;We now show that the
(u,v). There are two places thas label increases: line 2total cost of up tom edge insertions i©(n?logn). The
and line 7 of Figure 2. In the first cask(v) « L(u)+ 1. key qpservatlon is that no vertex is visited too many times,
By inductive hypothesid. (u) < Pred(u), and we know that speC|f|_caIIy, more_tha@(nlog n) times. The main idea qf the
Pred(u) < Pred(v) since the predecessors wiinclude all proof is to amortize the cost of f(_)llowmg an edge d|r_ected
the predecessors of plus the noder itself. (Recall thaty Fowardsv against the number of times that the labela$
is considered to be a predecessor of itself.) Thug) = increased.

L(u)+1 < Pred(u) + 1 < Pred(v), and the claim follows.

In the second casg(v) increases in line 7 as a result o
N(v, j) increasing to 22. We fix j for the remainder of this
proof. First, we observe that(v) increasing here impliesProof. ~ Whenever we visitv, we either increasek(v)
that (prior to the updatel)(v) < A(v,j)+2!. (Otherwise (line 2), or we increas&(v, j) for somej (line 5). The
the labelL (v) would remain unchanged.) Consider tHe2 former occurs at most — 1 times over the course of the
increases td(v, j) since the last time it was reset to 0. algorithm.

We claim that each distinct edge contributed at most 2 For the latter case, consider tljign counter. Whenever
such increases (v, j). Suppose for the sake of contradicthe counter reaches 2 it resets. LetA(v,j) denote the
tion that some edggu, v) contributed 3 or more increases twalue of v's label associated with thigh reset. Observe
N(v, j), and consider the last 3 such increases xofu, v}, Ai 1(V,j) > Ai(v, j) + 2! due to the update in line 7, or more
let L1(x), L2(x), andLz(x) be the values ok's label im- generallyA;(v, j) >i2l. Sincen > L(v) > A(v, j), it follows
mediately prior to these 3 increases, respectively. Sinee that the maximum value ofhere is| (n— 1)/21J, and hence
counter increases; (v) — Li(u) > 2/~1. (Recall that this in- N(v, j) can be increased at most
equality follows from the choice of, see line 4.) i

Moreover, sincecachdu,v) is updated after each edge ,j+2 _ j 2N L2 j+2
is followed, and since the edge is only followed if the label (L(n /2 J +1) = 2i +2T s an+2
L(u) exceeds the cached value bfv), we can conclude
thatLy(u) > L1(v) andLz(u) > Ly(v). Combining these two
facts, we conclude thab(v) > Lp(u) +21-1 > Ly (v) 4-2i-2
and La(v) > La(u) 4+ 21-1 > Ly(v) +2i—1, which together o _ _
imply that Ls(v) > L1(v) + 2/, Finally, since the countercomb'”'”g Lemma 4.2 with a cost analysis of each call to
does not reset between these increaseshang) represents FOLLOW yields our total running time:

V's label at the time of the previous resét,(v) > A(V, j).
It follows that L(v) > La(v) > A(V,]) + 2, which is a
contradiction.

We therefore conclude that each edge contributesPabof. To reach this bound, we calculate the cost of each
most 2 increases tdl(v, j). Since there have beer*Z call to FoLLow, and multiply by the total number of times
increases when the counter resets (causing the lab¢bdfe that any node is visited. Ignoring lines 11-12, each step
increased), we conclude that there are at Iebiszt/z distinct of FoLLow has constant cost. The only remaining cost
edges contributing td(v, j). Fix someu such that(u,v) is due to finding edges to follow in the outgoing-edge data
contributes toN(v, j). Each time edgéu,v) contributes to structure. The outgoing-edge data structure is asiaeay
the count, we havé(u) > L(v) — 2/ (again, by the way in of linked lists. We visit each array cell only once over
which j was chosen on line 4). Thus, sincév) > A(v, j), the entire course of the algorithm, for an aggregate cost of
we know thatl(u) > A(v, j) —2J. O(n). We charge th@®(1) cost of traversing the linked list

Thus,v has at least21 distinctimmediate predecessoragainst the outgoing edge followed. Multiplying the array-
with label at least\(v, j) — 2J. We call these vertices thetraversal cost for each outgoing-edge data structure by

LEMMA 4.2. In every execution, for everya/V, vertex v is
Visited at most (nlogn) times.

times. Summing over allO(logn) values of j gives
O(nlogn) counter increments and hence visitationsvof

THEOREM4.2. The total running time to perform up to m
edge insertions is @?logn).



vertices yields a total cost for our algorithm ©{n? +F), ingmedges into a graph containimgrertices isO(n?logn).

whereF is the total number of edge followings. Applyindt supports order queries of the form “Doesome beforey

Lemma 4.2 completes the proof. [J in the topological ordering?” i®(1) time, and, with minor

Finally, we show that our analysis is tight. modifications, it can support successor/predecessoregueri

in O(1) time. For dense graphs where> n*/3log?3n, our

THEOREM4.3. For any sufficiently large n, there exists algorithm is the most efficient to date.

sequence oB(n?) edge insertions on an n-vertex dag that As presented, our algorithm requir€$n®) space (in

causes our algorithm to follo®(n?logn) edges. terms of machine words, not bits); using a priority queue
to manage the outgoing edges should reduce the space to

Proof.  Without loss of generality, suppose= 3k — O(m+ nlogn) but increase the running time @n?log?n).

4, wherek > 2% is a power of 2. The graph we con-  The major open question is whether the new techniques

struct consists of three categories of vertices: (1) vestidntroduced in this paper can yield improvements in the spars

Up,Us,...,Uk-1, (2) sets of vertices, Sy, ..., Sqk)—3 With  case. For our algorithm, there exists an instance-of edge

Si| =272 (s0y>;|Si| = k—4), and (3) a set of verticeB  insertions that require®(n?) work. For example, always

with | T| = k. Initially there are no edges in the graph, and aldding edges to the front of a chain results in relabelling

labels are 0. every node in the chain on every edge insertion. It would be
First, add edgesu;,u;;1) in order for 0<i < k—1. interesting, however, if some variant of our approach leads
After these edge additiond,(u)) = i. These labels areto a good algorithm for sparse graphs.

invariant over the remainder of the edge insertions — we
use these vertices as anchors to increase the labels oéallAtbknowledgements

other vertices. In fact, thenly time the labels of any otherwe would like to give special thanks to Robert E. Tarjan and

vertexv € (U; §)) UT will increase is when adding an edgene anonymous reviewers for detailed suggestions on how to

(Ui, V). simplify and improve our algorithm. The current formulatio
The edge insertions proceed in phases ranging from oy algorithm draws heavily on Tarjan’s comments, and

k. In phass, first insert edgeui1,t) for all t € T, thereby pjs suggestions also helped us to improve the running time
increasing.(t) such thal (t) =i. Next, consider eachfor py g factor of logn.

whichi is a multiple of 2. There are two cases.

Case 1. If i =2/, add edgeqs;j,t) for all s; € Sj and
t € T. Observe that before the edge additidi{t, j) = O,
A(t,j) =0, andL(sj) = 0= L(t) — 2I. After the 2+%th
edge insertionN(t, ) reaches 22. We have, however,
thatL(t) > A(t, j) + 21, and hence.(t) does not increase.
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